
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

JAVABEANS-BASED FRAMEWORK FOR CONSTRUCTION SIMULATION

Anil Sawhney
Hemant Deshpande

André Mund

Del E. Webb School of Construction
Arizona State University

PO Box 870204
Tempe, AZ 85287-0204, U.S.A.

ABSTRACT

The modeling and analysis of construction processes is
gaining recognition in the construction industry. Recent
developments such as Java-based simulation are giving a
unique opportunity for improvements in the modeling and
analysis of construction processes. Component-based archi-
tecture such as JavaBeans can be used to develop modular
simulation environments supporting high reusability of
software components. This paper describes a prototype
component-based architecture for construction simulation. It
highlights the work performed by the authors in using
JavaBeans for the simulation of construction processes.

1 INTRODUCTION AND BACKGROUND

Simulation has been used extensively in many different
areas of the construction industry. It started with the
introduction of CYCLONE by Halpin (1977). Over the last
two decades computer simulation has established its
usefulness in the area of modeling and analysis. A user can
enter the fields such as number of entities in the system,
delay time in the Normal activity etc. of construction
processes for planning, scheduling, and control of
functions, operations, and resources of a construction
project (Sawhney and Mund 1999). Recent developments
in object-oriented methods (Liu and Ioannou 1992) in
general and Java-based programming in particular
(Sawhney et al.. 1999) and construction project level
simulation (Sawhney et al. 1998 and Odeh et al. 1992) are
being reported by researchers in the field of construction
simulation (Sawhney et al. 1999).

Simulations are usually performed in a standalone
environment for testing, experimenting, and studying a
system or its prototype. However, as the ability to share
knowledge across wide areas increased dramatically with
the help of the Internet, simulation experts began to use the
web to perform simulation (Sawhney et al. 1999).
191

Motivated by these developments and recommendations
resulting from a workshop that suggested that simulation
modeling systems should be made �friendlier� by using
more graphics (Ibbs 1986), the authors have undertaken to
develop a simulation framework geared towards construc-
tion using a JavaBeans-based, object-oriented approach.

This paper provides an overview of the ongoing work
on this project. In the next section a brief introduction to
the state-of-the-art of Java-based simulation is given. The
concepts of Java-based simulation and JavaBeans-based
simulation are outlined in the following two sections. The
fifth section of the paper describes the way in which the
Silk simulation modeling language was extended using
JavaBeans. The sixth section gives implementation details.
Conclusion and future directions are provided in the last
section of the paper.

2 WHAT IS JAVA - BASED SIMULATION?

Generally, a simulation model programmed in the Java
language can be defined as a Java-based simulation.
However, the term �Java-based simulation� is used more
broadly to point to simulation models that can be accessed
over the Internet. This is also commonly referred to as
�WebSim� (Powersim 1998). WebSim programs can be
divided into the following two major categories (Page et al.
1997): (1) Simulation programs that can be accessed
remotely through web browsers in which a single copy of
the simulation runs on a server and passes the simulation
results to the invoking client (Page et al. 1997); and (2) a
variation of the first, but with the added feature of code
mobility afforded by such network programming languages
as Java. The simulation executes on the client rather than
the server (Page et al. 1997). In essence the modeler
develops a Java-based applet that is embedded in a web
page. The construction process simulation tool described in
the paper belongs to this category.
9

Sawhney, Deshpande, and Mund
Overall, it is felt that Java-based simulation will
expose the benefits of computer simulation to a larger
audience of problem-solvers, decision-makers and trainers
since models can be distributed and executed over the
Internet using standard browser software on any operating
system and hardware platform. Additionally, the use of
Java as a programming language for simulation provides a
number of direct benefits such as: (1) the capability of
producing hierarchical, modular, and reusable simulation
applications; (2) a �write once, run anywhere� platform
independence that allows simulations developed using Java
to be distributed and shared freely; and (3) native support
for networking and common Internet protocols, database
connectivity, multi-threading, distributed objects, and
graphical user interfaces (Healy and Kilgore 1997).

Java-based simulation can be used beneficially in a
number of ways. The following list provides some
potential applications of Java-based simulation:

• Simulation for Teaching and Training: The use of

simulation has the potential to significantly alter
the current teaching and training methodologies
(Page et al. 1997, Fishwick 1997). The primary
objective of the authors in the development of the
JavaBeans-based construction simulation template
is to enhance the undergraduate construction
engineering education.

• Web-Based Collaborative Decision-Making: Java-
based simulation that can be accessed over the
Internet can be effectively used as a collaborative
decision making tool when the team involved in
decision making is present at different locations.

• Simulation-Based Marketing: Manufacturers of
products and processes can use WebSim to
demonstrate their technologies to prospective
users over the Internet. (Powersim 1998).

• Simulation Research Methodology: The ability to
rapidly disseminate models, results, and
publications on the Internet permits new
approaches to the conduct of simulation research
(Page et al. 1997).

3 STATE-OF-THE-ART

A number of discrete event simulation toolkits
programmed in Java have been developed recently. The
following paragraphs provide an overview of the important
Java based simulation toolkits available.

SimProd, a tool for developing flexible simulation
models of production systems on the World Wide Web
(WWW), is an extension of Simjava developed by Ross
McNab and Fred Howell (Kapuno and Nagarur 1999).
SimProd provides different objects that represent entities
existing in the production system, like machines, AGVs,
conveyors and others, supporting many types of
19

distributions, which are found useful in the manufacturing
environment. Models using objects from SimProd can be
implemented as applets and executed in a Web browser.

Simjava, a Java-based discrete event simulation
package authored by Fred Howell and Ross McNab
(Howell and McNab 1998), is conceptually based on the
HASE++ simulation library (Coe et al. 1998) and the
Sim++ library for C++ (Jade Simulation International
1992). Based on a discrete event simulation kernel,
Simjava includes facilities for representing simulation
objects as animated icons on a screen. Also, Simjava
simulations may be incorporated as �live diagrams� into
web documents (Howell and McNab 1998). Currently
efforts for the integration of Java-based simulations written
(using Simjava) and Virtual Reality Modeling Language
(VRML) based animations are being conducted.

SilkTM, a general-purpose simulation language written
using the Java programming language, combines process-
oriented modeling structures with powerful object-oriented
language features in an intelligent design. This encourages
model simplicity and reusability (Healy and Kilgore 1997).
In Silk, models are developed directly in the Java
programming language using an Application Programming
Interface (API) composed of classes which consist of
relatively few powerful process-oriented modeling features
(Healy and Kilgore 1997). Silk also allows a modeler to
develop domain specific simulation objects using the
JavaBeans-based methodology. This is a key feature that
makes Silk very attractive to developers. The authors used
Silk to develop the JavaBeans-based construction simu-
lation tool described in this paper.

JSIM, a simulation toolkit in which models can be
built using either the event package (Event-Scheduling
Paradigm) or the process package (Process-Interaction
Paradigm) (Nair et al. 1997), supports a good graphical
environment for displaying queues. A Java database is used
for storing results.

JavaSim is a set of Java packages for building discrete
event process-based simulation, similar to that in Simula
and C++SIM (Little 1997). SimKit is another Java based
discrete event simulation toolkit that is currently being
developed (Buss and Stork 1996).

4 JAVABEANS-BASED SIMULATION

JavaBeans is a portable, platform-independent software
component written in Java. It enables developers to write
reusable components once and run them anywhere
benefiting from the platform-independent power of Java
(DeSoto 1997).

JavaBeans are essentially Java classes that follow a
pre-defined property and event interface convention. These
JavaBeans can be utilized to write any type of Java
program. Normally, JavaBeans can be manipulated and
incorporated into a Java program in any visual
20

Sawhney, Deshpande, and Mund

development environment such as Symantec Visual Café,
IBM VisualAge for Java, or Sun Java Workshop.

Java offers several features that are ideally suited to the
implementation of advanced discrete-event simulation
architectures and reusable simulation software components.
Java based simulation results in creation of �objects�.

The JavaBeans technology is based on Java and
provides a means of creating and using Java classes as
software components. The term software component (or
simply component) differs from the term object in several
subtle ways. An object is generally thought of as being the
runtime incarnation of a class within a large system.
Components are referred to as specific objects that are
packaged and intended for reuse. Component software is a
type of software that is designed heavily around the idea of
code reuse and compartmentalization. (DeSoto 1997).

Component software is a very popular and powerful
concept throughout the software industry to increase
development efficiency. Software components are
designed and built so they can be accessed and used in a
variety of different development and runtime scenarios.

During the 1990�s, simulation software has utilized the
advantages of Object-Oriented Programming (OOP). The
next step in simulation software development is to use
software components. Software component begins where
OOP left off and adds capabilities to maximize software
reuse and facilitate rapid development through assembling
components.

JavaBeans are part of this component-based
architecture that support the following features:

• Introspection�a process of exposing the

properties, methods, and events of a JavaBean.
• Customization�ability of objects, external to the

JavaBean, to customize the appearance or
behavior of the JavaBean.

• Persistence�mechanisms that result in saving an
instance of the JavaBean to a disk or other storage
device.

• Platform Independence�ability to work on any
computing platform.

• Web-based�ability to be deployed on the Internet
because of the underlying Java language.

The above features of JavaBeans can be beneficially

used in the development of simulation programs in general
and industry specific simulation frameworks in particular.
JavaBeans that mimic the functioning of industry specific
�objects� can be designed on top of a layer of a general-
purpose discrete event simulation toolkit. Users can then
utilize the special purpose JavaBeans to develop simulation
models. Advanced users will have the option of extending
the JavaBeans, developing new JavaBeans or directly
accessing the general-purpose discrete event simulation
toolkit to write advanced simulation models. The authors
19

have utilized this concept to develop and test a JavaBeans
based construction simulation framework.

5 JAVABEANS-BASED CONSTRUCTION

SIMULATION FRAMEWORK

The authors have utilized Silk to develop a prototype
JavaBeans based construction simulation framework. Silk
is a collection of Java classes for discrete-event simulation.
These classes include a unique �entity-thread� based
simulation engine and a set of process-oriented modeling
methods for true object-oriented simulation design (Healy
and Kilgore 1997). Simulation models are developed
directly in the Java programming language using Silk
classes (Sawhney et al. 1999). The package of classes can
also be extended to develop user defined JavaBeans. The
hierarchy of classes used for the current research is as
depicted in Figure 1.

Simulation

Silk

Entity

User Defined JavaBeans

Figure 1: Hierarchy of Silk Classes

Normally a Silk user can write a simulation program

in Java by directly extending the Silk classes. However, an
improved approach will be to develop JavaBeans that
model common scenarios encountered in construction
simulation and allow the user to develop simulation models
for construction processes on the �fly� by using these
JavaBeans.

The authors have developed JavaBeans that can be
used in the simulation of construction processes. The user-
defined JavaBeans are developed by extending the Silk
�entity� class.
21

Sawhney, Deshpande, and Mund
6 IMPLEMENTATION DETAILS

The JavaBeans based construction simulation framework
developed by the authors is based on the CYCLONE
methodology. CYCLONE, developed by D. W. Halpin
(1977) specifically for modeling of construction
operations, is a popular construction modeling and
simulation tool. It uses a graphical modeling format
consisting of five prime elements as shown in Figure 2.

Represents a non-constraint work task
with infinite number of servers

Represents a work task constrained by one
or more resources

A node where idle resources wait

Simulation entities can be accumulated at
this node

Keeps track of the number of times a
unit passes it

Normal

Combi

Queue

Function

Counter

Figure 2: CYCLONE Modeling Elements

The first element, the NORMAL represents a non-

constraint work task while the COMBI represents a
work task that is constrained by the availability of
resources. Idle resources wait at a QUEUE node and
new elements/resources can be created at a FUNCTION
node. Finally the COUNTER is used to keep track of the
number of times a unit passes it. Simulation models for
construction operations are developed using these five
CYCLONE elements.

In this study JavaBeans that provide the functionality
of the CYCLONE modeling element were developed. The
Silk modeling language can be extended for development
of these JavaBeans. Figure 3 depicts the JavaBeans
developed for the CYCLONE modeling elements. The
structure shows that a prototypical �ModelBean� was first
developed by extending the Silk �entity� class. The
JavaBeans representing the CYCLONE modeling element
19

are then developed by extending the ModelBean. The key
properties associated with the CYCLONE JavaBeans are
described in Table 1.

Silk

Simulation

Entity

JCycloneQueue

JCycloneCombi

JCycloneNormal

JCycloneCon

JCycloneGen

JCycloneCounter

ModelBean

Figure 3: JavaBeans for the CYCLONE Modeling
Elements

Table 1: Properties of the CYCLONE Beans

JAVABEAN PROPERTY
JCycloneQueue Capacity
JCycloneNormal Service Time

JCycloneCon No. of Entities
JCycloneGen No. of Entities

JCycloneCount No. to Count
JCycloneCombi Service Time, Priority

Figure 4 shows graphically the ModelBean. The

ModelBean �extends� the Silk entity class and �implements�
the outputListener interface. In addition to inheriting
properties, methods and events from the Silk entity class the
ModelBean provides the default constructor, the �output�
method and the �notifyOutput� method.
22

Sawhney, Deshpande, and Mund
Silk

Simulation

Entity

ModelBean

OutputEvent
setProperty
getProperty

OutputListener
 Interface

implementsextends

Figure 4: Graphical Representation of ModelBean

The �ModelBean� as shown in the hierarchy has all the

methods defined in it. Hence, the beans in the lower level
can inherit the methods implemented in the ModelBean.
This is possible because of the inheritance property, which
the object-oriented programming provides. As can be seen in
Figure 4, the ModelBean makes use of �OutputEvent� class
and �Outputlistener� interface. The �OutputEvent� class
consists of a constructor, a �setObject� and �getObject�
methods. The �setObject� method allows to set the
OutputEvent to a specific object, in this case a ModelBean.

The �OutputListener� interface has an output method
that needs to be implemented in all the classes, which
implement this interface. An interface just defines a
method, which is to be implemented by every class, which
�implements� the interface. The main methods in the
ModelBean are the �output� and �notifyOutput� methods.
This is depicted in Figure 5.

ModelBean

! Default Constructor
! Output Method
! notifyOutput Method
! outputListenerList

inPort outPort

Figure 5: Detail of ModelBean

The �notifyOutput� method transfers the entities from

the �inPort� of a modeling JavaBean to its �outPort�. This
is depicted in Figure 6.

ModelBean

inPort outPort

entities

notifyOutput Method

Figure 6: Working of �notifyOutput� Method
19

The �output� method of the ModelBean is used to

transfer the entities from the �outPort� of an upstream
ModelBean to the �inport� of the current (downstream)
ModelBeans. In performing this transfer the �output�
method uses an �OutputListenerList�. The
�OutputListenerList� is a vector that stores a list of
downstream ModelBeans to which a ModelBean is
connected. The actual transfer of entities is shown in
Figure 7.

(Downstream
Objects)

ModelBean
outPortinPort

(Upstream Objects)

OutputListenerList
(ModelBean1,
ModelBean2 ,
 ModelBean3)

ModelBean1

ModelBean2

ModelBean3

Figure 7: Working of Output Method

As seen from the figure the Upstream ModelBean is
connected to three downstream ModelBeans. These
downstream ModelBeans are stored in the
�OutputListenerList� of the Upstream ModelBean. The
�output� method of the ModelBean1 transfers an entity
from the �outPort� of the Upstream ModelBean to its
�inPort�. Similarly, the �output� methods of the
ModelBeans2 and ModelBeans3 are called to transfer the
entities. An �OutputEvent� object is passed as an argument
to this method in order to identify the associated
downstream object. The output method uses this
�OutputEvent� object to transfer the entities from the
�outPort� of the upstream bean to the �inPort� of the
current bean. This is depicted in Figure 7.

JavaBeans such as �JCycloneNormal� implement
�push-type� logic. From a modeling standpoint, a bean
implementing push-type logic, is passive, as the individual
processing steps it models are performed by the entities
that invoke its pushProcess method. The only active
processing performed by a bean is to activate the entities
that are passed from an upstream bean. A PushModelBean
interface is used in this case. It has a pushProcess method.
JavaBeans implementing the �PushModelBean� defines
this method. In case of �JCycloneNormal� bean the entities
come into the �inPort� of the bean. The entities are then
delayed by the time specified using the pushProcess
method and the �notifyOutput� method is called. This
method transfers these entities after the specified delay
time to the outPort and calls the �output� method.

For the �JCycloneQueue� bean, there could be two
scenarios. Firstly, it may be the starting object and requires
generation of entities. The user specifies the number of
entities to be generated. It generates the required number of
23

Sawhney, Deshpande, and Mund

entities and transfers them to the �inPort� of the Queue.
Secondly, it may be an intermediate bean, which receives
entities from an upstream object. In this case the entities
are just transferred from the �inport� to the �outport� using
the �notifyOutput� method.

Using the same process logic all the beans were
developed. Now in order to develop a simulation model,
any Java based visual/graphic developing environment
such as Visual Café can be used. These beans can be
dropped on to the work area as per the logic. The user can
specify details such as number of entities in the system,
delay time for the Normal activity, etc. Once all the
connections are set, the user can run the model and observe
the results obtained. The user has to write the Java code for
simulation superclass and an applet that calls the frame that
has all the connected beans forming a model.

The simulation then can be published on to a web
server. A client connected to the Internet can then view the
published simulation with the help of standard web browser.

Once the simulation is completed the output window
displays the standard output.

7 CONCLUSIONS

This paper provides information about the development of
JavaBeans based simulation for construction processes. By
utilizing component-based technology such as JavaBeans
the environment is built up from reusable software
components that can be dynamically assembled using
visual development tools. Cyclone modeling elements were
used for developing the user-defined beans. Silk classes
were extended for this purpose.

ACKNOWLEDGMENTS

This project was supported in part by the National Science
Foundation (NSF) (Grant No. DUE 9996399) and Arizona
State University�s Center for Research on Education in
Science, Mathematics, Engineering and Technology
(CRESMET). Opinions expressed are those of the authors
and are not necessarily those of NSF or CRESMET.

REFERENCES

Buss, A.H. and K.A. Stork. 1996. Discrete event

simulation on the world wide web using JAVA. In
Proceedings of the 1996 Winter Simulation Confer-
ence, ed. J.M. Charnes, D.J. Morrice, D.T. Brunner,
and J.J. Swain, 780-785, Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

Coe, P.S., F.W. Howell, R.N. Ibbett, and L.M. Williams.
1998. A Hierarchical Computer Architecture Design
and Simulation Environment. ACM Transactions on
Modeling and Computer Simulation, 8(4):431-446.
19
DeSoto, A. 1997. Using the Beans Development Kit 1.0 �
A Tutorial. JavaSoft, November 1997. 1-1.

Fishwick, P.A. 1997. Web-Based Simulation. In
Proceedings of the 1997 Winter Simulation Confer-
ence, ed. A. Andradottir, K.J. Healy, D.H. Withers,
and B.L. Nelson, 100-102. Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

Halpin, D.W. 1977. CYCLONE: Method for Modeling of
Job Site Processes. In Journal of the Construction
Division, ASCE, 103(3): 489-499.

Healy, K.J. and R.A. Kilgore. 1997. SilkTM: A Java-Based
Process Simulation Language. In Proceedings of the
1997 Winter Simulation Conference, ed. A.
Andradottir, K. J. Healy, D. H. Withers, and B. L.
Nelson, 475-482. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Howell, F. and R. McNab. 1998. Simjava: a discrete event
simulation package for Java with applications in
computer systems modeling. First International
Conference on Web-based Modeling and Simulation,
San Diego, CA, Society for Computer Simulation.

Ibbs, C.W. 1986. Future directions for computerized
construction research. Journal of Construction
Engineering and Management, ASCE, 112(3): 326-345.

Jade Simulations International. 1992. Sim++ User Manual.
Jade Simulations International Corporation.

Kapuno Jr., R.R. and N.N. Nagarur. 1999. SimProd: A Web-
Based Flexible Simulation Package for Production Sys-
tems. EJSAT, July 1999, <http://www.sat.ait.
ac.th/ej-sat/articles/1.2/ng.html>.

Little, M.C. 1997. JavaSim World Wide Web Home Page.
<http://javasim.ncl.ac.uk/>.

Liu L.Y. and P.G. Ioannou. 1992. Graphical Object-
Oriented Simulation System for Construction Process
Modeling. In Proceedings of the Eighth Conference on
Computing in Civil Engineering, ASCE, Dallas,
Texas, 1139-1146.

Nair, R.S., J.A.Miller, and Z. Zhang. 1997. Java-Based
Query Driven Simulation Environment. In Proceedings
of the 1996 Winter Simulation Conference, ed. A.
Andradottir, K.J. Healy, D.H. Withers, and B.L. Nelson,
786-793. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Page E.H., R.L. Moose, and S.P. Griffin. 1997. Web-based
Simulation in Simjava Using Remote Method
Invocation. In Proceedings of the 1997 Winter
Simulation Conference, ed. A. Andradottir, K. J.
Healy, D. H. Withers, and B. L. Nelson, 468-474.
Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey.

Powersim. 1998. Metro JX Sever Documentation.
Powersim Corporation, Herndon, VA.

Sawhney, A., S.M. AbouRizk, and D.W. Halpin. 1998.
Construction Project Simulation Using CYCLONE.
24

Sawhney, Deshpande, and Mund

Canadian Journal of Civil Engineering, Canadian
Society of Civil Engineering. 25(1): 16-25.

Sawhney, A. and A. Mund. 1998. Simulation based
Construction Management Learning System. In
Proceedings of the 1998 Winter Simulation Confer-
ence, ed. D.J. Medeiros, E.F. Watson, J.S. Carson ,
M.S. Manivannan, 1319-1324. Institute of Electrical
and Electronics Engineers, Piscataway, New Jersey.

Sawhney, A., O. Abudayyeh and T. Chaitavatputtiporn .
1999. Modeling and Analysis of a Concrete Pro-
duction Plant using Colored Petri Nets. Journal of
Computing in Civil Engineering, American Society of
Civil Engineers (ASCE), 13(3):178-186.

Sawhney, A. and A. Mund. 1999. Hierarchical and
Modular Modeling of Structural Steel Erection Process
Using Petri Nets. Journal of Civil Engineering and
Environmental Systems, Gordon and Breach
Publishers, 17: 63-88.

Sawhney, A., A.Mund, J. Manickam, and J. Marble 1999.
Java-Based Simulation of Construction Process Using
Silk. In Proceedings of the 1999 Winter Simulation
Conference, WSC Part 2 (of 2), ed. P.A.Farrington,
H.B. Nembhard, D.T. Sturrock and G.W.Evans, 985-
991. Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey.

AUTHOR BIOGRAPHIES

ANIL SAWHNEY received his bachelor of Engineering
degree from India in 1987 and a Master of Building
Engineering and Management degree from School of
Planning and Architecture, New Delhi in 1990. He
completed his Ph.D. studies at the University of Alberta in
1994. He is currently working as an Associate Professor in
the Del E Webb School of Construction at Arizona State
University. His research interests are mainly focused on
construction simulation techniques and use of computers in
construction education. His email address is <anil.
sawhney@asu.edu>.

HEMANT DESHPANDE received his Bachelor of
Engineering degree from the University of Pune in India in
1997. Currently, he is pursuing his Master of Science
studies in Industrial Engineering at Arizona State
University. He has been working as a research assistant in
the Del E Webb School of Construction at Arizona State
University. His research interests centers on Java
programming, simulation modeling and software
development. His email address is <hemant.
deshpande@asu.edu>.

ANDRÉ MUND received his Bachelor of Engineering
degree from UAL in Portugal in 1994. He worked for a
contractor in Berlin, Germany, from 1994 to 1997. He
completed his Master of Science studies at Western
19

Michigan University in June 1999. Currently he is pursuing
a Ph.D. at Arizona State University and working as a
research associate in the Del E. Webb School of
Construction. He is interested in the area of heavy
construction equipment selection and computing and
information technology applications in construction. His
email address is <amund@asu.edu>.
25

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

