
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

ISSUES IN JAVA-BASED CONTINUOUS TIME
STEP PHYSICAL MODELLING

Lisa A. Schaefer
Philip M. Wolfe

Department of Industrial Engineering

Arizona State University
Tempe, AZ 85287, U.S.A.

ABSTRACT

This paper discusses the problems involved in developing a
Java based simulation model of autonomous entities that
can navigate themselves in 2-dimensional space. We
develop some ideas for solving those problems. The ideas
mentioned in this paper can be applied to simulations that
have fuzzy logic for navigation, encapsulation for object-
oriented simulation, many instances of objects, or
statistically complex results. We cite reasons for
distributing a simulation among several computers and
propose several topics for future research.

1 INTRODUCTION

An innovative approach to defining the paths of birds in an
animated cartoon flock was invented by Craig Reynolds
(Reynolds 1987). The flock is a simulated particle system in
which birds are treated as individual objects. Each bird is an
independent actor, or intelligent agent, that navigates
according to rules on how to avoid nearby obstacles. An
example of a set of rules that could be used to navigate a
flock of birds is shown below. This rule set was used in an
experiment with a herd of mobile robots that mimicked the
concept of cartoon birds, except with actual moving entities
on a floor in a lab rather than on a computer screen (Mataric
1995).

If robot is in path
 If at the right only
 turn left, go forward
 If at the left only
 turn right, go forward
 If on both sides
 Wait

There is still much left to be explained with regards to this
rule set. How much should the bird turn? How close must
the other bird be before we take it into consideration? How
fast should the bird fly? There are also several issues
regarding the system which are not addressed. What

direction are the other birds flying? What if a potential
collision is head-on rather than rear-end? How crowded is
the system? Will these rules work if a bird is crowded by
birds coming head-on?
 We experimented with these rules by simulating a flock
of autonomous agents and varying parameters in each model
according to a central composite experimental design. The
factors were: the size of the navigational area, the percentage
of that area occupied by agents, the variation of the
directions the agents were traveling (as opposed to traveling
parallel to each other), and the speed the agents desired to
travel if no other agents were impeding their progress. We
also experimented with fuzzifying the navigation rules. The
simulation program was written in Java, an object-oriented
language, in which each bird-like entity was modeled as an
instance of an �agent� object. Since this is a time-step
simulation, instead of a discrete event simulation, a
simulation package would not provide much functionality
beyond source code, except possibly output analysis.
 There are several types of systems that could be
simulated with a software architecture similar to the
architecture used for this research, and thus may have
issues similar to those addressed in this paper. Research on
motor vehicles that drive themselves requires complex
algorithms to calculate routes and prevent collisions in real
time. Pedestrians and vehicles interacting at an
intersection could be modeled as a particle system. A
manufacturing application for particle system algorithms is
a model of automated guided vehicles on a factory floor.
 We used the simulation to obtain results pertaining to
the efficiency and effectiveness of the system with regard
to two performance measures: effective speed and amount
of potential collisions. The values of the performance
measures were recorded periodically throughout the
simulation, then these results were regressed to determine
equations of the performance measures as functions of the
experimental design factors.
 The following sections describe the issues that arose
during the development of this research analysis.

1882

Schaefer and Wolfe

2 ISSUES

Five categories of problems arose while developing the
simulation problem for this research. These five issues,
along with the solution we implemented, are described in
this section.

2.1 Collision Checking

During each simulated time step, agents executed a set of
navigation rules to decide in which direction to travel.
Each instance of an agent existed in a Java vector. Placing
the agents in a vector not only facilitated ensuring every
agent executed its rules during each time step.
 The rules do not guarantee that the entities will not
collide with or overlap each other. Therefore a collision
check calculation was required at each time step, separate
from the rule execution. Placing agent locations in a vector
assisted in validating the simulation at the end of each time
step by enabling the programmer to check the locations of
each agent to check if any agents overlapped. In
preliminary simulation runs, overlapping agents did exist.
Several calculation methods were attempted to correct this
problem, however only one was somewhat successful.
 One idea was to model individual entities as cells
which exist over a given amount of area. Cellular
automata models of traffic have been developed (Blue et.
al. 1996, Nagel and Rasmussen 1995). The term �cellular
automata� comes from defining discrete squares of space,
or cells, and each cell has a set of rules that governs its
state at each time step automatically. Since the cells
occupy areas rather than points, the problem of entities
colliding due to modeling them as points, rather than
rectangles, is eliminated. However, the difficulty with
implementing a cellular automata model is when modeling
several entities that occupy different amounts of area.
Consider the example shown in Figure 1 of a vehicle-
pedestrian system in which each pedestrian occupies one

Figure 1: Pedestrians and Vehicles Modeled as Discrete
Cells

cell. Even if vehicles are modeled as many-celled objects,
the difficulty of modeling turning vehicles arises since
turning vehicles do not occupy rectangular space parallel to
roadways in real world systems. Some type of diagonal
rectangular space must be defined or approximated.
 Thus, the problem of overlapping entities also exists in
cellular models with entities of varying sizes. Since the
cellular model does not have a means for adequately
representing many-celled entities, we decided to use a
point-location model within an object-oriented language.
The advantage of using an object-oriented approach to
model pedestrians is that each object can have an attribute,
or variable, which defines its size and shape. Thus
pedestrians, vehicles, birds, and any other entity can easily
be differentiated from each other.
 In our point-location model, we tried moving
overlapping agents slightly away from each other so they
were not overlapping, but then some were moved on top of
other nearby agents as in Figure 2.

a) overlapping agents b) moved agents

Figure 2: Agents Before (a) and After (b) Separating
Overlapping Agents

 We tried a trigonometric calculation (see Figures 3 and
4), in which each agent checked its path to its next location
with the paths of the other agents, but it was difficult to deter-
mine how to check agents that had already been moved due to
effects of an agent it had been compared with previously.
 In Figures 3 and 4, the closest potential collision for
the black agent is the white agent. However, the closest
potential collision for the white agent is the grey agent. If
the black agent is the first agent to traverse the vector of
agents to locate its collision mate, the black and white
agents will be moved next to each other as in Figure 3,
however the white and grey agents should be moved next
to each other as in Figure 4 and the black agent does not
collide with any agent.
 We finally settled with the concept of mini-steps. One
step is the distance an agent travel while it calculates one
iteration of its maneuver-checking rules. With this method,
each agent is moved a fraction of its step length iteratively
during each time step until it either reaches another agent
or its step length. See Figure 5. Although this stopped any
agent involved in a collision in a realistic location, this
increased run time on the order of n2, n being the number
of mini-steps that make up a whole step.

1883

Schaefer and Wolfe

Figure 3: Black Agent Moved as if it Collided with the
White Agent

Figure 4: White and Grey Agents Collide First

Figure 5. Mini-Steps

2.2 Fuzzification

Originally there were seven factors in our experimental
design, however we decided that three of them had narrow
logical ranges and that implementing values outside these
ranges would be illogical. These three factors were: angle
of vision (the angle within which other agents can be
detected), sight distance (distance within which other
agents can be detected), and turning angle (angle the agent
turns away from goal location if another agent is detected).
An agent�s goal location its destination, which may
represent a machine to which the agent is delivering an
unfinished product for processing. See Figure 6 for further
clarification of the meaning of these factors.
 Instead of varying angle of vision, sight distance, and
turning angle within an experimental design, we

a)

 direction toward goal

 angle of vision

b)

 sight distance

c)

 direction toward goal

 turning angle

 direction of travel

agent obstacle :

agent non-obstacle:

Figure 6. a) Angle of Vision, b) Sight Distance, and c)
Turning Angle

considered using fuzzy logic to vary these values within
the agents� navigation rules. Fuzzy logic involves the use
of sets or ranges of values to quantify a value instead using
one crisp number.
 When programming a flock of mobile robots, it may
be difficult to determine whether fuzzy logic is the best
method to use in the navigation algorithms. Fuzzy logic
may be inefficient, requiring complicated calculations to
determine the crisp outcome, such as the speed to travel or
angle to turn. Fuzzy logic also may not give better or more
accurate results, e.g. using an angle of 45o all the time may
be just as good as a function that requires a series of
calculations that usually results in a value of 40 o or 50o
anyway.

When using fuzzy logic, it is also difficult to
determine how membership functions should be developed.

1884

Schaefer and Wolfe

Membership functions define the degree to which a range
of values belong to a category. See Tsoukalas and Uhrig
(1997) for more information about fuzzy logic and
membership functions. It seems that engineering judgment
is the best way to determine appropriate membership
functions for this particular problem. In one of our sets of
navigation rules, each agent used a membership function to
determine which agent was the critical agent to avoid based
on distance to the other agent and how close the other
agent was to being directly ahead, as opposed to being on
the side. If the other agent was very close and directly in
front of the current agent, it had a high membership value
and had a high chance of being the critical agent to avoid.
If the other agent was not very close and directly to the
right (or left) of the current agent, it had a low membership
value and may not have played a critical role in the current
agent�s collision avoidance maneuvering rules.

Not only is it important to determine what the
functions should be, but it may be more important to
determine what aspects of the model should be fuzzified
and what aspects should not. In this study, possible values
to fuzzify were: field of view, turn angle, and view
distance. Field of view was determined to be inappropriate
for fuzzification because the range of feasible values is
small, thus varying the values would not give much insight
into the problem.

2.3 Encapsulation

The simulation architecture for this experiment included
many instances of an Agent object and one instance of a
Field object which represented the two-dimensional space
over which the agents navigated. The instances of the
Agent object contained parameters particular to each agent
and the methods required for navigation. The Field object
contained system parameters and simulation methods.
 During simulated navigation, each agent executed a set
of rules that were dependent upon the locations of nearby
agents. Each agent�s location was a private x-y attribute.
After each simulated time step, agents �broadcast� their
location by updating their location within a vector of all
agent locations. The location vector exists within the
Frame object.
 Changing the parameters for the experimental design
required extensive message passing. Parameters in each
instance of the Agent object had to be changed. It is
possible to place these attributes in the Field object, which
is accessible to all agents, however then each agent would
have to access that parameter every time it executed its
rules. It is uncertain which method is better, especially if
the simulation were distributed on several virtual machines
with the field on a different machine than the agents. If
this were the case, perhaps a serialized object could contain
a data packet that was passed to the agent whenever it
requested information from the field.

2.4 Distributing Computation to
Improve Run Time

The mini-steps caused the run time to increase by the order
of n2. Thus the simulations with many instances of agent
objects took days to run. This was partly solved by
distributing the simulation among several computers. The
source code was written so some of the experimental
design treatments were in one set of code, other treatments
were in another set of code and run on a different
computer. Thus different runs were performed
simultaneously on different computers, which worked well
for our experiment. In our particular experiment, the
results from each treatment were not dependent on each
other, thus it was not necessary to have the computers
networked for this particular experiment. Instead, the
simulation was able to run independently on each computer
with different input sets for each treatment.
 Distributing the computational load of a simulation
among several computers may be a quick fix to get the job
done, however if the code is to be reused, it may be
worthwhile to determine how to make the simulation more
efficient. One method we did not attempt was to place
each instance of an agent on its own virtual machine on
several computers across a network. We believed that it
may be an interesting experiment in itself to determine the
maximum number of agents per processor possible while
still improving run time. This type of simulation would
require different communication protocols than a
simulation on one processor and was beyond the scope of
our analysis.
 The authors considered creating each agent as its own
thread. Unfortunately the result was that some agents
executed their rule sets many times in a row, while others
did nothing. The relative navigation speed of the agents
cannot be controlled if each agent is a thread.

2.5 Obtaining Reasonable Results

We hypothesized that the regression model would be
quadratic in form with respect to speed and diversity of
agents� travel direction, and the performance measures
would be inversely proportional to floorspace utilization.
 We used regression analysis with MiniTab to obtain
the equation to describe the flow theory for the
autonomous entities. Since we knew that the reciprocal of
at least one of the factors was important in the analysis, we
included the reciprocals of all factors in our analysis to
determine if they would give the equation a better fit to the
simulation output. This resulted in obtaining a very high
R2 value, around 0.9.
 However when we plotted our equation, we discovered
that the predicted values were orders of magnitude out of
the range of all simulation data points. Upon further
examination of the results, we realized not all the terms in

1885

Schaefer and Wolfe

the equation made intuitive sense. Therefore we removed
some of the interaction terms from our analysis and
developed more reasonable equations. The R2 was only
around 0.6, not as high as we wished. However we learned
the lesson that a high R2 does not always mean the results
are adequate. One of the resulting equations is plotted in
Figure 7.

Figure 7. Appropriate Plot for Describing Effective Speed
as a Function of Floorspace Utilization (u) and Diversity of
Agents� Travel Direction (w)

 This plot tells us that in a system in which the agents
travel in more widely varying directions, the average
effective agent speed is lower than in systems in which
agents travel in directions more parallel to each other. As
the floorspace becomes more crowded, the average
effective agent speed is again reduced. Intuitively the
trends shown in the plot are reasonable and coincide with
the hypothesized form of the regression model. The details
of the results of this model are beyond the scope of this
paper and can be found in Schaefer et al. (2000).

3 CONCLUSION

When creating a model of a system with many moving
objects, one must be careful when choosing the manner in
which to represent entities. If the entities are modeled as
points but they represent areas in the real system, the rules
must account for appropriate collision detection, otherwise
the simulation results may not be valid. If the entities are
modeled as cells, the rules may need to account for entities
of varying sizes.

It may be important to determine what aspects of a
model should be fuzzified and what aspects should not.
One must consider what the logical ranges for fuzzy values
might be. Sometimes the ranges may be very narrow, thus
a fuzzy value may not be more accurate than a crisp value.
Fuzzy logic may require complicated calculations to
determine the crisp outcome.

Several other lessons were learned. It may be difficult
to decide in which object to place attributes if several types
of objects must access that attribute. One must use good
judgment when deciding which interaction terms to include
in a regression model. Distributing the computational load
of a simulation among several computers may be a quick
fix to get the job done, however if the code is to be reused,
it may be worthwhile to determine how to make the
simulation more efficient.

The authors intend to continue work in this area by
implementing the rule sets on several virtual machines to
simulate a distributed system of vehicle traffic approaching
an intersection, then extending the research to a set of
several intersections. We expect many more issues to
come up as we develop a distributed simulation of a system
similar to the one used in this research, however that will
be a topic for a future Winter Simulation Conference
paper.

REFERENCES

Blue, V., F. Bonetto, and M. Embrechts. 1996. A Cellular

Automata Model of Vehicular Self-Organization and
Nonlinear Speed Transitions. Proceedings of the
Transportation Research Board 75th Annual Meeting.
Paper No. 961336.

Mataric M. 1995. Designing and understanding adaptive
group behavior. Adaptive Behavior, 4 (1): 51-80.

Nagel K. and S. Rasmussen. 1995. Traffic at the edge of
chaos. Transportation Science, 28 (2): 222-235.

Reynolds, C.W. 1987. Flocks, Herds, Schools: A
Distributed Behavioral Model. ACM SIGGRAPH
Computer Graphics. 21 (4): 25-34.

Schaefer L. A. and C. W. Kirkwood. 2000. Model
Selection for Engineering Design: A Multiobjective
Decision Analysis Approach, with an Application to
Simulating Mobile Physical Agents. Submitted to
IEEE Transactions on Systems, Man and Cybernetics.

Schaefer L. A., D. C. Montgomery and P. M. Wolfe. 2000.
Flow Theory for Flocks of Autonomous Physical
Agents. Submitted to Transportation Science.

Tsoukalas L. H. and R. E. Uhrig. 1997. Fuzzy and Neural
Approaches in Engineering. John Wiley and Sons, Inc.
New York.

ACKNOWLEDGMENTS

This work was partially supported by the Federal Highway
Administration Office of Advanced Research.

AUTHOR BIOGRAPHIES

LISA A. SCHAEFER is a Ph.D. candidate in industrial
engineering at Arizona State University. She received her
B.S.E. and M.S. in civil/ transportation engineering from

1886

Schaefer and Wolfe

Arizona State University. She is a member of SCS and IIE.
Her interests include O-O simulation, transportation, and
distributed simulation. Her email and web addresses are
<LschaeferAZ@hotmail.com> and <www.
public.asu.edu/~schaefer>.

PHILIP M. WOLFE is a professor and former Chair of the
Department of Industrial Engineering at Arizona State
University. He received his B.S. in industrial engineering
and B.S. in business administration from the University of
Missouri. He also has an M.S. and Ph.D. in industrial
engineering from Arizona State University. Previous
positions were at the Garrett in Phoenix, Arizona, Oklahoma
State University, and Motorola in Phoenix, Arizona. His
interests are related to computer applications and
manufacturing. His email and web addresses are
<wolfe@asu.edu> and <pwolfe.eas.asu.edu>.

1887

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

