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ABSTRACT

With modern simulation packages, the modeler can choose
almost any standard statistical distribution for generating
input random variables.  The question arises as to how
sensitive are output performance measures to the particular
type of distributions selected for modeling the input.  We
investigate the sensitivity of two output performance
measures (average queue wait and the 95 percentile value
of the queue wait distribution) for a G/G/1 queue,
simulated using GPSS/H.

1   INTRODUCTION

The major question we attempt to answer in this study is
just how important is it to expend resources (time and
money) in determining the input distributions (interarrival
and service times, for example) for a queueing simulation
model?  That is, how sensitive are the output measures of
performance such as queue sizes and waiting times to the
particular choice of input distributions?  Note that we are
not concerned here with how well the input distributions
chosen fit, in a statistical sense, the data we may be using
to determine distribution choice, but how sensitive the
output performance measures are to the distribution choice.
 In other words, we want to find out if it suffices to choose
distributions with roughly the same density shape and first
two moments matched to the data at hand.  Or is it
necessary to collect large amounts of data and spend great
effort in precisely choosing input distributions, and, if so,
which procedures are best?

There is some evidence that, perhaps, matching only
the first two moments might suffice. For M/G/1, the
Pollaczek-Khintchine (P-K) formula tells us we need only
the mean (1/λ) of the interarrival time distribution (this is
also the standard deviation) and the mean (1/µ) and
standard deviation )( sσ  of the service time distribution

to calculate expected value measures of performance
(MOP). The expected queue size, for example, is given in
Equation (1) as
Also, the Kingman/Marshall upper bound for G/G/1 queues
is given by Equation (2),
which is also the heavy traffic approximation, and depends
only on the first two moments of the interarrival and

service time distributions ).  ,1/  ,  ,(1/ 2
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There is a great deal of material in the statistical
literature concerning fitting known statistical distributions
to data.  However, we are not particularly interested  in
how well a distribution fits the data with respect to
classical statistical measures, but how sensitive the MOPs
are to distribution choice. 

In this study, we conduct a series of experiments using
a G/G/1 simulation model written in GPSS/H.  The two
MOPs we consider are the mean queue wait, Wq, and the
95th percentile of the queue wait distribution which we
denote as Wq(.95); that is, letting Tq represent the random
variable, wait in queue, then Pr{Tq > Wq(.95)} = .05. 
Twenty replications of 20,000 customers with a warm-up
period of 2,000 were used in all cases considered and
confidence interval estimates were produced for the MOPs.
 The simulation model was validated for cases where
known theoretical steady-state results existed (e.g., M/M/1
for both MOPs and M/G/1 for Wq), and simulation error for
mean values was generally within 5%, with the confidence
bound range, for most cases, being ± 5%, with a worst case
of ±13%.

2   FIRST EXPERIMENT

This experiment was performed to determine whether the
first two moments of interarrival and service time
distributions are sufficient in estimating the MOPs. The
Γ/Γ/1 (Γ = Gamma distribution) was selected as a base
case model and compared to LN/LN/1 (LN =  lognormal),
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W/W/1 (W = Weibull) and P5/P5/1 (P5 = Pearson, type 5)
models.  Traffic intensities (ρ) of 0.2, 0.5, and 0.8 were
considered along with coefficients of variation of
interarrival and service time distributions (CVat and CVst

respectively) of 0.5, 1.0 and 2.0, making a total of 108
cases  in all (each with 20 replications of 20,000 customers
and a 2,000 customer warm-up period). 

Table 1 presents some sample results showing that there
can be significant sensitivity in the output MOPs, and that,
in general, matching only the first two moments is not
sufficient.  We see that for higher ρ  values (.8), the
percentage differences are, for the most part, modest.  But
for ρ = .5, percentage differences are sizable, and for ρ =
.2, some turned out to be very large, although the absolute
values of the MOPs were near zero, which partially
accounts for large percentage differences.  Even so, there
is ample evidence that it is not always sufficient to match
only the first two moments.  Twenty-eight of the 108 cases
run had percent differences for Wq greater than 20%,
twelve of these being cases with ρ values of .5 or .8.  These
were either P5 models, or W and LN models with CVat =2.
 Further, some of the P5 cases of the original 108 cases had
to be eliminated from consideration due to slow
convergence of the second moment in the generated
variates.  One curious result was that in many cases, the
percentage differences seemed to be somewhat less for
Wq(.95) than for Wq - there were only 21 cases where
percentage differences for Wq(.95) were greater than 20%,
nine of these for ρ values of .5 or .8, with conditions
similar to those 12 for Wq.

Table 1: Some % Difference Examples

Case CVat CVst Model        %∆Wq   %∆Wq(.95)

ρ = .8  0.5   2      LN 2.05 0.52
    WB 3.55 1.28
     P5 slow convrg of 2nd mom

ρ = .8  0.5  1      LN  0.07 6.87
    WB  3.88 2.90
     P5  3.35 17.14

ρ = .5  2        .5  LN    54.62 50.41
     WB     21.18 18.69
    P5 slow convrg of 2nd mom

Max %∆s ≈ 100 for some ρ = .2 cases (MOPs ≈ 0)

For thirty six of the 108 cases run, analytical solutions
exist for Wq , i.e., those cases for which CVat  = 1, the Γ/ Γ
/1 and W/W/1 reduce to M/G/1 models.  Further, when 
CVst   is also 1, the M/G/1 models further reduce to M/M/1
models and analytical results are available for both Wq and
Wq(.95).  Tables 2 and 3 show these results.  Table 2
shows the M/M/1 results and we see both the simulated Γ
(=GM) and W (=WB) models are very close to the
theoretical values, again validating the simulation.  We can
also see the “heavy traffic” effect in that the large percent
differences of the LN and PT models diminish as �
increases.  But there is sizable differences in these models,
again indicating that matching the first two moments only
is, in general, not sufficient.  Table 3 shows similar effects
for the M/G/1 cases.

3   SECOND EXPERIMENT

This experiment investigated selecting two-parameter
distributions by matching the first and third quartiles of the
base case Γ/ Γ /1 to W/W/1, LN/LN/1 and P5/P5/1.  The
same 108 cases were attempted, although many of these
resulted in infeasible fits, or feasible fits with � ≥1.  For
the feasible cases, the percent deviations from the base case
were much larger, and we concluded from this experiment
that matching the first and third quartile is considerably
poorer than matching the first two moments.

4   THIRD EXPERIMENT

In this experiment, we compared Maximum Likelihood
estimation (MLE) to MOM for fitting two-parameter
distributions.  The experimental design had ρ =.5, CVat =
1, CVst = .5,1,2.  Data were generated for sample sizes of
20, 50, 100, 200, 500, 1000 for the above three cases for Γ
/ Γ /1 and LN/LN/1 models. Γ and LN parameters were
estimated for each of the sample sizes by both MOM and
MLE.  The empirical distribution, MOM and MLE cases
were simulated for the various sample sizes and compared
to the actual Γ / Γ /1 and LN/LN/1 base case simulations.
The conclusions drawn from this experiment were (i) as
sample size increases, the empirical model converges to
actual, (ii) MOM appears somewhat "better" than MLE for
small sample sizes, but both yield similar results for large
sample sizes, and (iii) percent differences from actual are
still quite large in many cases, especially for small sample
sizes.

The general conclusion from experiments  1, 2 and 3 is
that two parameter distributions are not sufficient in
general.  It appears that, although the first two moments are
important, that it is necessary, in many cases, to capture
higher-order moments.  To attempt to determine just how
many may be necessary, we did a final experiment using a
discrete point distribution.  While there are families of
distributions that have more than two parameters (e.g.,
Johnson translation distributions, phase-type distributions,
Coxian distributions, generalized hyper exponential
distributions), fitting can be a formidable task (see, for
example, Johnson and Taffe, 1991, Johnson, 1993, and
Harris and Marchal, 1997).  We chose  discrete point
distributions, which were very easy to fit by MOM and
allowed us to see what happened as we increased the
number of moments matched. 
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Table 2:  M/M/1 Theoretical Cases

M/M/1 (CV[AT]=1, CV[ST]=1)

Model Wq %Diff Wq(.95) %Diff

Rho =. 2 Theo. 0.05 0 0.3466 0

Model Wq %Diff Wq(.95) %Diff

Rho = .2 GM/GM/1 0.0502 0.4 0.3467 0.028852

WB/WB/1 0.0501 0.2 0.3486 0.577034

LN/LN1 0.0258 -48.4 0.1527 -55.94345

PT/PT/1 0.0189 -62.2 0.0001 -99.97115

Rho = .5 Theo. 0.5 0 2.3026 0

GM/GM/1 0.4959 -0.82 2.2869 -0.681838

WB/WB/1 0.5042 0.84 2.315 0.5385217

LN/LN1 0.3934 -21.32 2.0149 -12.49457

PT/PT/1 0.3255 -34.9 1.6339 -29.04108

Rho = .8 Theo. 3.2 0 11.0804 0

GM/GM/1 3.1328 -2.1 10.9238 -1.413306

WB/WB/1 3.2602 1.88125 11.1705 0.8131475

LN/LN1 2.9477 -7.884375 10.7616 -2.877152

PT/PT/1 2.621 -18.09375 10.332 -6.754269
Table 3:  M/G/1 Theoretical Cases

M/G/1: (CV[AT]=1, CV[ST]=.5) (CV[AT=1, CV[ST]=2)

Model Wq %Diff Wq %Diff

Rho =. 2 Theo. 0.0313 0 0.125 0

GM/GM/1 0.0313 0 0.1271 1.68

WB/WB/1 0.0314
0.319488

8
0.1243 -0.56

LN/LN1 0.0089 -71.5655 0.0931 -25.52

PT/PT/1 0.0025
-92.0127

8
0.0694 -44.48

Rho = .5 Theo. 0.3125 0 1.25 0

GM/GM/1 0.3141 0.512 1.2885 3.08

WB/WB/1 0.3137 0.384 1.2607 0.856

LN/LN1 0.1928 -38.304 1.0837 -13.304

PT/PT/1 0.1135 -63.68 0.8318 -33.456

Rho = .8 Theo. 2 0 8 0

GM/GM/1 1.9959 -0.205 8.4837 6.04625

WB/WB/1 2.0337 1.685 8.2794 3.4925

LN/LN1 1.6943 -15.285 7.4834 -6.4575

PT/PT/1 1.2943 -35.285 5.9483 -25.64625



Sensitivity of Output Measures to Input Distributions in Queueing Simulation Modeling 299
5   FOURTH EXPERIMENT

The experimental design for this final experiment had
ρ =.5, CVat =1, and CVst =.5,1,2. Data were generated for
sample sizes (n) of 20, 50, 100, 200, 500, 1000 for above
three cases for Γ / Γ /1 and LN/LN/1 models (same as the
third experiment).  For each sample size and each G/G/1
model, a discrete k-point distribution was fit by nonlinear
programming, matching two up to five moments
respectively. The nonlinear programming problem to be
solved is given by (3) below.
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The actual, empirical and the four discrete k-point fits
were simulated, and Wq and Wq(.95) compared.  Figure 1
shows, for the CVst  =1 case, the percent differences in Wq

 and Wq (.95) from the gamma and lognormal simulated
cases with simulations using the empirical distribution, and
discrete distributions with two, three and four moments
matched for sample data generated from gamma and
lognormal distributions for sample sizes of 50, 200 and
1000 observations.  Results are similar for the other two
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Figure 1:  CVat = 1, CVst = 1.
 cases (CVst =.5 and 2).  It is interesting to note that using
the discrete distribution with a five moment match is
almost as good as using the entire empirical distribution
and for large n, they both are fairly close to the actual
simulated MOPs.

6  CONCLUSIONS

Output measures of performance can, indeed, be sensitive
to the particular “shape” of the input distribution.  Using
standard two-parameter distributions for which only the
first two moments are captured in many cases is not
sufficient, unless the system is in heavy traffic (probably ρ
> .9).  Results here indicate that it may be necessary to
capture at least five moments, even though the lower order
moments dominate in importance.  Sample sizes when
determining input distributions should be at least 200 and
preferably closer to 1000 which should provide good
results when using empirical distributions from which to
generate inputs.  Using a discrete k-point distribution for
which the first five moments are matched to the data is
almost as good.  These are easy to determine by non-linear
programming and easily generate sample data for
simulation.

This research shows that attention must be paid to
proper input modeling, and that it is not a trivial task. 
Some general papers in this area include Fox (1981),
Kelton (1984), Cheng (1993), Cheng, et al (1996), Leemis
(1995, 1996) and Nelson et al (1995).  Three rather “non-
classical” classes of distributions which appear to have
potential in input modeling are the Johnson translation
distributions (see Storer et al, 1988), Phase-type
distributions (see Johnson and Taaffe, 1991), and Bezier
distributions (see Wagner and Wilson, 1996).
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APPENDIX - SOME REAL DATA

In a master level discrete-event simulation course at The
George Washington University, a student team did a
project involving a local bank.  A G/G/c queue was
simulated.  The interarrival time and teller service time
data were run through the UNIFIT II data fitting package
and Table A.1 shows the moment comparison given by
UNIFIT II for the actual data and the best five theoretical
distributions it suggests.  For c = 7 (giving a � = .63), two
sets of simulations were run.  Using the empirical
distribution (EM) for service times, G/EM/7 runs were
made for G = EM , the first five theoretical distributions
given by UNIFIT and the four discrete k-point
distributions matching two, three, four and five moments
to the data.  A similar set of runs were made using EM for
interarrival times (EM/G/7) and G= EM, the first five
distributions given by UNIFIT and the four k-point
distributions.  Percent differences of the G/EM/7 and
EM/G/7 models from the EM/EM/7 model are given in
Table A.2.  Note the anomaly when G is Pearson 6.  The
moments vary considerably from the data, yet the percent
differences in output measures are modest.  Except for
this, “generally” the percent differences are smallest when
the percent differences in moments are smallest.
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Table A.1 - Model Moment Comparisons

Interarrival-Time Data

Model Mean Variance Skewness Kurtosis

Arrival Data
     n = 168

Sample Values .51458 .36501 2.41691 11.9585

1-Rand. Walk .51458 .40588 2.63788 13.5547

2-Weibull .51360 .35416 2.63788 13.5547

3-Pearson 6 .54844 .94431 Does Not Exist Does Not Exist

4-Gamma .51458 .32572 2.21817 10.3804

5-Gamma (E) .51458 .43244 2.60641 13.1900
Service-Time Data

Model Mean Variance Skewness Kurtosis

Service Data
     n = 132

Sample Values 2.26887 5.71426 3.53355 19.2950

1-Log logistic 2.23157 41.6280 Does Not Exist Does Not Exist

2-Pearson 6 2.25786 6.30176 26.2730 Does Not Exist

3-Lognormal 2.22235 4.11634 3.49973 30.7117

4-Inv. Gaussian 2.26887 4.40487 2.77510 15.8353

5-Random Walk 2.26887 3.46828 2.03991 9.52663
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Table A.2 - Simulation Results

G/EM/7

Mod-el (G) Mean % ∆∆ Std.
Dev.

% ∆∆ Skew % ∆∆ Kurt % ∆∆ % ∆∆
Wq

% ∆ ∆
Wq
(.95)

EM .52 0 .60 0 2.44 0 12.09 0 0 0

RW .51 -.01 .64 5.58 2.62 7.64 13.38 10.67 13.17 10.93

WB .51 -.29 .59 -1.28 2.48 1.76 12.59 4.16 -2.19 -1.43

P6 .55 6.89 .98 62.73 28.89 >999 >999 >999 10.61 8.23

GM .51 -.04 .57 -5.12 2.22 -8.75 10.40 -14.0 -10.9 -8.80

GME .51 -.05 .66 9.28 2.61 7.17 13.21 9.26 25.22 19.98

KP2 .51 -.09 .61 .51 .33 -87 1.11 -91 39.56 38.37

KP3 .52 .01 .61 .61 2.44 .09 7.00 -42 -11.5 -11.3

KP4 .51 .06 .61 .54 2.44 .26 12.12 .28 2.65 4.55

KP5 .51 -.08 .61 .58 2.45 .41 12.14 .46 2.47 1.65
EM/G/7

Model (G) Mean % ∆∆ Std.
Dev.

% ∆∆ Skew % ∆∆ Kurt % ∆∆ % ∆∆
Wq

% ∆ ∆
Wq
(.95)

EM 2.27 0 2.38 0 3.58 0 19.65 0 0 0

LL 2.23 -1.56 3.19 33.96 147 >999 >999 >999 -9.44 -8.31

P6 2.26 -.46 2.53 6.34 19.73 451 3714 >999 -3.86 -2.48

LN 2.22 -2.02 2.03 -14.9 3.46 -3.39 29.09 48.05 -17.0 -12.9

IG 2.27 -.06 2.10 -11.9 2.78 -22.3 15.93 -18.9 -4.79 -2.33

RW 2.27 .06 1.86 -21.9 2.03 -43.4 9.38 -52.3 -8.24 -5.29

KP2 2.27 -.01 2.40 .72 .11 -96.9 1.01 -94.8 21.27 33.77

KP3 2.27 -.09 2.40 .58 3.57 -.20 13.78 -29.9 -2.31 -7.61

KP4 2.27 .04 2.40 .72 3.57 -.37 19.60 -.24 2.27 4.44

KP5 2.27 -.02 2.40 .67 3.57 -.38 19.61 -.21 -.13 .73
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