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ABSTRACT

We consider the problem of computing a response surface when the underlying function is known to be convex. We
introduce a methodology that incorporates the convexity into the function estimator. The proposed response surface
estimator is formulated as a finite dimensional quadratic program and exhibits convergence properties as a global
approximation to the true function. Numerical results are presented to illustrate the convergence behavior of the
proposed estimator and its potential application to simulation optimization.

1 INTRODUCTION

In this paper, we consider the problem of computing a response surface for the underlying function g∗ : R
d → R with

the goal of obtaining a global approximation to g∗(·) where g∗(·) can only be computed via simulation at each x in
the domain of g∗(·). Computation of response surfaces has a long history due to its wide applications in the areas
of simulation metamodeling and optimization. Traditional approaches to the computation of response surfaces include
fitting a low order polynomial, and using common random numbers or antithetic variates; see Box and Wilson (1951),
Law and Kelton (2000), and Myers and Montgomery (2002) for details.

In this paper, we realize that in many stochastic models, the response surfaces of interest g∗(·) are known to
satisfy a certain shape characteristic such as convexity in the underlying parameters even though closed–form formulas
for g∗(·) are not available. For instance, (1) the mean waiting time of a customer in a single server queue is convex
in the mean service and interarrival times when the interarrival and service times belong to certain types of classes
(Shanthikumar and Yao 1991); (2) in tandem, cyclic, or tree-like network of queues, the mean sojourn time of a customer
is convex in the mean service times at the servers when the interarrival and service times belong to certain types of
classes (Shanthikumar and Yao 1991); (3) in a tandem queueing network with finite intermediate buffer storage spaces
and independent, exponential interarrival and service times, the throughput is concave in the buffer storage capacities
(Meester and Shanthikumar 1990); (4) in a multiserver queue with no buffer storage spaces, the fraction of arrivals that
are lost is convex in the number of servers (Wolff and Wang 2002).

Another setting where the convexity of the response surface is naturally assumed is the case where a consumer
utility function is estimated through empirical data in the economics context; see Meyer and Pratt (1968) for example.
Convexity also arises in estimation of supply and demand functions.

In the presence of convexity, we wish to force the convexity into our response surface estimator to get a better
global approximation to g(·). The main idea of our proposed response surface estimator is to fit a convex function to
a given dataset to minimize the sum of squared errors. When the parameter space is one–dimensional, this approach
leads to a well–known “convex regression” estimator in the statistics literature, which can be formulated as a solution
to a finite–dimensional quadratic program (QP); see Hildreth (1954), Hanson and Pledger (1976), Mammen (1991),
and Groeneboom, Jongbloed, and Wellner (2001) for the formulation, consistency, and convergence rate of the convex
regression estimator in one–dimensional parameter spaces.

However, when the parameter space is multi–dimensional, fitting a convex function may appear to involve solving
an infinite dimensional minimization problem which is computationally intractable. In this paper, we show that this
minimization can, in fact, be formulated as a finite–dimensional QP with (d + 1)n decision variables and n(n− 1)
linear constraints where n is the number of points in the domain. Hence, we extend the idea of fitting a convex
function to multi–dimensional cases and propose a multi–dimensional convex regression estimator. We also derive a
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desired property of the proposed estimator as a global approximation to g∗(·), which is the uniform almost sure (a.s.)
convergence over a compact subset of the domain.

Incorporating other shape characteristics such as monotonicity into the function estimator has been studied intensively
in the statistics literature under the name of the “isotonic regression” estimator; see Lim and Glynn (2006) for the
properties of the isotonic regression estimator in the settings that are suitable for the simulation environment.

This paper is organized as follows. In Section 2, we introduce the mathematical framework for our proposed
estimator and Section 3 includes some properties of the proposed estimator as a global approximation to g∗(·), which is
the uniform a.s. convergence over a compact subset of the domain. In Section 4, we present some numerical results that
illustrate the convergence behavior of the proposed estimator and compare the performance of the proposed estimator to
that of the standard regression method. We also illustrate the use of the proposed estimator in the context of sensitivity
analysis in simulation optimization. Finally, Section 5 includes concluding remarks and future research directions.

2 PROBLEM FORMULATION

With the goal of computing a function g∗ : R
d → R, we observe the simulated value Yi of g∗ at Xi and presume that Yi

satisfies

Yi = g∗(Xi)+ εi

for i≥ 1, where the “noise” satisfies Eεi = 0 and Eε2
i < ∞. To estimate g∗(·) from the observed pairs (X1,Y1), . . . ,(Xn,Yn),

we propose the estimator ĝn(·) which is the minimizer of the sum of squares

n

∑
i=1

(Yi −g(Xi))
2 (1)

over functions g ∈ C ,
{

g : R
d → R such that g is convex

}
. When the parameter space is one–dimensional (d = 1),

the minimization problem (1) can be formulated as

min
n

∑
i=1

(Yi −g(Xi))
2 (2)

s/t (Y2 −Y1)/(X2 −X1) ≤ ·· · ≤ (Yn −Yn−1)/(Xn −Xn−1),

provided X1 < · · · < Xn. (2) is a QP with n decision variables and n−2 linear constraints, so ĝn(·) can be computed
easily via a quadratic program solver.

However, when the parameter space is multi–dimensional (d > 1), the minimization (1) may appear to be compu-
tationally intractable since the set of convex functions is infinite–dimensional. But, it turns out that this minimization
can be formulated as a finite–dimensional QP as the following result shows (Lim and Glynn 2010).

Proposition 1. Consider the quadratic program (in the decision variables (g1,ξ1), . . . ,(gn,ξn))

min
1
n

n

∑
i=1

w(Xi)(Yi −gi)
2 (3)

s/t g j ≥ gi +ξ T
i (Xj −Xi), 1 ≤ i, j ≤ n.

For n ≥ d + 1, the QP (3) has a minimizer (ĝ1, ξ̂1), . . . ,(ĝn, ξ̂n) and the minimizing values ĝ1, . . . , ĝn are unique.
Furthermore, any minimizer g̃n of (1) satisfies g̃n(Xi) = ĝi for 1 ≤ i ≤ n.

The main idea behind Proposition 1 is that the constraints of (1) can be written as linear inequalities because a
convex function passing through (X1,g1), . . . ,(Xn,gn) exists if and only if there exist ξ1, . . . ,ξn ∈ R

d (subgradients) at
X1, . . . ,Xn satisfying

g j ≥ gi +ξ T
i (Xj −Xi), i, j = 1, . . . ,n.

Subgradients of a convex function are illustrated in Figure 1 for the case where d = 1 and n = 3.
While Proposition 1 asserts that (ĝ1, . . . , ĝn) is unique, there are many convex functions g satisfying g(Xi) = ĝi for

1 ≤ i ≤ n. To define our estimator ĝn(x) at x 6= Xi, 1 ≤ i ≤ n, we set

ĝn(x) = sup{g(x) : g ∈ C , g(Xi) = ĝi, 1 ≤ i ≤ n}. (4)

1247



Lim

Figure 1: Subgradients of a convex function

The function ĝn(·) is guaranteed to be convex; see, for example, p. 75 of Avriel (1976). Furthermore, ĝn(·) is finite–valued
on conv(X1, . . . ,Xn) (where conv(A) , convex hull of A, for A ⊂ R

n), and infinite elsewhere.
In principle, the maximization that defines (4) again appears to be infinite–dimensional (over C ). However, as with

Proposition 1, the next result makes clear that ĝn(x) can be computed as the solution of a finite–dimensional linear
program (Lim and Glynn 2010).

Proposition 2. For each x ∈ R
d, ĝn(x) can be computed as the optimal value ŷ of the LP (in the decision variables

y,ξ1, . . . ,ξn, ξ̃ )

max y

s/t ĝ j ≥ ĝi +ξ T
i (Xj −Xi), 1 ≤ i, j ≤ n

y ≥ ĝi +ξ T
i (x−Xi), 1 ≤ i ≤ n

ĝ j ≥ y+ ξ̃ T (Xj − x), 1 ≤ j ≤ n.

The convex function ĝn(·) is our estimator for g∗(·).

3 CONVEX REGRESSION AS GLOBAL APPROXIMATION

This section emphasizes the role of ĝn(·) as a global approximation to g∗(·). In particular, one of the desired properties
of the global approximation is the convergence to g∗(·) uniformly over a subset of R

d . It turns out that our proposed
estimator ĝn(·) has this property as n → ∞ even though the simulated values Yi’s do not necessarily converge to the
true values. This kind of behavior occurs due to the convexity constraint enforced to ĝn(·).

In order to analyze the proposed estimator ĝn(·), we will impose some probabilistic assumptions on the (Xi,Yi)’s.
In particular, we require that:

A1. g∗ : R
d → R is convex.

A2. X ,X1,X2, . . . is a sequence of independent and identically distributed (iid) R
d–valued random vectors having

a common continuous positive density k(·).
A3. For i ≥ 1, Yi = g∗(Xi)+ εi, where the εi’s satisfy

P(εi ∈ dzi,1 ≤ i ≤ n|X1,X2, . . .) =
n

∏
i=1

F(dzi|Xi)

for some family
(
F(·|x) : x ∈ R

d
)

of cumulative distribution functions.
A4. E

(
Y 2

1 +‖X1‖
2 +1

)
< ∞, thereby implying that

σ2(X1) ,

∫

R

z2F(dz|X1) < ∞ a.s.

A5. For each x ∈ R
d ,

∫

R

zF(dz|x) = 0.

The following results justify our choice of ĝn(·) as a global approximation to g∗(·); see Lim and Glynn (2010) for
details.
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Theorem 1. Assume A1–A5. Then, for any compact subset C of R
d,

sup
x∈C

|ĝn(x)−g∗(x)| → 0 a.s. as n → ∞.

Corollary 2. Assume A1 and A3–A5. Assume that for any subset A of R
d, liminfn→∞ An/n > 0 where An is the number

of the Xi’s in A. Then, for any compact subset C of R
d,

sup
x∈C

|ĝn(x)−g∗(x)| → 0 a.s. as n → ∞.

4 NUMERICAL RESULTS

In this section, we investigate the performance of our proposed estimator ĝn(·) in the settings of consumer preference
models and queueing models. We will compare the performance of the proposed convex regression estimator to that
of the standard regression technique. Throughout this section, Xi’s will be equally spaced over a hyperrectangle in R

d .
For instance, when n = 25 and d = 2, Xi’s will be distributed as in Figure 2. We recognize that (3) requires solving a
QP with (d +1)n decision variables and n(n−1) constraints. To reduce the computational burden in computing ĝn(·)
when n gets large, we consider another computational strategy. In particular, we consider the least squares estimator
g̃n over all coordinate–wise convex functions, which is the minimizer of the sum of squares

n

∑
i=1

(Yi −g(Xi))
2

over functions g : R
d → R that are “coordinatewise–convex” (i.e., g is convex in each coordinate). This simplification

allows one to compute g̃n via a QP with lower complexity especially when the Xi’s are equally spaced. For instance,
when n = 25, d = 2, and the Xi’s are equally spaced over a rectangle in R

2 as illustrated in Figure 2, g̃n is the solution
to the following QP (in the decision variables g1, . . . ,g25):

min
g1,...,g25

25

∑
i=1

(Yi −gi)
2 (5)

s/t −g1 +2g2 −g3 ≤ 0

−g2 +2g3 −g4 ≤ 0
...

−g1 +2g6 −g11 ≤ 0

−g2 +2g7 −g12 ≤ 0
...

because when x1, . . . ,xn are equally spaced points in R such that x1 < x2 < · · · < xn, a convex function passing through
(x1,g1), . . . ,(xn,gn) exists if and only if x2 − x1 ≤ ·· · ≤ xn − xn−1. Observe that (5) is a QP with n decision variables
and O(n) constraints, which enjoys less computational burden than (3).

Figure 2: Xi’s are equally spaced over a rectangle in R
2 when n = 25.
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To compare the performance of ĝn and g̃n to that of the standard regression technique, we compute the multiple
regression fit to the (Xi,Yi)’s. Let ân(0), . . . , ân(d) be the solution to

min
a0,a1,...,ad

n

∑
i=1

(
Yi −

(
a0 +a1Xi

1 + · · ·+adXi
d

))2
,

where Xi =
(
Xi

1, . . . ,X
i
d

)
. For x = (x1, . . . ,xd), the multiple regression l̂n(x) is computed by l̂n(x) = ân(0)+ ân(1)x1 +

. . . ân(d)xd . The behavior of ĝn and g̃n will be compared to that of l̂n across a wide range of n values. Quadratic
programming problems in (3) and (5) were solved using “cvx” which was designed by Grant and Boyd and available
at http://cvxr.com/.

4.1 Estimating Functions Using Convex Regression

4.1.1 Consumer Preference Function

2–dimensional case: Suppose we wish to predict consumer preferences by estimating a consumer utility function.
We assume there is an underlying utility function u : [0.8,0.86]× [0.1,0.16] → R which is given by

u(x1,x2) = 10x1/2
1 +20x1/2

2 (6)

for a goods basket (x1,x2) ∈ [0.8,0.86]× [0.1,0.16]. Now suppose we are given some consumer preference data
(X1,Y1), . . . ,(Xn,Yn), where the Xi’s are equally spaced over [0.8,0.86]× [0.1,0.16] as in Figure 2, the noisy measurement
Yi of u(Xi) is given by u(Xi)+ εi, and εi follows a uniform distribution between −0.1 and 0.1. Table 1 reports the
averages (Mean) and standard deviations (Std) of the Yi’s, l̂n, ĝn and g̃n at Xi = (0.82,0.12),(0.82,0.14),(0.84,0.12),
and (0.84,0.14) over 100 replications for each value of n. – indicates that “cvx” could not solve the corresponding QP
due to limited computational capacity. While ĝn and g̃n converge nicely to the true value, l̂n exhibits bias as n → ∞
due to the nonlinearity of u and the Yi’s fail to converge due to high variance.

Table 1: Performance of Yi’s, l̂n(·), ĝn(·) and g̃n(·) as an estimator for u(·) in (6)

Xi = (0.82,0.14)

Yi l̂n(Xi) ĝn(Xi) g̃n(Xi)
n Mean Std Mean Std Mean Std Mean Std

16 16.54 0.06 16.52 0.02 16.56 0.03 16.56 0.03
49 16.55 0.06 16.52 0.01 16.55 0.02 16.55 0.02
100 16.54 0.06 16.52 0.01 16.55 0.01 16.55 0.01
169 16.54 0.05 16.53 0.01 16.55 0.01 16.54 0.01
256 16.54 0.06 16.53 0.00 16.54 0.01 16.54 0.01

8281 16.54 0.06 16.53 0.00 – – 16.54 0.00
u(Xi) 16.54

Xi = (0.84,0.14)

Yi l̂n(Xi) ĝn(Xi) g̃n(Xi)
n Mean Std Mean Std Mean Std Mean Std

16 16.65 0.06 16.63 0.02 16.67 0.03 16.66 0.03
49 16.65 0.06 16.63 0.01 16.66 0.02 16.66 0.01
100 16.65 0.06 16.64 0.01 16.66 0.01 16.66 0.01
169 16.66 0.06 16.64 0.01 16.65 0.01 16.65 0.01
256 16.65 0.06 16.64 0.00 16.65 0.01 16.65 0.01

8281 16.65 0.06 16.64 0.00 – – 16.65 0.00
u(Xi) 16.65

3–dimensional case: Suppose the underlying utility function u : [0.8,0.86]× [0.6,0.66]× [0.1,0.16] → R is now
given by

u(x1,x2,x3) = 5x1/2
1 +10x1/2

2 +15x1/2
3 (7)

for (x1,x2,x3) ∈ [0.8,0.86]× [0.6,0.66]× [0.1,0.16]. Consumer preference data (X1,Y2), . . . , (Xn,Yn) are given, where
the Xi’s are equally spaced over [0.8,0.86]× [0.6,0.66]× [0.1,0.16] as in Figure 2, the noisy measurement Yi of u(Xi) is
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given by u(Xi)+ εi, and εi follows a uniform distribution between −0.1 and 0.1. Table 2 reports the averages (Mean)
and standard deviations (Std) of the Yi’s, l̂n, ĝn and g̃n at Xi = (0.82,0.62,0.12),(0.82,0.64,0.14),(0.84,0.62,0.14), and
(0.84,0.64,0.12) over 100 replications for each value of n. “–” indicates that “cvx” could not solve the corresponding
QP due to limited computational capacity.

Table 2: Performance of Yi’s, l̂n(·), ĝn(·), and g̃n(·) as an estimator for u(·) in (7)

Xi = (0.82,0.62,0.12)

Yi l̂n(Xi) ĝn(Xi) g̃n(Xi)
n Mean Std Mean Std Mean Std Mean Std

64 17.61 0.06 17.58 0.01 17.62 0.02 17.62 0.02
4096 17.61 0.06 17.59 0.00 – – 17.60 0.00
u(Xi) 17.60

Xi = (0.84,0.62,0.14)

Yi l̂n(Xi) ĝn(Xi) g̃n(Xi)
n Mean Std Mean Std Mean Std Mean Std

64 18.08 0.05 18.05 0.01 18.09 0.02 18.09 0.02
4096 18.06 0.06 18.06 0.00 – – 18.07 0.00
u(Xi) 18.07

4.1.2 Single Server Queue

We consider a single server queue with infinite buffer space where the interarrival times and service times are i.i.d.
uniform random variables on [x0 −0.5,x0 +0.5] and [x1 −0.5,x1 +0.5], respectively. The interarrival times and service
times are independent and the service discipline is first in/first out (FIFO). We wish to compute the expected waiting
time w100(x0,x1) of the 100th customer for (x0,x1) ∈ [2.92,2.98]× [2.85,2.91]. Even though no explicit formula for
w100(·, ·) is known, the convexity of w100(·, ·) is established; see p. 137 of Shanthikumar and Yao (1991) for details.
To compute w100, we chose n points X1, . . . ,Xn equally spaced over [2.92,2.98]× [2.85,2.91 as in Figure 2. At each
Xi = (xi

0,x
i
1), we simulated the single server queue with the mean interarrival and service times equal to xi

0 and xi
1,

respectively, and computed the waiting time Yi of the 100th customer. We then obtained the average of 30 independent
copies of Yi, say Y i. Using (X1,Y 1), . . . ,(Xn,Y n), we computed l̂n, ĝn and g̃n as our estimator for d10.

Table 3 reports the averages (Mean) and standard deviations (Std) of the Y i’s, l̂n, ĝn and g̃n at Xi = (2.89,2.94)
and (2.89,2.96) over 100 replications for each value of n. The value of w100(Xi) in the last row of Table 3 is obtained
from averaging 100,000 independent copies of Yi for each i. “–” indicates that “cvx” could not solve the corresponding
QP due to limited computational capacity.

4.1.3 Tandem Queue

We consider a system of three single–server stations in tandem where the interarrival times are i.i.d. uniform random
variables on [x0 −0.5,x0 +0.5] and the service times are i.i.d. uniform random variables on [xi −0.5,xi +0.5] for server
i, i = 1,2,3. The interarrival times and service times are independent and the service discipline is FIFO at all servers.
Each server has unlimited buffer space. We wish to compute the expected sojourn time s600(x0,x1,x2,x3) of the 600th
customer for (x0,x1,x2,x3) ∈ [2.92,2.94]× [2.85,2.91]× [2.85,2.91]× [2.85,2.91]. The convexity of s600 is known; see
p. 141 of Shanthikumar and Yao (1991) for details. To compute s600, we chose n points X1, . . . ,Xn equally spaced
over [2.92,2.94]× [2.85,2.91]× [2.85,2.91]× [2.85,2.91] as in Figure 2. At each Xi = (xi

0,x
i
1,x

i
2,x

i
3), we simulated the

tandem queue with the mean interarrival and service times equal to xi
0,x

i
1,x

i
2, and xi

3, respectively, and computed the
sojourn time Yi of the 600th customer. We then obtained the average of 100 independent copies of Yi, say Y i. Using
(X1,Y 1), . . . ,(Xn,Y n), we computed g̃n as our estimator for s600. Table 4 reports the averages (Mean) and standard
deviations (Std) of the Yi’s, l̂n, and g̃n at Xi = (2.93,2.88,2.88,2.88) over 100 replications for each value of n. The
value of s600(2.93,2.88,2.88,2.88) in the last row of Table 4 is obtained from averaging 500,000 independent copies
of Yi at Xi = (2.93,2.88,2.88,2.88).

4.2 Sensitivity Analysis in Simulation Optimization

Tandem Queue We consider a system of two single–server stations in tandem where the external arrivals follow a
Poisson process with a rate of 0.25 and the service times are i.i.d. exponential random variables with mean parameter
xi for server i, i = 1,2. The interarrival times and service times at all stations are independent and the service discipline
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Table 3: Performance of Yi’s, l̂n(·), ĝn(·), and g̃n(·) as an estimator for d10(·)

Xi = (2.89,2.94)

Yi l̂n(Xi) ĝn(Xi) g̃n(Xi)
n Mean Std Mean Std Mean Std Mean Std

16 1.26 0.28 1.41 0.09 1.21 0.29 1.20 0.16
49 1.30 0.25 1.40 0.05 1.25 0.07 1.27 0.08
100 1.32 0.27 1.38 0.04 1.26 0.05 1.27 0.06
169 1.27 0.24 1.37 0.03 1.28 0.04 1.28 0.05
256 1.31 0.25 1.37 0.02 1.28 0.03 1.29 0.04
8281 1.34 0.25 1.35 0.01 – – 1.30 0.01

w100(Xi) 1.30

Xi = (2.89,2.96)

Yi l̂n(Xi) ĝn(Xi) g̃n(Xi)
n Mean Std Mean Std Mean Std Mean Std

16 0.94 0.22 1.09 0.06 0.89 0.10 0.88 0.10
49 0.96 0.20 1.07 0.04 0.92 0.06 0.93 0.06
100 0.93 0.20 1.06 0.03 0.92 0.04 0.93 0.05
169 0.98 0.21 1.05 0.02 0.93 0.03 0.94 0.03
256 0.94 0.19 1.05 0.02 0.93 0.02 0.94 0.03
8281 0.82 0.19 1.04 0.00 – – 0.95 0.01

w100(Xi) 0.95

Table 4: Performance of Yi’s, l̂n(·), and g̃n(·) as an estimator for s600(·)

Xi = (2.93,2.88,2.88,2.88)

Yi l̂c(Xi) g̃n(Xi)
n Mean Std Mean Std Mean Std

81 13.04 0.30 14.56 0.04 12.99 0.25
625 13.05 0.28 14.15 0.02 13.00 0.11

2401 13.03 0.28 14.01 0.01 13.03 0.06
s600(Xi) 13.03

is FIFO at all stations. Each server has unlimited buffer space. The costs related to this system are the waiting cost
which is proportional to the steady–state mean sojourn time of a customer in the system and the operational cost at
each server which is proportional to the service rate at each server. Suppose the unit waiting cost at each server is 1
and the unit operational cost for servers 1 and 2 are 1 and 2, respectively. So the total cost per unit time c(x1,x2) is
given by

c(x1,x2) = Steady–state mean sojourn time+1 · (Service rate at server 1)+2 · (Service rate at server 2)

=

(
x1

1−0.25x1
+

x2

1−0.25x2

)
+1 ·

1
x1

+2 ·
1
x2

.

Currently, the mean service times at the two server are set be to 0.8 and 2.8, respectively. We now wish to consider

five alternatives for the mean service time at server 2, namely x(1)
2 = 0.3,x(2)

2 = 0.8,x(3)
2 = 1.3,x(4)

2 = 1.8,x(5)
2 = 2.3. In

particular, we wish to estimate the reduction in the total cost per unit time for each alternative.

First, 100 customers are simulated independently at five alternatives, x(i)
2 ,1 ≤ i ≤ 5, and at x(0)

2 = 2.8, for the service
rate in server 2 with fixed interarrival rate of 0.25 and service rate at server 1 of 0.8. Let Si,0 ≤ i ≤ 5, be the average

of the 100 customers’ sojourn time, then the total cost at (x1,x2) = (0.8,x(i)
2 ) is computed by

Yi , Si +1/0.8+2/x(i)
2 ,
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for 0 ≤ i ≤ 5. We now recognize that the mean sojourn time of tandem queueing system with this type of interarrival
and service times is convex in the mean interarrival time and in the mean service time at each server; see p. 141 in
Shanthikumar and Yao (1991) for details. So c(·) is convex in the mean service time at server 2. Now our estimator ĝn,

which is identical to g̃n in one–dimensional case, for c(·) is computed using (x(0)
2 ,Y0), . . . ,(x

(5)
2 ,Y5). Table 4 reports the

computed reduction in the total cost for each of the five alternatives based on the Yi’s and the proposed estimator ĝn(·).
The averages (Mean) and standard deviations (Std) are obtained based on 1000 replications. The proposed estimator
shows superior performance in terms of both the mean and standard deviation.

Table 5: Performance of ĝn(0.8,x(0)
2 )− ĝn(0.8, ·) as an estimator for c(0.8,x(0)

2 )− c(0.8, ·)

Mean Std

Y0 −Y1 ĝn(0.8,x(0)
2 )− ĝn(0.8,x(1)

2 ) Y0 −Y1 ĝn(0.8,x(0)
2 )− ĝn(0.8,x(1)

2 )
2.22 3.17 4.30 3.29

c(0.8,x(0)
2 )− c(0.8,x(1)

2 ) 3.06
Mean Std

Y0 −Y2 ĝn(0.8,x(0)
2 )− ĝn(0.8,x(2)

2 ) Y0 −Y2 ĝn(0.8,x(0)
2 )− ĝn(0.8,x(2)

2 )
4.94 5.28 3.68 3.58

c(0.8,x(0)
2 )− c(0.8,x(2)

2 ) 5.66

5 CONCLUDING REMARKS

As discussed in the numerical studies, the computation of our proposed estimator ĝn(·) involves solving a QP with
(d +1)n decision variables and n(n−1) linear constraints, which becomes computationally challenging as n increases.
Consequently, it would be valuable to develop efficient algorithms for computing the convex regression estimator which
do not involve solving a QP. In the setting of estimating monotone functions, numerical procedures for computing
the isotonic regression estimator have received a great deal of attention and various algorithms have been proposed to
compute the isotonic regression estimator in linear time O(n); see Barlow et al. (1972) for details.

Another subject of future research is the verification of the convex property in more general settings of queueing
networks. For instance, the throughput of a closed queueing network of Jackson type is shown to be concave in the
number of jobs; see Shanthikumar and Yao (1988) for details. So one open question is the identification of sufficient
conditions for more general queueing networks having convex performance measures.
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