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ABSTRACT

We consider the problem of producing confidence intervals for the mean response of a system represented by a stochastic
simulation that is driven by input models that have been estimated from “real-world” data. Therefore, we want the
confidence interval to account for both uncertainty about the input models and stochastic noise in the simulation
output; standard practice only accounts for the stochastic noise. To achieve this goal we introduce metamodel-assisted
bootstrapping, and illustrate its performance relative to other proposals for dealing with input uncertainty on two
queueing examples.

1 INTRODUCTION

Discrete-event simulation provides a flexible tool to model the behavior of dynamic stochastic phenomena in manufacturing,
transportation, communication, health care, finance and many other areas. Simulation output results are finite samples
drawn from a population, and so exhibit what we will call intrinsic output uncertainty. In discrete event dynamic
simulation, this uncertainty comes from finite run length of the simulation and the finite number of replications that
are conducted. Traditional simulation output analysis methods characterize intrinsic uncertainty in simulation output
results by constructing parameter estimates of output probability distributions, typically first and second moments and
sometimes quantiles. These are often accompanied by either confidence intervals or moments of the output parameter
estimates. This analysis allows decision makers to judge risk in decisions made based on simulation model output.

Discrete event simulation models require input probability distributions, which are then used to generate random
variates during a simulation run. One important source of output uncertainty is the imperfect rendition of input probability
distributions when finite samples of real-world data are used to fit empirical or parametric input distributions. We
call this input-model uncertainty. Without including the uncertainty arising from errors in the input distributions, the
simulationist has no guidance on how much input data must be collected to provide model outputs with useful accuracy.
Worse, the simulationist may ignore this source of uncertainty, and be overly confident in the results of the usual
output analysis, an analysis that is conditional on the set of data used to fit the input probability distributions. The
error in such conditional confidence intervals can be quite large, as shown by Barton and Schruben (1993, 2001) and
Henderson (2003).

Simulation input model uncertainty has been addressed in the literature in essentially two ways: The first is to
perform statistical output characterization conditional on the (correctness of) the input probability models, and separately
perform sensitivity or uncertainty or robustness analysis of simulation output to changes in simulation input distributions.
Descriptions of this approach can be found in Kleijnen (1987, 1994) and Law and Kelton (2000). As noted by Schmeiser
in his discussion in Barton et al. (2002), this method has broad applicability, and can handle qualitative uncertainty in
model form as well as situations in which no calibrating real-world data exists. This separate analysis approach has a
significant drawback: it provides no statistical characterization of the combination of both sources of uncertainty.

The second approach is to combine explicit characterization of the impact of input-model uncertainty on simulation
output with the characterization of intrinsic output uncertainty to provide confidence intervals for output parameter
values. There have been three primary streams of research in this vein: One stream of research has developed
methods for a priori known families of parametric input distributions, using MLE properties of the parameters and
Taylor series approximations of the expected simulation response, assuming that the correct parametric families of
the input distributions are known. Cheng (1994) and Cheng and Holland (1997) used a delta method approximation
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to achieve this, which requires an additional number of simulation runs that is linear in the number of input model
parameters. Cheng and Holland (1998, 2004) suggested an alternative method that requires only two runs, but yields
more conservative confidence intervals. In many cases, the linear approximation of the impact on output that these
methods require cannot be supported. Further, this stream of research requires that the parametric family of all input
distributions be known with certainty.

A second stream of research is based on Bayesian resampling methods. The distribution of the expected value of the
simulation output is characterized running simulations at each of many repeated samplings from a posterior distribution
for the parametric input model parameters. The posterior distributions are determined by applying Bayes rule to a prior
distribution and observations of real-world data. This Bayesian model averaging (BMA) strategy has been described
and refined by Chick (1997, 1999, 2000, 2001), Chick and Ng (2002), Ng and Chick (2001), and Zouaoui and Wilson
(2001a, 2001b, 2003). These methods require normality and homogeneity assumptions on the impact of input-model
uncertainty, which may not be reasonable. Zouaoui and Wilson (2004) used a different BMA approach to capture both
parameter uncertainty and uncertainty across an a priori determined set of possible parametric families. The assumption
of homogeneous variance induced by input-uncertainty variability remains, and the t-type confidence interval they
described also depends on approximate normality due to input-model uncertainty.

The third stream of research takes a frequentist approach, characterizing the impact of input-model uncertainty
on the simulation output using direct resampling and bootstrap resampling methods. This work includes the papers
on nonparametric bootstrap approaches by Barton and Schruben (1993, 2001) and Barton (2007), and a parametric
bootstrap approach by Cheng and Holland (1997). The percentile intervals do not require normality or homogeneity
due to input-model uncertainty. Unfortunately, since the statistic that is bootstrapped is the output of a simulation run,
intrinsic output uncertainty causes the statistic not to be a smooth function of the input data, violating a requirement
for the asymptotic validity of the bootstrap.

Further, the resampling methods in this third stream and the percentile method in Zouaoui and Wilson (2004)
suffer from a failure to distinguish the behavior of intrinsic output uncertainty—sampling error—and input-model
uncertainty—input model error. Schmeiser in his discussion in Barton et al. (2002) noted: “Any reasonable version [of
a method capturing both modeling error and sampling error] needs to reflect the fundamental difference that sampling
error decreases with additional simulation sampling while additional sampling has no impact on modeling error.” This
means that confidence intervals based on resampling strategies will have coverage that exceeds the nominal value if the
simulation effort for each resample is relatively low. Barton identified this error for nonparametric bootstrap methods
in Barton et al. (2002) and proposed simulation effort guidelines in Barton (2007).

There has been related work on allocation-of-effort strategies to minimize the joint impact of input-model uncertainty
and intrinsic output uncertainty. Lee and Glynn (2003) developed a framework to estimate the distribution of the
conditional expectation of a simulation output statistic in the presence of model and parameter uncertainty, and presented
methods to minimize the mean squared error of an estimator of the expected value. Steckley and Henderson (2003)
further developed the framework and described a kernel approach for estimating the density of the conditional expectation,
depending on a single unknown parameter. Ng and Chick (2001) used the delta method in a Bayesian framework to
sequentially choose which real-word data to augment with additional samples to reduce the variance of the simulation
output. Freimer and Schruben (2002) described two approaches to determine whether additional real-world data should
be collected, given a fixed level of simulation effort. In the first approach, upper and lower confidence limits on
model parameters are used as parameter values in a factorial set of simulation experiments. If the parameter effects are
statistically significant, more real-world data must be collected. In the second approach, the real-world data are bootstrap
resampled to generate random values of the parameters, and a random effects model is used to test for significance of
parameter uncertainty.

Henderson (2003) gave a detailed review and critique of these approaches. He found no clearly superior method,
and suggested the need for a method that is transparent, statistically valid, implementable and efficient. In this paper we
describe a metamodel-assisted bootstrapping method and show its use with some simple parametric input models. The
metamodel provides the smooth function necessary for bootstrap convergence, and reduces the computational burden of
the bootstrap resamples. The strategy distinguishes input-model and intrinsic simulation uncertainty components of the
output, a shortcoming of prior bootstrap methods, and models non-homogeneous and non-normal effects of input-model
uncertainty, a limitation of Bayesian methods.

The next section provides a formal description of the problem, and describes the metamodel-assisted bootstrapping
method. Section 3 compares the coverage of confidence intervals constructed using our method with conditional intervals
and intervals based on direct bootstrapping and Bayesian methods, while Section 4 provides theoretical justification for
our method. The final section describes the advantages and limitations of the metamodel-assisted bootstrapping method
and areas for future research.

2 A FRAMEWORK FOR CONFIDENCE INTERVALS

To account for input-model uncertainty, we introduce the following representation of a computer simulation.

1190



Barton, Nelson and Xie

A simulation is a function g : ω → Y , where ω is an elementary outcome from a basic probability space (Ω,P);
to be concrete, one might think of the intrinsic uncertainty ω as a realization of an infinite sequence of i.i.d. uniform
(0,1) random numbers (although only a finite subset will be used in the simulation). The mapping g is also a functional
of p input distributions, say {F1, . . . ,Fp}. Thus, g(ω) = g(ω|F1, . . . ,Fp). We represent the simulation in this way to
indicate that different choices are possible for the driving input processes, and we distinguish p distributions (that need
not be univariate) because the typical simulation is driven by i.i.d. samples from one or more distinct distributions, and
“input modeling” involves characterizing each of these distributions separately. For instance, in a queueing simulation
F1 might be the distribution of the interarrival times of a stationary arrival process, while F2 could be the distribution
of service times. Since the individual distributions need not be univariate, we will simplify the notation by using F to
represent the joint distribution of all input random variables.

In addition, the simulation output often depends on other parameters describing the structure of the model or the
experiment, such as the number of servers, the “feeds and speeds” of the equipment, or the simulation stopping time,
but this dependence is omitted from the notation and not a part of our framework. We assume that the objective is to
characterize system behavior conditional on a given set of these controllable parameters.

The output from a single realization (replication) of a simulation with input distribution F can be written as
Y (F,ω) = β0(F)+ ε(F,ω) where β0(F) =

∫
g(ω|F)dP and ε(F,ω) = g(ω|F)−β0(F). From here on we drop the

dependence of these random variables on ω for notational convenience, giving the random functional

Y (F) = β0(F)+ ε(F). (1)

When independent replications are obtained (from independent realizations ω j of ω) we append a subscript j to indicate
the jth replication as in Yj(F) = β0(F)+ ε j(F).

The objective of the simulation study is to characterize (estimate properties of) the distribution of Y (Fc) where
Fc is the true (correct) cdf of the real-world stochastic phenomena included in the model. The existence of Fc is, of
course, a big assumption, but it is the basis of stochastic simulation and without it there is really no way to proceed.

Assuming the existence of Fc, we formulate the following output analysis problem of interest: obtain (random)
bounds CL(Fc) and CU (Fc) such that

Pr{β0(F
c) ∈ [CL(Fc),CU (Fc)]} ≥ 1−α. (2)

Here the randomness in the bounds comes from the intrinsic randomness in the simulation output generated under Fc,
that is, through ε(Fc,ω). Our reason for not directly addressing the problem of estimating β0(Fc) will become clear
shortly.

For many simulation settings the output is itself an average of a large number of more basic outputs, so a version of
the Central Limit Theorem implies that the distribution of ε(F,ω) (and consequently Y (F)) is approximately Gaussian,
with mean and standard deviation that depend on F . Simulation outputs in this category include continuous-time-average
statistics such as utilization, and discrete-time-average statistics such as average waiting time. If Fc were known then
the desired CI could be obtained from classical statistics using sampled outputs

{
Yj(Fc), j = 1,2, . . . ,n

}
from a set of

n replicated simulation runs.
Of course, Fc is typically unknown and must be estimated using finite samples. In general, the number of samples

from each of the p input distributions might differ. However, to simplify notation, we will assume that we have m
sample values from each input process, denoted collectively by Xm = {X1,X2, . . . ,Xm}, that have been obtained from the
real-world Fc. This gives the approximation F̂c = Fm(· | Xm), or more simply Fm, a (random) fitted distribution based
on the random vector Xm. Uniform convergence of empirical distributions in this setting means uniform convergence
Fm m→∞−→ Fc, if Fm is an empirical distribution (possibly smoothed). If Fm is a parametric distribution fitted to Xm, no
such guarantee exists, except for the case when Fc is a member of the chosen parametric family.

Simulation output analysis is usually based on a particular realization of Xm, say x0
m =

{
x0

1,x
0
2, . . . ,x

0
m

}
, giving

F̂c = Fm
0 (· | x0

m), or Fm
0 for short. The realization x0

m is the actual real-world data used to fit F̂c. We drop the explicit
dependence on x0

m in the following and write the sample-based distribution as Fm
0 . Abusing notation we will sometimes

let Fm
0 denote a fixed distribution based on a particular sample x0

m, but more often think of it as a random function of
a random sample X0

m from Fc. To describe our framework we will also consider repeated i.i.d. samples of size m of
real-world data, X0

m,X1
m,X2

m, . . ., and let Fm
i denote the fitted distribution obtained from the ith sample.

The standard simulation output analysis constructs confidence intervals that are conditioned on Fm
0 : obtain (random)

bounds CL(Fm
0 ) and CU (Fm

0 ) such that

Pr{β0(F
m
0 ) ∈ [CL(Fm

0 ),CU (Fm
0 )]} ≥ 1−α. (3)

The randomness in the conditional CI comes only from ω; the randomness in Fm
0 (· | X0

m) is ignored. Thus, the bounds
are relative to the distribution Fm

0 rather than Fc. As has been shown in many papers, this can lead to coverage
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probabilities for β0(Fc) that are far from 1−α . Our goal is to obtain asymptotically correct confidence intervals for
β0(Fc) under the assumptions that the real-world distribution Fc is stable and the model logic is correct.

Our focus on a CI for β0(Fc) avoids the problem of correcting for the bias of β0(Fm
0 ) as an estimator of β0(Fc),

a problem that is very difficult to address; instead we bound the value of β0(Fc) with high probability and let this
interval account for the bias.

Consider the thought experiment in which additional real-world samples Xi
m are available, each resulting in a

fitted distribution Fm
i . The distribution of the simulation output Y (Fm) therefore has two sources of randomness: the

simulation output variability conditional on Fm, and the randomness from the sampling variability of Xm used in
constructing Fm. Specifically,

Y (Fm) = β0(F
m)+ ε(Fm)

= β0(F
c)+ [β0(F

m)−β0(F
c)]+ [Y (Fm)−β0(F

m)]

= β0(F
c)+D+V. (4)

We now make two heroic assumptions that allow us to obtain the CI (2): (a) The functional β0(·) is known, and
(b) the distribution of D, denoted FD, is also known. Let CU = β0(Fm

0 )−F−1
D (α/2) and CL = β0(Fm

0 )−F−1
D (1−α/2).

Then

Pr{CL ≤ β0(F
c) ≤CU} = Pr{F−1

D (α/2) ≤ β0(F
m
0 )−β0(F

c) ≤ F−1
D (1−α/2)}

= 1−α

since β0(Fm
0 )−β0(Fc) has distribution FD.

Neither β0(·) nor FD will be known, but these “heroic” assumptions show us one path to obtain an asymptotically
valid CI:

• Build a metamodel M(·) for β0(·) that converges, say as the number of design points and number of simulation
replications go to infinity, to β0(·).

• Given the metamodel M, use bootstrap samples from Fm
0 , say Fm

0i , i = 1,2, . . . ,B, to approximate the distribution
FD by the empirical distribution of M(Fm

0i )−M(Fm
0 ). If the metamodel is exact, then as B → ∞ and m → ∞

this empirical distribution becomes FD.

Metamodeling the mean simulation response as a function of the input distributions is key to our framework. By
running a designed experiment in the F input distribution space, we leverage more information about the response surface
β0(·), and the impact of distribution choice on output performance, than we would have from a single simulation at
F = Fm

0 . This effectively eliminates the impact of V . And using a metamodel M also provides the continuity conditions
that support the validity of bootstrapping. Of course, the challenge is designing the experiment in F space, and in the
choice of metamodel. In our empirical study we tackle the easiest, but still non-trivial case in which the input models
are members of a known parametric family.

3 ILLUSTRATION

We present empirical results from two small examples to illustrate the potential of our framework. We compare
our metamodel-assisted bootstrap CI to the standard conditional CI that ignores input uncertainty; to the direct
and Bayesian bootstrap CIs of Barton and Schruben (2001); and to a Bayesian credible interval that is similar to
Zouaoui and Wilson (2004).

3.1 Examples

Both of the examples are Markovian queues. In this proof-of-concept illustration we assume that the correct parametric
family of distributions (exponential) for the interarrival and service processes is known, but the true parameters (arrival
rate λc and mean service time τc) must be estimated from real-world data. To focus on the input uncertainty problem and
avoid complications due to initialization bias and autocorrelated output processes, each simulation replication generates
a single observation from the steady-state queue-length distribution, which is known for these tractable examples. Let
G(·|λ ,τ) be the relevant queue-length distribution for generic λ ,τ .

Specifically, we consider the following two examples:

M/M/∞ Queue: The goal is to estimate the steady-state expected number of customers in an M/M/∞ queue. For
generic arrival rate λ and mean service time τ the expected number in queue is β0(λ ,τ) = λτ , and the
distribution G is Poisson.
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M/M/1/k Queue: The goal is to estimate the steady-state expected number of customers in an M/M/1/k queue.
For generic arrival rate λ and mean service time τ the expected number in queue for λτ 6= 1 is

β0(λ ,τ) =
λτ

1−λτ
− (k +1)(λτ)k+1

1− (λτ)k+1 (5)

and the distribution G is a truncated geometric.

These two examples have distinctly different output distributions (Poisson and truncated geometric), and their expected
values, as a function of the inputs parameters, range from simple linear (M/M/∞) to complex nonlinear (M/M/1/k).
Notice that in both cases G exists for all non-negative λ and τ .

3.2 Procedures

All of the procedures start with a sample of real-world data. In our experiments S0
m = {S0

1,S
0
2, . . . ,S

0
m} are i.i.d.

exponential(1/τc) representing observed service times, and A0
m = {A0

1,A
0
2, . . . ,A

0
m} are i.i.d. exponential(λc) representing

observed interarrival times. Thus, the “real-world” data are X0
m = {A0

m,S0
m}. The procedures differ in how they use

these data to form a (1−α)100% CI for β0(λc,µc).
The conditional CI is what we obtain using sound statistical analysis, but ignoring input uncertainty.

Conditional CI

1. Set τ̂0 = S̄0 and λ̂0 = 1/Ā0, the sample mean and one over the sample mean of S0
m and A0

m, respectively.
2. Simulate nc replications Y1,Y2, . . . ,Ync that are i.i.d. G(·|λ̂0, τ̂0).
3. Report the CI

[
Ȳ − z1−α/2SY /

√
nc, Ȳ + z1−α/2SY /

√
nc

]
, where Ȳ and S2

Y and the sample mean and variance,
respectively, and zγ is the γ quantile of the standard normal distribution.

The direct and Bayesian bootstrap CIs, and the Bayesian credible interval, are obtained using a common structure
that differs only in the resampling step. Therefore, we present all three of them in the following procedure. When we
say “Generate bootstrap samples S j

m ∼ S0
m” we mean generate a random sample of size m by sampling with replacement

from the real-world data S0
m.

Direct Bootstrap/Bayesian Bootstrap/Bayesian CI

1. For j = 1 to B

If direct bootstrap then: Generate bootstrap samples S j
m ∼ S0

m and A j
m ∼A0

m and set τ̂ j = S̄ j and λ̂ j = 1/Ā j.

If Bayesian bootstrap then: Generate ES
1 ,ES

2 , . . . ,ES
m ∼ i.i.d. exponential(1), and let W S

i = ES
i /∑m

ℓ=1 ES
ℓ .

Similarly, generate EA
1 ,EA

2 , . . . ,EA
m ∼ i.i.d. exponential(1), and let W A

i = EA
i /∑m

ℓ=1 EA
ℓ .

Set τ̂ j = ∑m
ℓ=1 W S

ℓ S0
ℓ and 1/λ̂ j = ∑m

ℓ=1 W A
ℓ A0

ℓ .
Comment: Rather than resampling, the Bayesian bootstrap reweights the data using uniform spacings.

If Bayesian then: Generate 1/τ̂ j ∼ gamma(m,∑m
ℓ=1 S0

ℓ ) and λ̂ j ∼ gamma(m,∑m
ℓ=1 A0

ℓ).
Comment: We sample from the posterior distributions of 1/τc and λc obtained using the non-informative
prior for the exponentially distributed real-world data; see Chick (2001).

Always: Simulate nb replications Y1,Y2, . . . ,Ynb that are i.i.d. G(·|λ̂ j, τ̂ j) and compute Ȳj, the sample average.

Next j

2. Report the CI
[
Ȳ(⌈Bα/2⌉),Ȳ(⌈B(1−α/2)⌉)

]
, where Ȳ( j) denotes the jth smallest value (order statistic).

Comment: In the actual implementation we use interpolation between order statistics to improve the estimates
of the α/2 and 1−α/2 quantiles.

Finally, we present our procedure for metamodel-assisted bootstrapping. Later we describe the specific metamodel
type, experiment design and fitting method that we used in these experiments.

Metamodel-Assisted Bootstrap CI

1. Select experiment design {(λi,τi), i = 1,2, . . . ,d}.
2. For i = 1,2, . . . ,d, do the following: generate Yj(λi,τi)∼ i.i.d. G(·|λi,τi) for j = 1,2 . . . ,nm, and average them

to get Ȳ (λi,τi).
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3. Fit a metamodel M(λ ,τ) for β0(λ ,τ) using {Ȳ (λi,τi),λi,τi, i = 1,2, . . . ,d}.
4. For j = 1 to B

(a) Generate bootstrap samples S j
m ∼ S0

m and A j
m ∼ A0

m and set τ̂ j = S̄ j and λ̂ j = 1/Ā j.

(b) Set β̂ j = M(λ̂ j, τ̂ j).

Next j

5. Report CI
[
β̂(⌈Bα/2⌉), β̂(⌈B(1−α/2)⌉)

]
.

Notice that metamodel-assisted bootstrapping lets M stand in for the simulation estimate of β0(λ ,τ) used by the
other bootstrapping and Bayesian methods.

3.3 Stochastic Kriging

We use stochastic kriging from Ankenman, Nelson, and Staum (2010) to produce the metamodel M. Stochastic kriging
is an extension of kriging for deterministic computer experiments to stochastic simulation. In our context, stochastic
kriging treats the unknown response β0(λ ,τ) as a realization of a Gaussian random field that exhibits spatial correlation,
meaning that the values β0(λ ,τ) and β0(λ ′,τ ′) will tend to be similar when (λ ,τ) and (λ ′,τ ′) are “close” in some spatial
sense. In our experiments we used the well-known Gaussian correlation function exp{−θ1(λ −λ ′)2 − θ2(τ − τ ′)2}
where θ1 and θ2 are estimated as part of the fitting process. See Ankenman, Nelson, and Staum (2010) for complete
details.

Stochastic kriging is particularly well suited to metamodel-assisted bootstrapping because it does not make strong
assumptions about the form of the response surface, but rather predicts the surface as a weighted average of observed
data that gives more weight to observations that are closer to the prediction point. When we use parametric input
models, we typically expect that input models with nearly the same parameters will produce similar simulation results.

3.4 Testing Protocol

We evaluate the procedures by estimating the coverages of their CIs. This is not entirely fair to the Bayesian procedure
which actually produces a credible interval that is intended to provide a posterior assessment of the user’s remaining
uncertainty about β0 rather than cover the true value with a given confidence. Nevertheless, the coverage provides a
common measure of performance.

We also want to compare the procedures given approximately equal computational effort. We take the position that
in practical simulations the computational effort to produce simulation output is significantly larger than that required
to generate bootstrap or posterior samples (at least when conjugate or non-informative priors are used for the input
parameters) or to fit or evaluate a metamodel. Therefore, in our experiments we set nc = Bnb = dnm, so that all five
methods generate the same number of simulation replications. This means that whatever number of replications we
would spend on the standard simulation experiment that ignores input uncertainty, we spread evenly among the B
bootstrap or posterior resamples for the direct and Bayesian bootstrap, and the Bayesian method; and spread them
evenly among the d design points for our metamodel-assisted bootstrap. This slightly favors our method because we
require fitting a metamodel, generating bootstrap samples, and evaluating the metamodel for each bootstrap sample,
which does take some time. The direct and Bayesian bootstrap, and the Bayesian method, also require resampling.

To estimate coverage we make macroreplications. On each macroreplication, we generate an independent sample
of real-world data S0

m = {S0
1,S

0
2, . . . ,S

0
m} and A0

m = {A0
1,A

0
2, . . . ,A

0
m}, and apply all five procedures to the same sample.

Since β0 is known in our examples, we estimate coverage by the fraction of macroreplications on which each procedure’s
CI contained it.

Specifically, we consider the M/M/∞ queue with λc = 1,τc = 5, implying β0(λc,τc) = 5, and the M/M/1/k queue
with λc = 0.25,τc = 5,k = 20, implying β0(λc,τc) = 16.195. We make 1000 macroreplications, each producing a 95%
CI. Thus, a confidence interval on the coverage estimates is approximately ±0.014. The factors we vary include the
total replication budget for each procedure, nc, and the number of resamples B.

3.5 Results

Tables 1 and 2 summarize the results. Not surprisingly, the conditional confidence interval provides extremely poor
coverage when there are only m = 100 observations of interarrival and services times from which to estimate the arrival
rate and mean service time. Metamodel-assisted bootstrapping attains the nominal coverage in all cases considered. The
direct and Bayesian bootstrap, and the Bayesian method, tend to be quite conservative when there are few simulation
replications per bootstrap or posterior resample (each resample receives nc/B replications per resample). Metamodel-
assisted bootstrap invests nc/d replications per design point, and for these examples fewer design points are needed to
develop well-fitting metamodels than bootstrap/posterior resamples (d = 20 design points vs. B = 100,1000 resamples).
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Table 1: Coverage results for the M/M/∞ experiment based on 1000 macroreplications.

Estimated Coverage
nc d B m 1−α Conditional Direct Boot Bayes Boot Bayesian M-A Boot R

4000 20 100 100 0.95 0.080 0.972 0.952 0.957 0.944 0.12
4000 20 1000 100 0.95 0.084 0.998 0.998 0.998 0.949 0.40
2000 20 100 100 0.95 0.119 0.976 0.976 0.978 0.943 0.18
2000 20 1000 100 0.95 0.120 1.000 1.000 1.000 0.956 0.57

Table 2: Coverage results for the M/M/1/k experiment based on 1000 macroreplications.

Estimated Coverage
nc d B m 1−α Conditional Direct Boot Bayes Boot Bayesian M-A Boot

4000 20 100 100 0.95 0.045 0.963 0.943 0.939 0.946
4000 20 1000 100 0.95 0.056 0.987 0.986 0.990 0.954
2000 20 100 100 0.95 0.069 0.960 0.945 0.905 0.952
2000 20 1000 100 0.95 0.062 1.000 0.999 1.000 0.947

In a limited number of experiments with only m = 50 real-world samples (not reported here), metamodel-assisted
bootstrapping still achieved the nominal coverage.

The over coverage of the bootstrapping approaches was described and explained in Barton et al. (2002) and
Barton (2007): formal validity of the bootstrap depends on the statistic of interest being a well-behaved (and in
particular, deterministic) function of the data. However, in stochastic simulation—without the metamodel assist—β0 is
estimated with noise on each bootstrap resample. This additional variability is reflected in the bootstrap distribution,
and if too large causes significant over coverage. In our results, when we use B = 1000 bootstrap samples, there are
only a small number of simulation replications per sample, making them noisy estimates of β0.

Barton (2007) proposed looking at a measure of stochastic noise relative to confidence-interval width as an indicator
of when direct bootstrap confidence intervals will be overly conservative. In particular, he showed empirically in an
example like our M/M/1/k queue that if this ratio is greater than about 0.15 then over coverage occurs. For the
M/M/∞ queue, using the direct bootstrap and Bayesian methods, we can approximate this measure in closed form.

For the direct bootstrap and Bayesian methods, let Ȳ = B−1 ∑B
j=1 Ȳj, the overall average of the bootstrap and

posterior sample estimators, respectively. Then we can show that

Var(Ȳ ) ≈ λcτc

Bnb
+

2
m

(
B+1

B

)
(λcτc)

2.

This expression shows the impact of simulation replications per bootstrap or posterior resample, nb, number of resamples
B, and quantity of real-world data m. Recall that in our examples Bnb = nc. If we approximate the width of the 95%
confidence intervals by 2×1.96

√
Var(Ȳ ), then Barton’s measure is

R =

√
λcτc/nb

2×1.96
√

Var(Ȳ )
. (6)

The last column of Table 1 displays the R ratios for the M/M/∞ example. Notice the substantial over coverage of
the direct and Bayesian bootstrap, and the Bayesian method, when R = 0.40 and 0.57, and slight over coverage when
R = 0.18. This provides further evidence that Barton’s ratio is a useful indicator. We do not expect metamodel-assisted
bootstrapping to need such a check, and that expectation is supported by our simple test cases.

4 WHY METAMODEL-ASSISTED BOOTSTRAPPING WORKS

In this section we provide some support for the metamodel-assisted bootstrapping approach, focusing on the examples
in this paper and indicating what needs to be done to establish its validity more generally.
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Suppose that, in our two examples, the metamodel M is exact, which means that M(λ ,τ) = β0(λ ,τ). Then we
will prove that

lim
m,B→∞

Pr
{

β0(λc,τc) ∈
[
β̂(⌈Bα/2⌉), β̂(⌈B(1−α/2)⌉)

]}
= 1−α.

In other words, the confidence interval is asymptotically consistent.
In both examples we assume that 0 < λc,τc < ∞, and for the M/M/1/k example we also assume that λcτc 6= 1.

We drop the explicit dependence on B → ∞ from here on since resampling it is just a tool to evaluate the bootstrap
distribution and is not fundamental to the following argument.

1. First redefine the mean response to be a function of η = 1/λ rather than λ ; that is, the mean steady-state queue
length is β0(η ,τ). Notice that β0 is continuously differentiable and has non-zero gradient in a neighborhood
of (ηc,τc) for both the M/M/∞ and M/M/1/k queues.

2. As a consequence of Step 1, the distribution of
√

m
[
β0(Ā j, S̄ j)−β0(Ā0, S̄0)

]
is strongly consistent for the

distribution of
√

m
[
β0(Ā0, S̄0)−β0(ηc,τc)

]
as m → ∞ by Theorem 3.1 of Shao and Tu (1995).

3. As a further consequence of Step 1,
√

m
[
β0(Ā0, S̄0)−β0(ηc,τc)

]
is asymptotically normal with mean 0 as

m → ∞ using standard delta-method arguments.

4. Steps 2 and 3 establish that the percentile interval
[
β̂(⌈Bα/2⌉), β̂(⌈B(1−α/2)⌉)

]
satisfies the conditions of Theorem 4.1

of Shao and Tu (1995), and is therefore asymptotically consistent as m → ∞.

This proves that the metamodel-assisted bootstrap does exactly as one would hope as more and more real-world
data are obtained. A key to this proof is assuming that the metamodel M is exact. Clearly a complete proof also needs to
establish convergence of M to β0 as more and more simulation effort is expended on building the metamodel. If M were
of the correct parametric form, but with unknown parameters, then the availability of consistent parameter estimators
would be sufficient. For the M/M/∞ example this would mean knowing that β0(λ ,τ) = βλτ , but not knowing the
value of β . Nevertheless, we prefer interpolation approaches like stochastic kriging because we believe that practical
situations in which the true parametric form of the model is known are rare. However, this belief makes the asymptotic
analysis more difficult.

5 CONCLUSIONS

We have presented a method to capture “input uncertainty” that appears to be more robust than previous proposals.
The expected over coverage by the bootstrapping and Bayesian approaches was supported by our two test cases, and
the severity of the over coverage was related to Barton’s R for the M/M/∞ example.

At the core of our approach is a metamodel that links the expected value of the simulation response to the input
distributions that drive the simulation model; we proved that this approach is asymptotically valid under the assumption
that the metamodel is correct: M = β0. It is important to note that having an exact metamodel is a stronger condition
than what is really needed for practical usefulness. The validity of the CI depends on approximating the distribution
of β0(Fm)−β0(Fc) by the bootstrap distribution of M(Fm

0i )−M(Fm
0 ). This distribution will be a good approximation

if M is such that the distribution of the deviation of M(Fm
0i ) from M(Fm

0 ) is similar to the distribution of the deviation
of β0(Fm) from β0(Fc). This is more likely to be approximately true than that M = β0, and seems achievable with
sound experimental design for metamodel estimation.

Our proof also made use of the well-developed theory of bootstrapping for estimators that are functions of sample
means. This approach is easily extended to metamodels that are functions of sample moments beyond just the first,
but that still implies assuming that the correct parametric input-model families are known. Zouaoui and Wilson (2004)
accounted for lack of knowledge of the correct model family by using Bayesian model averaging that employs a collection
of plausible input-model families that are weighted by their posterior likelihood of being correct. An approach that is
more consistent with our framework is to formulate metamodels that are functionals of the entire input distribution,
and drive the simulation with the empirical cdfs rather than any fitted parametric input distributions.

A challenge for the metamodel-assisted bootstrap method will be efficient fitting of metamodels when the number
of distributions or distribution parameters grows. As this number grows, the number of design points needed in the
experiment can be expected to grow in a nonlinear fashion. Many distributions will be needed for complex simulation
models. This is a topic of current research.

ACKNOWLEDGMENTS

This paper is based upon work supported by the National Science Foundation under Grant No. CMMI-0900354.

1196



Barton, Nelson and Xie

REFERENCES

Ankenman, B., B. L. Nelson, and J. Staum. 2010. Stochastic kriging for simulation metamodeling. Operations Research 58
(2): 371–382.

Barton, R. R. 2007. Presenting a more complete characterization of uncertainty: Can it be done? In Proceedings of the
2007 INFORMS Simulation Society Research Workshop. Fontainebleau: INFORMS Simulation Society.

Barton, R. R., R. C. H. Cheng, S. E. Chick, S. G. Henderson, A. M. Law, L. M. Leemis, B. W. Schmeiser, L. W.
Schruben, and J. R. Wilson. 2002. Panel on current issues in simulation input modeling. In Proceedings of the 2002
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