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ABSTRACT

The initial transient is an unavoidable issue when estimating parameters of steady-state distributions. We
discuss contexts and factors that affect how the initial transient is handled, provide a bibliography (from the
system simulation literature), discuss criteria for evaluating initial-transient algorithms, arguing for focusing
on the mean squared error (mse). We discuss the MSER statistic, showing that it is asymptotially proportional
to the mse and therefore a good foundation for initial-transient algorithms. We suggest two new algorithms
(MSER–LLM and MSER–LLM2) for using the MSER statistic and compare them, based on empirical results
for M/M/1 and AR(1) data processes, to the original MSER algorithm (MSER–GM).

1 INTRODUCTION

We consider a problem that arises in determining steady-state behavior of stochastic systems. Whether the
analysis is via closed-form analysis, a deterministic numerical method, or Monte Carlo simulation, analysis
must distinguish between transient results, which depend upon the initial state of the system, and steady-state
results, which do not.

Initial-transient problems arise in Monte Carlo simulation experiments designed to estimate the unknown
value of a scalar steady-state performance measure θ . Multiple performance measures might be, and often
are, of interest; any algorithm then can be applied to each scalar performance measure. All such problems
are provided time-series data from a given simulation oracle. One replication yields data Y0,Y1, . . . ,YN . Any
two observations, say Yi and Yj, are not identically distributed because the initial observation Y0 is not from
the steady-state distribution. The output data are possibly autocorrelated because of the state-change logic of
the system (e.g., traffic, factory, finance). The sample size N might be random, such as when the data are
based on numbers of transactions in a fixed amount of simulated time. In multiple-replication variations of
the problem, the data-generation process is repeated, usually independently distributed and always identically
distributed.

When using Monte Carlo simulation to estimate a steady-state performance measure θ , a classic problem
is what to do about the early data that reflect the transient effect of not starting in steady state. The problem
is that of choosing the point estimator, Θ̂, for θ , given the time-series data from the simulation experiment.
Typically the form of the point estimator matches the form of the performance measure; for example, if θ is a
mean, then Θ̂ is a sample average. The choice of estimator then reduces to the weight to be given to each of
the data points, with early (transient) data receiving less weight and later (close to steady state) data receiving
more weight. Mostly for simplicity, the weights are often zero for the early data and a positive constant
for later data; that is, the early data are deleted and the later data are assumed to be from the steady-state
distribution.

Consistent with the view that early data are to be deleted (or at least discounted) is the common-sense
idea that the initial state should be chosen to be typical of the steady-state distribution. The steady-state
distribution, however, is unknown, because if it were known there is no problem associated with determining
the value of θ . Therefore, choosing a typical value is not trivially easy. And, often, choosing an atypical value
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is much simpler for the practitioner, such as starting with an empty factory. Therefore, the use of a warm-up
period is common. Determining an appropriate length of the warm-up period is at the heart of this tutorial.

This paper is organized as follows. In Section 2 we discuss four application areas in which initial-transient
issues arise and discuss five factors that affect how a practitioner might want to deal with the initial transient.
In Section 3 we provide a bibliography of initial-transient publications, with emphasis on literature from
the stochastic system simulation community. In Section 4 we discuss performance measures for comparing
initial-transient algorithms, with an emphasis on the mean squared error (mse) of the resulting point estimator.
In Section 5 we state the static single-replication initial-transient problem and provide Monte Carlo results
for the performance of the (magical) algorithm of mse-optimal constant deletion (OCD).

In the remainder of the paper we discuss, and present new results for, the Marginal Standard Error Rule
(MSER). Section 6 is a review the MSER statistic; in addition we show that the MSER expected value is
asymptotically proportional to the mse; the implication is that, for large sample sizes, the mse-optimal deletion
amount can be estimated by minimizing the MSER statistic. In Section 7, we define three algorithms based
on the MSER statistic. The first is MSER–GM, an existing algorithm that deletes to the global minimization
over the first half of the data; the second is MSER–LLM, deletion to the left-most local minimum; the third
is MSER–LLM2, deletion to the left-most local minimum of the local minima. A subsection shows Monte
Carlo results comparing these three algorithms to OCD. The final subsection discusses why we do not consider
MSER-5, an existing algorithm that pre-whitens the data by taking non-overlapping batch averages of size
five. Section 8 contains a summary, contributions, and future research.

Our intention is not to provide an annotated bibliography, briefly discussing every paper related to the
initial transient. Rather, we provide some overview and opinion, as well as a reasonably complete bibliography,
before focusing on the mse criterion and MSER, both the statistic and associated algorithms.

2 CONTEXTS

We categorize contexts of the initial-transient issue in two aspects: first, in Section 2.1, is applications; second,
in Section 2.2, is factors. Research and practice communities tend to be based on applications, but equivalent
problems arise in various applications because the factor settings are the same.

2.1 Applications

The initial-transient issue arises in (at least) four broad-based application areas. In all four, one or more
parameters of the steady-state distribution is statistically estimated. Much of the WSC community expe-
riences the initial transient in applications of discrete-event system simulation (e.g., Law and Kelton 2000,
Banks et al. 2010, Bratley, Fox, and Schrage 1987, Leemis and Park 2006). The Bayesian community statis-
tics faces the initial transient in Markov Chain Monte Carlo (MCMC), where the steady-state distribution
is the Bayesian posterior distribution (references). The third application, seldom discussed, is in designing
stochastic algorithms whose purpose is to estimate optimal solutions or equation roots. The steady-state
distribution is degenerate at the optimal solution, a point θ ; the data are the solutions visited by the algorithm,
and the problem is to decide how to estimate θ given that both bias and variance are asymptotically zero.
Experiments with humans and animals is a fourth application; here the subjects (e.g., college sophomores and
monkeys) undergo task training before data collection begins.

The first two applications are mathematically equivalent, differing only in the simulation model: a
factory or traffic intersection in system simulation and the Markov Chain based on the prior and likelihood
functions in MCMC. The third application, stochastic algorithms, differs in that the steady-state distribution is
degenerate, which suggests that the best point estimator is the last observation; because algorithms stop before
variance goes to zero, however, averaging recent observations is sometimes better (Polyak and Juditsky 1992).
Experimentation with live subjects, the fourth application, differs from the first three in that the quality of the
data does not necessarily monotonically improve. Live subjects eventually become tired, bored, or irritated,
leading them (unintentionally or not) to provide misleading data. In addition, the amount of live-subject
training often needs to be decided before the experiment begins, unlike the first three applications where the
data can be save to be analyzed after the experiment ends.

2.2 Factors

We now assume one of the first three application areas. For any application area, the context of the initial
transient depends upon five factors.

First, is the experiment static or dynamic? In a static environment, the time series of data is stored for
later analysis; the deletion amount can be determined in light of the entire data sequence, including knowledge
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of the length of the sequence. In a dynamic environment, the time to begin data collection is determined “on
the fly,” with each observation either ignored or used to update a statistical accumulator, either way lost to
future calculations. The dynamic environment is popular in the early literature, while the static environment
has become more common as data storage has become faster and cheaper.

Second, is there a single replication or are there multiple replications? If there are multiple replications,
is the deletion amount required to be the same for each? If the deletion amounts differ, are the results from
the multiple replications required to be combined symmetrically?

Third, what is the form of the performance measure θ to be estimated? In general, θ is a vector of
constants. The components of θ can be of many types: means (including probabilities), variances, standard
deviations, covariances, correlations, quantiles, and any other property of a steady-state distribution. Even
for the same data set, the deletion amount might depend upon the component type. Many, probably most,
algorithms for determining the amount of data to delete assume that the performance measure is a mean.

Fourth, is human interaction available? In this, and most, contexts, we think that automatic algorithms,
with no human in the loop, are desirable. Nevertheless, some published initial-transient algorithms require
human judgment, typically to indicate where the initial transient disappears.

Fifth, is computing effort important? Are computationallly intensive algorithms feasible or should the
truncation decision be made in (close to) O(n) time, where n is the sample size?

3 A BIBLIOGRAPHY

Simulation researchers have long been drawn to the initial-transient issue. The literature includes papers
covering most (all?) of the combinations of the five factors of the previous section. Some references, loosely
grouped, follow.

Early discussion: Conway, Johnson, and Maxwell (1959), Conway (1963), Emshoff and Sisson (1970),
Fishman and Kiviat (1967), Gordon (1969), Fishman (1972), Fishman (1973),
Cheng (1976), Lavenberg et al. (1981);
Theses: Morisaku (1976), Wilson (1977), Kimbler (1987), Murray (1988),
McClarnon (1990), Delaney (1995), Spratt (1998), Ghorbani (2004);
Surveys: Wilson and Pritsker (1978b), Kelton (1980), Pawlikowski (1990), Nelson (1992),
White and Robinson (2010);
Evaluation: Gafarian, Ancker, and Morisaku (1976), Wilson and Pritsker (1977),
Gafarian, Ancker, and Morisaku (1977), Gafarian, Ancker, and Morisaku (1978),
Wilson and Pritsker (1978a), Cash et al. (1992);
Comparisons: Kelton and Law (1984), Kimbler and Knight (1987)), Ma and Kochhar (1993), Spratt (1998),
White, Cobb, and Spratt (2000), Linton and Harmonosky (2002), Sandikçi and Sabuncuoǧlu (2006);
Random start: Kelton and Law (1983), Kelton (1989), Deligönül (1997);
Random deletion: Glynn and Iglehart (1987), Awad and Glynn (2006);
Graphical: Welch (1982), Welch (1983);
Multiple replications: Cheng (1976), Glynn and Heidelberger (1991), Bause and Eickhoff (2002),
Bause and Eickhoff (2003);
Replicate, longrun: Glynn (1987), Whitt (1991), Alexopoulos and Goldsman (2004);
Chaos theory: Lee and Oh (1994);
Control charts: Robinson (2002), Rossetti, Li, and Qu (2005), Robinson (2007);
Kalman filter: Gallagher, K. W. Bauer, and Maybeck (1996);
Frequency domain: Morrice, Schruben, and Jacobson (1990);
Time series: Fishman (1971), Richards (1983), Mackulak et al. (2002),
Sheth-Voss, Willemain, and Haddock (2005);
Confidence Intervals: Tafazzoli, Steiger, and Wilson (2011);
AR(1): Fishman (1972), Snell and Schruben (1982), Snell and Schruben (1985), White and Franklin (2010);
Testing: Schruben (1982), Schruben, Singh, and Tierney (1983), Vassilacopoulos (1989),
Yücesan (1993), Goldsman, Schruben, and Swain (1994), Ockerman and Goldsman (1999);
Detection: Asmussen, Glynn, and Thorisson (1992);
Variance reduction: Nelson (1990);
Asymptotics: Glynn (1984), Glynn and Iglehart (1988), Glynn and Whitt (1992), Glynn (1995), Glynn (2005);
Other methods: Jackway and deSilva (1992);
Bias-reducing estimators: Hsieh, Iglehart, and Glynn (2004), Awad and Glynn (2007);
Dynamic: Adlakha and Fishman (1982), Lee, Kyung, and Jung (2009);
Arbitrary performance measures: Eickhoff, McNickle, and Pawlikowski (2005b),
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Eickhoff, McNickle, and Pawlikowski (2007);
Quantiles: Eickhoff, McNickle, and Pawlikowski (2005a);
Run-length control: Heidelberger and Welch (1983);
Multivariate: Schruben (1981);
Impact on variance estimators: Ockerman and Goldsman (2008);
Ill-stated problem: Schmeiser (2001).

4 ALGORITHM CRITERIA

Schmeiser (2001) uses the initial-transient as an example of an ill-posed problem. In most published papers,
the authors do not specify how initial-transient algorithms are to be compared. When a criterion is specified,
it is often point-estimator bias; indeed, reference is often made to the “initial-bias problem.” (Recall that bias
is bias(Θ̂,θ) = E(Θ̂−θ), with an unbiased estimator having zero bias.) Deleting data to make bias close to
zero is not the problem, however, as illustrated when θ is a mean and Θ̂ is a sample average; in this case
deleting all but the last observation would be optimal.

Early algorithms were common-sense heuristics, with no criterion stated. An example is to delete
observations until the current observation is neither the minimum nor maximum of the remaining data.

In the late 1970s, Gafarian, Ancker, and Morisaku (1976), Gafarian, Ancker, and Morisaku (1977), and
Gafarian, Ancker, and Morisaku (1978) at the University of Southern California were the first to systematically
compare initial-transient algorithms. They define the optimal deletion point, say k∗, and then compare, via
Monte Carlo experiments, the (random) amount of data, say K, deleted by each algorithm. Their definition of
k∗ depends on when the expected value of the point estimator is within a specified fraction of the steady-state
mean; therefore it is dependent both upon an application having a positive mean (as occurs with queueing
systems) and an arbitrarily specified fraction. Their statistical criteria for whether an algorithm is good include
the mean and variance of the number of observations deleted. Their use of the mean is reasonable, but as
seen below (in Table 2) their use of the variance is not; the ability to delete different amounts of data based
on the realization can improve algorithm performance. At best, how well an algorithm estimates a perceived
good deletion amount is an indirect criterion; we argue that the focus should be directly on the quality of the
point estimator.

Soon after, Wilson (1977) and Wilson and Pritsker (1977) thought carefully about the initial transient, in-
cluding both the choice of initial condition and the problem of deleting initial data. Wilson and Pritsker (1978b)
argue that the focus should be on point-estimator performance, such as mse, rather than on perceived ideal
truncation amount. Wilson and Pritsker (1978a) suggest an evaluation procedure for both initial conditions
and deletion algorithms; their procedure is elegant, but confounds the comparison by using the criterion of
confidence-interval coverage.

We prefer the logic of Fishman (1972) and Snell and Schruben (1985), who think of the initial-transient
problem as straight-forward point estimation. They separate the quality of the point estimator from the quality
of any statement (such as a confidence interval or an estimated standard error) about the quality of the point
estimator. Specifically, they follow the statistical tradition of measuring point-estimator quality with the mean
squared error,

mse(Θ̂,θ) = E[(Θ̂−θ)2] = bias2(Θ̂,θ)+var(Θ̂),

squared bias plus squared standard error. Throughout the rest of this paper, we define mse as the primary
criterion for comparing and evaluating initial-transient algorithms.

Although we discuss them only in passing, the other usual secondary criteria apply. A deletion rule should
require little computing effort. A rule should be useful to a wide class of applications, both in the type of point
estimators (e.g., means, standard deviations, coefficient of variation, quantiles) and the types of data processes
(e.g., traffic, factory, finance). A rule should be automatic, in the sense that human judgment is not required,
either to set algorithm parameters or to judge (subjectively) the ”look” of the output data. A rule should
always return a deletion amount; whether the sample size n is adequate is not part of our initial-transient
problem.

5 THE STATIC SINGLE-REPLICATION PROBLEM

In this section, we define the static single-replication initial-transient problem, which is the only problem
considered in the rest of this paper. In Section 5.1 we define the problem, in Section 5.2 we discuss the
associated mse-optimal constant deletion amount, k∗, and show Monte Carlo results for the mse associated
with deleting k∗ observations. These mse results serve as a baseline for implementable algorithms.
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5.1 Problem Statement

As considered here, the static single-replication initial-transient problem assumes that a single vector of
output data y1,y2, . . . ,yn is available as stored values, with the sample size n known and constant. (The
sample size N might have been random, such as when the data are based on numbers of transactions in a
fixed amount of simulated time. For our problem, however, the replication has occurred and sample size
is the constant n.) The problem is to decide the value of k, the amount of the initial data y1,y2, . . . ,yk to
delete, in the calculation of the modified point estimate Θ̂n,k. For example, the corresponding sample mean
is Y n,k = ∑n

i=k+1Yi/(n− k). Just as y1,y2, . . . ,yn is a realization of Y1,Y2, . . . ,Yn, the amount of deleted data k
is a realization of K, a random variable (defined by the deletion algorithm) that is a function of the output
data. Statistically, an algorithm for defining K in terms of Y1,Y2, . . . ,Yn is good to the extent that it provides
a small value of mse(Θ̂n,k,θ). A benchmark algorithm, available to researchers but not to practitioners, is to
set K to k∗ = argmink mse(Θ̂n,k,θ). In discussing statistical performance, we refer to both the mse and the
relative mse (rmse), defined as EK[mse(Θ̂n,K,θ)]/mse(Θ̂n,k∗ ,θ) .

Despite not being independent and identically distributed (iid), the output data are useful in the sense
that they arise from a process whose steady-state distribution has θ as a property. Therefore, the data can be
useful in the computation of some point estimator Θ̂n. We assume that the data are useful, in the sense of
Assumption 1.

Assumption 1. There exists a finite constant c such that

lim
n→∞

n mse(Θ̂n,θ) = c < ∞. (1)

Commonly θ is an expected value and the point estimator Θ̂n is the sample mean Y n = ∑n
i=1 wiYi, with weights

wi = 1/n. The assumed limiting behavior in Equation 1 means that infinite computing effort, as reflected by n,
yields the value of θ with zero mse, regardless of initial conditions, varying distributions, and autocorrelations.
In practice, of course, computing effort is limited and sampling error causes Θ̂n to differ from θ .

5.2 Optimal Constant Deletion

To evaluate and compare deletion algorithms, we use the mse of the resulting estimator, mse(Θ̂n,K,θ). Here K
is the random number of deleted observations, calculated using the single-replication observations Y0,Y1, . . . ,Yn.
In addition to the specific deletion algorithm, the distribution of K depends on the distribution of the initial
observation Y0, the data process, and the sample size n.

As a benchmark for evaluating and comparing algorithms, we compute mse(Θ̂n,k∗ ,θ). In practice, the
value of k∗ is unknown, but a researcher comparing algorithms can estimate k∗ with a Monte Carlo experiment
that computes Θ̂n,k for k = 1,2, . . . ,n−1 for each of r independent replications of Y0,Y1, . . . ,Yn and identifies
k∗ with the value of k with the smallest r−1 ∑r

i=1(Θ̂n,k −θ)2.

5.3 AR(1) Properties

Because many properties are tractable, we base our analysis on first-order autoregressive (AR(1)) data. Here
Yi = θ + α(Yi−1 − θ)+ εi. Steady state occurs if and only if |α < 1|. If the errors εi are independent and
normal with zero mean and variance σ2, then at steady state the mean is E(Y) = θ and the variance is
σ2

Y = σ2/(1−α2). The initial bias is the value of Y0 − θ , but the process is in steady state only if Y0 is
normally distributed with mean θ and variance σ2

Y . The lag-h autocorrelation is αh and the sum of all
autocorrelations is γ0 = (1+α)/(1−α).

Fishman (1972) derives the bias, variance, and mse of the sample average conditional on starting in a
specific state Y0. We correct here his Equation 12 for the variance of the sample average. (A similar error
arises in the mse in his Equation 14.)

var(Yn,k) =
σ2

Y
n−k

{
1−

α2(k+1) −α2(n+1)

(n−k)(1−α2)
+

2α
1−α

[
n−k−1

n−k
+

α2(k+1) −α2n

(n−k)(1−α2)
+

αn−k −α +αn+k+1 −α2n

(n−k)(1−α)

]}
.

The sample size n has negligible effect when αn is small. Snell and Schruben (1985) show the asymptotic mse-
optimal deletion amount for estimating the mean θ . Let b = (Y0 − θ)/σY , the initial bias in units of the standard
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deviation of Y . Then k∗ = 0 if b2 < 1+1/α2; otherwise, k∗ = ⌊(− ln(b2−1))/(ln(α2))⌋, where ⌊·⌋ is the floor function.
(Notice the type-setting error in the k∗ formula in Snell and Schruben 1985.)

5.4 Performance of Optimal Constant Deletion

As a benchmark, we now consider the performance of mse-optimal constant deletion (OCD) for AR(1) data processes when
estimating the steady-state mean. In Table 1, three factors are varied: the (standardized) initial bias b = (Y0−θ)/σY =Y0,
the sample size n, and the sum of all autocorrelations, γ0. Each cell has three entries: the OCD deletion amount k∗, the
corresponding value of n mse(Yn,k∗), and the corresponding value with no deletion, n mse(Yn,0). For convenience, we
set the steady-state mean to θ = 0. For clarity, we set the steady-state variance to σY = n/γ0, so that asymptotically (in
n) the mse cell entries are one. The tables entries are a combination of the Snell-Schruben asymptotic approximation
to k∗ and its associated error and Monte Carlo results.

As a second test-bed process, we created an analogous table for M/M/1 queue waiting time. Because of lack of
space, we don’t include the table, but the message is the same as from Table 1. More generally, the type of process
affects performance less directly than the three fundamental factors n, b, and γ0. We now discuss the AR(1) results of
Table 1.

First consider independent data, which correspond to α = 0 and γ0 = 1. Because the initial bias has no effect on
future data, k∗ = 0: deleting no data is mse-optimal. Then Y n,0 is unbiased and n mse(Yn,k∗) = nvar(Yn,0) = 1.

Now consider dependent data. Large initial bias, of course, is where data deletion is most helpful. All three
entries, the optimal deletion k∗, the resulting mse n mse(Yn,k∗), and the untruncated mse increase with large initial
absolute bias |Y0|. The role of autocorrelation (as measured by either α and γ0) is explained by the limiting result
nvar(Y) = γ0σ2

Y; that is, n/γ0 is the sample size of independent observations that is equivalent to a sample size of n
dependent observations (Fishman 1972). For example, n = 10000 dependent observations with γ0 = 199 should behave
much like n = 50 independent observations. This asymptotic explanation fails, of course, for table entries where effective
sample size, n/γ0, is small. Where the asymptotic explanation holds, however, the three factors of n, b, and γ0 are
reduced to the two factors of effective sample size n/γ0 and scaled bias b = (Y0 θ)/σY . Typically, the performance
measure is a mean and the effective sample size is reasonably long, so these two factors are fundamental to consider
when comparing initial-transient algorithms.

Table 1, and its analog for any other data process, is our benchmark for evaluating initial-transient algorithms. Since
mse-optimal constant deletion uses the value of k∗, which is unknown in practice, creating an initial-transient algorithm
that performs better than OCD is unlikely, although not impossible (as mentioned in White and Minnox (1994), p.
217). How could an implementable algorithm perform better? Because OCD is required to delete the same amount of
data from every realization. An implementable algorithm can (and will) delete less data when randomness provides a
time series with less apparent initial bias. Indeed, in Section 7.2 we show a few factor settings where MSER-based
algorithms provide a percent or two smaller mse than OCD.

6 THE MSER STATISTIC

McClarnon (1990), in an M.S. thesis advised by Pres White, first advocated the use of the MSER statistic in dealing
with the initial transient. In her thesis, Mary McClarnon used the phrase Confidence Maximization Rule (CMR),
White and Minnox (1994) use no phrase but select a truncation point that “minimizes the width of the confidence
interval about the truncated sample mean, White (1995) and White (1997) use the phrase Marginal Confidence Rule
(MCR), and White, Cobb, and Spratt (2000) through White and Franklin (2010) use Marginal Standard Error Rules
(MSER). We use MSER, the more-recent phrase.

6.1 Definition

MSER has come to refer to a family of initial-transient algorithms based on what we will refer to as the MSER statistic,
defined as

MSER(n,k) =
S2

n,k

n− k

and S2
n,k = ∑n

i=1(Yi −Y n,k)
2/(n−k), the sample variance using n−k rather than n−k−1. That is, if the data were iid,

the MSER(n, k) statistic would be the estimated variance of the sample mean of the remaining n−k observations after
the first k observations were deleted.

As discussed in Section 7, several theses and papers have advocated using the MSER statistic by computing it
for k = 1,2, . . . ,κ and deleting initial observations to the value of k that provides the minimal MSER(n,k) value. The
recent concensus upper limit is κ = n/2; that is, delete no more than half of the data.
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Table 1: Performance of mse-optimal constant deletion, k∗, when estimating the mean θ of standard AR(1) data. The
initial bias is |b| = |Y0| σY . The sum of correlations is γ0 = (1+α)/(1−α). The cell entries are k∗, n mse(Yn,k∗), and
n mse(Yn,0). Monte Carlo sampling error is negligible, but the low-order digits are not necessarily correct.

Initial Bias: b = Y0/σY

n γ0 (α ) 0 1 10 100 1000
100 .053 (-.9) 0 0 19 42 63

1.05 1.09 1.5 2.2 3.8
1.05 1.09 5.3 424 42300

1 (0 ) 0 0 0 0 0
1 1 1 1 1
1 1 1 1 1

19 (.9) 0 0 22 44 66
0.86 0.90 1.2 1.6 2.5
0.86 0.90 5.1 427 42630

199 (.99) 0 0 99 99 99
0.17 0.37 7.2 674 67326
0.17 0.37 20 1980 197900

1000 .053 (-.9) 0 0 22 42 65
1.00 1.00 1.03 1.05 1.08
1.00 1.00 1.42 43 4232

1 (0 ) 0 0 0 0 0
1 1 1 1 1
1 1 1 1 1

19 (.9) 0 0 21 43 65
0.98 0.99 1.02 1.04 1.06
0.98 0.99 1.4 44 4264

199 (.99) 0 0 235 469 711
0.85 0.89 1.20 1.66 2.64
0.85 0.89 5.76 493 49246

10000 .005 (-.99) 0 0 230 460 690
1.00 1.01 1.04 1.06 1.09
1.00 1.01 1.50 50 5000

.053 (-.9) 0 0 20 43 65
1.00 1.00 1.00 1.01 1.02
1.00 1.00 1.05 5.1 420

1 (0 ) 0 0 0 0 0
1 1 1 1 1
1 1 1 1 1

19 (.9) 0 0 20 42 63
1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.04 5.19 427

199 (.99) 0 0 226 460 685
0.99 1.00 1.02 1.04 1.07
0.99 1.00 1.5 50 4900

1999 (.999) 0 0 2400 4800 7100
0.83 0.87 1.2 1.6 2.5
0.83 0.87 5.7 500 50000

Since McClarnon (1990), several authors have emphasized, or at least mentioned, that minimizing the MSER
statistic was a substitute for minimizing the mse. But as seen in Table 1, the benchmark performance of OCD depends
on autocorrelation. So how can algorithms that ignore autocorrelation be mse-competitive?

As pointed out by Franklin and White (2008), MSER has not been widely embraced. We suspect that part of the
confusion is the claim that minimizing MSER is closely related to minimizing the width of the resulting confidence
interval on the steady-state mean. Because the width of an appropriate confidence interval for the mean θ is proportional
to γ0, ignoring autocorrelations and minimizing confidence-interval width easily causes confusion.
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6.2 MSER and Mean Squared Error

That MSER can provide good mse while ignoring autocorrelations depends directly on the effective-sample-size result:
nvar(Y(n,k)) = γ0σ2

Y. When there is no bias, the expected value of MSER(n,k) is σ2
Y /(n−k), since it doesn’t “see” the

autocorrelation factor γ0. For large effective sample size, (n−k)/γ0, the effect of autocorrelation is essentially constant,
so the location k of the minimum value of MSER(n,k) is asymptotically unaffected by autocorrelation. Therefore, the
naive-looking and simple-to-compute MSER statistic, with its inability to consider autocorrelations, can work well.

We make the previous paragraph’s argument more specific with two lemmas and a theorem. Consider a data process
Yi with steady-state mean θ . Let bi = E(Yi)− θ , σ2

i = var(Yi), and ρi, j = corr(Yi,Yj). The first lemma expresses
mse in terms of the individual biases, variances, and correlations. The second lemma expresses the expected value of
the MSER statistic in terms of the biases and variances. The theorem says that their asymptotic ratio is the sum of
autocorrelations, γ0.

Lemma 1. mse[Yn,k,θ ] = E[(Yn,k −θ)2] = (n−k)−2 ∑n
k+1 ∑n

j=k+1(bibj +σiσjρi,j)

Lemma 2. E[MSER(n,k)] = (n−k)−2
[
∑n

k+1(b
2
i +σ2

i )− (n−k)mse[Yn,k,θ ]
]

Compare the results of the two lemmas. The mse is a function of all combinations of bias cross products and
correlations between observations; the expected value of the MSER statistic is not. The only structure assumed about
the various biases, variances, and correlations is that implied indirectly by Assumption 1: that the data are useful for
estimating the performance measure θ . Theorem 1 says that MSER, despite ignoring the bias cross products and the
correlations, is asymptotically tied to the mse.

Theorem 1. For every data process having steady-state with mean θ , lag-h autocorrelations ρh, and finite sum of
autocorrelations γ0 = 1+2∑∞

h=1 ρh,

lim
n→∞

mse[Yn,k,θ ]

E[MSER(n,k)]
= γ0,

for every k = 0,1,2, . . ..

White and Robinson (2009) suggest that “MSER works well because it minimizes an approximation to the mean-
squared error in the estimated steaady-state mean.” Theorem 1 corrects the suggestion to say that MSER tends to be
proportional to mse. Because they are asymptotically proportional, their minima tend to lie close to the same deletion
point k.

7 MSER AGLORITHMS

Since McClarnon (1990), various papers and theses (White and Minnox 1994, Rossetti, Delaney, and White 1995,
White 1995, White 1997, Spratt 1998, White, Cobb, and Spratt 2000,
Franklin and White 2008, Hoad, Robinson, and Davies 2008, White and Robinson 2009 and
White and Franklin 2010) have analyzed and advocated initial-transient algorithms based on the MSER statistic.

7.1 Algorithm Design

Given time-series data, Y1,Y2, . . . ,Yn, all MSER-algorithm variations compute the MSER(n,k) statistic for every k in
some set K ⊂ {0,1, ...,n−1} and then delete data to some point k̂∗ for which MSER (n,k) is small. The four design
decisions are (1) whether, and how, to preprocess the data, (2) the choice of the set K , and (3) the exact form of the
MSER statistic, and (4) the selection of the deletion amount, k̂∗.

The first design decision is data preprocessing. The prominent example is prewhitening by creating averages of
non-overlapping batches of size m (especially m = 5, as advocated by Spratt (1998) and White, Cobb, and Spratt (2000),
and recent papers) via the algorithm referred to as MSER–5. The choice of m = 5 is claimed to perform well, especially
compared to no prewhitening, m = 1. Any one-size-fits-all preprocessing, however, leads to a contradiction: if the
preprocessed data are better in some sense, then why not preprocess the preprocessed data? If preprocessing is to make
sense, then its form needs to be based on an analysis of the given data Y1,Y2, . . . ,Yn. Another point is that the use of
non-overlapping batches is suboptimal to using overlapping batches, which leave no orphaned observations at the end
of the data series, which cause no graininess in the analysis, and which still requires only O(n) computation.

The second design decision is the choice of K , the set of k values to calculate MSER(n,k). All values of k
can be considered while maintaining O(n) computation, so choosing K = {0,1,2, . . . ,n− 1} is not unreasonable.
Because of the positive correlation between MSER values, computing time could be saved by considering no more
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than, say, 100 k values spread over the set {0,1,2, . . . ,n−1}. A common suggestion in the recent literature is to choose
K = {0,1,2, . . . ,⌊n/2⌋}, so that no more than half of the data can be deleted.

The third design decision is the form of the MSER statistic. One could argue about whether to divide by n−k or
n− k−1.

The fourth decision, how to use the observed MSER curve to select the deletion amount, is the most interesting.
The curve is composed of the calculated values of MSER(n,k) for all k ∈ K . Small values are good.

We denote by MSER–GM the algorithm that selects the global minimum, the original form of MSER algorithms.
Because the MSER(n, k) statistic has larger sampling error when k is close to n, the global minimum in {0,1,2, . . . ,n−1}
is sometimes erroneously close to n, which is why MSER–GM is often restricted to {0,1,2, . . . ,⌊n/2⌋}. We denote by
MSER–LLM a new algorithm. It does no preprocessing, it considers K = {0,1,2, . . . ,n−1}, it divides by n− k−1,
and it selects k̂∗ to be the location of the left-most local mininum of the MSER curve. We denote by MSER–LLM2
another new algorithm. It is identical to MSER–LLM, except that it selects k̂∗ to be be the location of the left-most
local mininum of the local minima of the MSER curve. (Yes, you might want to draw an example.)

The definitions of the three algorithms imply that for every realization k̂∗LLM ≤ k̂∗LLM2 ≤ k̂∗GM , except when MSER–GM
truncates the deletion at half the data because of its choice of K . Because they are designed to delete less data
than MSER–GM, both MSER–LLM and MSER–LLM2 can safely consider all deletion points. In particular, if the
initial-transient effect remains strong throughout the data set, MSER–LLM and MSER–LLM2 can delete all but the
last observation.

7.2 Performance Comparison

Table 2, analogous to Table 1, shows relative-mse performance for each of the three MSER algorithms. When the effective
sample size, n/γ0 is large, all three MSER algorithms provide mse within a percent of that provided by mse-optimal
constant deletion (OCD), with MSER–LLM and MSER–LLM2 performing a bit better. When the effective sample
size is small and the initial bias is large, such as the lower right cell with n/γ0 = 5, MSER–LLM and MSER–LLM2
perform much better than MSER–GM but with more than double the mse provided by OCD.

The mse-performance for negative autocorrelations and small effective sample sizes is only sporadic good. As
an example of surprisingly good, consider n = 100, α = −0.9, for all levels of initial bias; MSER–LLM performs
better than OCD (although by a negligible amount). Extrapolating these negative-autocorrelation results seems risky.
(Performance of the three MSER algorithms is similar for M/M/1 time-in-queue.)

8 SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH

In summary, the initial transient is ever present in statistical experiments intended to estimate steady-state performance
measures. Of the four application areas, we focus on the literature of steady-state system simulation, for which we
provide a bibliography. We argue for using mean squared error as the primary statistical criterion for comparing deletion
algorithms. We show that the MSER statistic is asymptotically proportional to the sample mean’s mse, so that deleting
based on the MSER statistic is reasonable, even for autocorrelated processes. Finally, we compare the mse obtained
from three variations, of which MSER–LLM and MSER–LLM2 are new, of deletion algorithms based on the MSER
statistic; for large effective sample sizes, they yield mse values within a percent of mse-optimal constant deletion. We
conclude that, if mse is the goal and if the performance measure is a mean, then the MSER statistic is a solid foundation
for initial-transient algorithms. Both MSER–LLM and MSER–LLM2 perform better than MSER–GM across sample
sizes, sum of autocorrelations, and initial bias, but all three perform well when the effective sample size is large.

Creating algorithms based on the MSER statistic is easy. For preprocessing, a fixed number of nonoverlappingbatches
(rather than a fixed batch size) makes sense (Schmeiser 1982); using overlapping batches, rather than nonoveralapping
batches, makes sense (Meketon and Schmeiser 1984). Multiple batch sizes could be used, selecting deletion amounts
that are indicated by multiple batch sizes. Linear combinations of the results from multiple algorithms could be used.
But, given that the three existing MSER agorithms do so well compared to OCD for large effective sample sizes, any
substantial performance gain would be when the effective sample size is small.
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Charnes, 1951–1957. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Ma, X., and A. K. Kochhar. 1993. A comparison study of two tests for detecting initialization bias in simulation output.
Simulation 61:94–101.

Mackulak, G. T., S. Park, J. W. Fowler, S. E. Leach, and J. B. Keats. 2002. An effective truncation heuristic for bias
reduction in simulation output. Simulation 78:643–654.

McClarnon, M. A. 1990. Detection of steady state in discrete event dynamic systems: An analysis of heuristics. M.S.
thesis, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia. Available from
University of Viginia Library, lib-lend@virginia.edu, 434–982–3094.

Meketon, M. S., and B. W. Schmeiser. 1984. Overlapping batch means: Something for nothing? In Proceedings of
the 1984 Winter Simulation Conference, 227–230. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, Inc.

Morisaku, T. 1976. Techniques for data truncation in digital computer simulation. Ph.D. thesis, Department of Industrial
and Systems Engineering, University of Southern California, Los Angeles, California.

195



Pasupathy and Schmeiser

Morrice, D., L. W. Schruben, and S. Jacobson. 1990. Initial transient effects in the frequency domain. In Proceedings of
the 1990 Winter Simulation Conference, 357–359. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, Inc.

Murray, J. R. 1988. Stochastic initialization in steady-state simulations. Ph.D. thesis, Department of Industrial and
Operations Engineering, University of Michigan, Ann Arbor, Michigan.

Nelson, B. L. 1990. Variance reduction in the presence of initial-condition bias. IIE Transactions 22:340–350.
Nelson, B. L. 1992. Statistical analysis of simulation results. In Handbook of Industrial Engineering (2nd ed.)., ed.

G. Salvendy. New York: Wiley.
Ockerman, D. H., and D. Goldsman. 1999. Student t-tests and compound tests to detect transients in simulated time

series. European Journal of Operational Research 116:681–691.
Ockerman, D. H., and D. Goldsman. 2008. The impact of transients on simulation variance estimators. In Proceedings

of the 1997 Winter Simulation Conference, ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson,
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