

SIMULATING INVENTORY SYSTEMS WITH FORECAST BASED POLICY UPDATING

Manuel Rossetti
Vijith Varghese
Mehmet Miman

Edward Pohl

Dept. of Industrial Engineering
4207 Bell Engineering Center

University of Arkansas
Fayetteville, AR 72701, USA

ABSTRACT

This paper presents an object oriented framework that fa-
cilitates modeling inventory systems whose policy updat-
ing is driven by forecast estimates. In an inventory system,
the forecast estimates and the forecast error measures are
used to set the inventory policy. A simulation approach can
address questions regarding the choice of the forecasting
technique and the frequency of updating the policy, espe-
cially in non-stationary demand scenarios. This paper dis-
cusses how the framework can be used to develop simula-
tion models through which these questions can be
addressed. In addition, two examples illustrate how to use
the framework and how to analyze supply chains with
forecast based policy updating.

1 INTRODUCTION

This paper describes an object oriented framework for de-
veloping simulation models of inventory systems that in-
volve the updating of policy control parameters based on
forecasts or other methods during the execution of the si-
mulation. The framework allows for the implementation of
multiple inventory policies, multiple forecasting tech-
niques, multiple demand generation approaches, and mul-
tiple policy updating procedures all within a dynamic mul-
ti-item multi-echelon supply chain environment. The ease
in which simulation models can be created will be demon-
strated via two examples.
 The software can also be used to study inventory sys-
tems with policy updating from a research and develop-
ment perspective. In order to utilize the framework a basic
knowledge of the Java programming language as well as
object oriented concepts are required. In addition, users
should have a strong working knowledge of simulation
methods and practices. The software can assist in answer-
ing such important and practical questions as:

• What are the best inventory policies and inventory pa-
rameters in a dynamic non-stationary environment?

• Which forecasting techniques should be used for
which items at which levels in the supply chain?

• How often should the policy parameters be updated
under dynamic non-stationary demand conditions?

Many traditional inventory models found in textbooks

assume a stationary demand process. It is well known that
under these conditions and with a few additional technical
assumptions that the (s, S) policy is an optimal policy. See
for example Chapter 7 of Porteus (2002). However, in
practice, demand processes are not necessarily stationary
and many operational conditions necessitate the use of a
wide variety of policies (e.g. reorder point, reorder quantity
(r, Q), periodic order up to (R, S), etc.) In addition, the
non-stationary behavior of demand has led to practical
methods to update the policies as demand is realized.

A simple method that is traditionally used is to esti-
mate the first two moments of the lead time demand distri-
bution using the values obtained via a forecasting tech-
nique. The forecast estimate can be used as a reasonable
estimate for the mean of the lead time demand and the
forecast error in relationships for the variance of the lead
time demand. This approach is suggested by Silver, Pike
and Rein (1998), Axsäter (2006) and Johnston (1986), to
parameterize the lead time demand distribution. Subse-
quently, the inventory policy parameters can be set based
on operational performance measures, perhaps via an op-
timization model. There are several approaches in the lit-
erature to compute inventory policy parameters. The reader
can refer to Silver, Pike and Rein (1998), Axsäter (2006)
Johnston (1986), Simchi-Levi (2002), Strijbosch (2000),
Janssen (1998), Flores (2003) for an overview of these me-
thods.

The main purpose of this paper is to illustrate how the
user can model inventory systems (irrespective of the pol-
icy) in which a forecasting technique drives the modeling

2732 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Rossetti, Varghese, Miman, and Pohl

of the lead time demand distribution and the subsequent
setting of the inventory policy parameters via a simulation
modeling framework. The paper also illustrates through
examples how some of the important questions can be ex-
amined via the framework. In addition, the paper offers
some basic conclusions in this regard. The ease with
which the user can implement other approaches is also il-
lustrated.

The most recent work that is related to this paper can
be found in Foote (1995) and Ingalls (2003, 2005). Foote
(1995) and Ingalls (2003, 2005) address the frequency of
policy updating, by a control based forecasting approach. It
may be appropriate to update the policy as often as a new
forecast is made; however, this may lead to high volatility
in the inventory position. Ingalls (2005) showed the ad-
verse effect of the volatility by investigating the increase in
the bull-whip effect in the supply chain. He adopted
Foote’s algorithm (Foote 1995, Ingalls 2003) in which
Foote proposed that the forecast estimate is a random com-
ponent of the previous forecast and the forecast need not
have to change if the Foote-proposed-statistical-test invali-
dates the current forecast. The tools and techniques dis-
cussed in this paper, especially the software, facilitate such
studies.

Traditionally, inventory managers often select the fo-
recasting technique whose forecast estimate is “nearly”
unbiased and whose forecast error is low. Such a forecast-
ing technique yields parameters for the lead time demand
distribution and can be subsequently mapped to policy pa-
rameters. The intuition is that the operational performance
measure associated with this inventory policy must be best
across the different forecasting techniques. The literature is
scant related to this intuition. However, there is research
that shows that the choice of the forecasting techniques can
considerably affect the inventory system. The reader may
refer to Gardner (1990), Silver and Rahnama (1986), Ja-
cobs and Wagner (1989) and Sani and Kingsman (1997) to
better understand the relationship between the forecasting
techniques and the operational performance measures
based on an analytical approach. However, for a complex
inventory system a simulation approach is often more prac-
tical. Gardner (1990) and Sani and Kingsman (1997) inves-
tigate these issues by using a simulation approach. This
paper illustrates how this question can be addressed using
the simulation framework to build simulation models of
inventory systems. Then, specific forecasting techniques
and policy updating procedures can be attached to the
model. Subsequently, the operational performance meas-
ures can be estimated and compared across the different
forecasting techniques.

This paper builds on the work presented in Rossetti et
al. (2006) and Rossetti, Miman and Varghese (2008). The
former illustrates the modeling of supply chain networks
using an object oriented framework integrated with the
Java Simulation Library (JSL). The JSL is an open source

simulation library based on Java. The interested reader
may refer to Rossetti (2008) for further information on the
design and use of the JSL.

 Rossetti, Miman and Varghese. (2008) subsequently
improved the ease and flexibility in modeling within the
inventory layer, by introducing a state pattern design. The
demand is the primary entity whose events drive the simu-
lation. The various states of the demand were identified
and the transition of the states of the demands are con-
strained by the new design. The transitions of the states can
be sensed and suitable responses can be implemented.
This enables sense and respond logistics concepts, which
serve as an underpinning for the design of the framework
presented in this paper.

Section 2 presents an overview of the design of the
framework. This involves both the presentation of the ab-
stract classes that form the basis of the framework and ex-
ample concrete classes. Section 3 provides examples to il-
lustrate how the classes can be used to address key
managerial decisions. Finally, the results are summarized
and future work is described.

2 DESIGN AND IMPLEMENTATION

Three Java packages within the JSL form the basis for the
modeling framework presented in this paper:

• jsl.research.supplychain.inventorylayer – Provides

simulation constructs for modeling the use and loca-
tion of inventory within general supply chain struc-
tures.

• jsl.utilities.forecasting – Provides basic forecasting al-
gorithms (e.g. moving average, exponential smooth-
ing, etc.) and interfaces for using the algorithms.

• jsl.research.supplychain.forecasting – Provides ab-
stract and concrete classes that permit forecast based
policy updating within a supply chain simulation.

This section overviews each of these packages with brief
code examples and presents how they can be used. The
next sub-section presents the modeling of the inventory
layer.

2.1 Inventory Layer Package

This paper utilizes the inventory layer abstractions within
the JSL for supply chain modeling. The JSL also has other
abstractions for supply chain modeling: facility layer and
transport layer. The reader may refer to Rossetti et al.
(2006) and Rossetti, Miman and Varghese (2008) for fur-
ther details. The inventorylayer package consists of 33 in-
terfaces, 7 abstract classes and 51 concrete classes of
which Table 1 lists the key classes with respect to this pa-
per.

2733

Rossetti, Varghese, Miman, and Pohl

Table 1: Classes in inventorylayer Package
Class Name Description

ItemType Describes items and products
Demand Represents a request for inventory
DemandState Represents the status of the request

for the inventory
InventoryPolicyAb-
stract

Abstraction of the inventory policy

BackLogPolicyAb-
stract

Abstraction of the backlog policy

DemandFillerIfc Represents objects that fill requests
for inventory

DemandFiller-
FinderIfc

Represents objects that find a filler
to fill the demand

DemandSenderIfc Represents objects that send re-
quests for inventory

DemandGenerator Encapsulates the demand creation
Inventory Something that holds inventory
InventoryHolding-
Point

IHP, Represents locations that
stock inventory items (sub class
from InventoryHolderAbstract)

LeadTimeDemand-
Filler

Represents locations that produce
items and fills demand requests af-
ter a time delay

DemandArrivalLis-
tenerAbstract

Abstraction of the listener that
monitors demand arrival and re-
sponds

 For simplicity in the presentation, objects that imple-
ment an interface or that are instances of a particular class
are referred to by the lower case nouns related to the class
or interface names whenever the context is clear. For ex-
ample, item type and demand filler refer to instances of
ItemType and DemandFillerIfc, respectively.

Rossetti, Miman, and Varghese (2008) illustrates how
to create an inventory system with an (r, Q) inventory pol-
icy using the inventory layer package. Inventory models
built on the inventory layer package consist of ob-
jects/things that send demand (implementing the Demand-
SenderIfc) and those that fill these sent demands (imple-
menting the DemandFillerIfc). The demand fillers can be
directly assigned or indirectly assigned through the de-
mand filler finder. Rossetti et al. (2006) illustrates how
easy it is to assign the demand filler to each through a de-
mand filler finder. The demand undergoes the various state
changes as discussed in Rossetti, Miman, and Varghese
(2008).

Whenever a demand is filled by the inventory or
whenever a replenishment arrives at the inventory, the in-
ventory position is updated. The checking of the inventory
position and the subsequent responses are handled by the
inventory policy classes. In addition to this, whenever a
demand is filled, the inventory may react in various other
ways, for example the demand may be collected and
stored. The abstraction of such reactions are modeled by

DemandArrivalListenerAbstract. Whenever the demand
request is accepted to be filled, the listener is notified. The
listener may respond by collecting the demands and aggre-
gating them across periods of time. Section 2.3 discusses
some of the concrete classes of DemandArrivalListenerAb-
stract.

2.2 Utilities Forecasting Package

This package is an abstraction of forecasting algorithms. It
consists of basic forecasting techniques (e.g. moving aver-
age, exponential smoothing, etc.) and interfaces for using
the algorithms. The utilities.forecasting package consists of
1 interface, 1 abstract class and 6 concrete classes of which
Table 2 lists the relevant classes in this package.

Table 2: Classes in utilities.forecasting Package

Class Name Description
ForecasterAbstract Abstraction of forecasting tech-

nique
Croston Implementation of Croston’s fore-

casting technique
MovingAverage Implementation of moving average
SimpleExponen-
tialSmoothing

Implementation of simple exponen-
tial smoothing

Syntetos Implementation of Syntetos’ fore-
casting technique

HoltsWintersNon-
Seasonal

Implementation of the non seasonal
forecasting technique proposed by
Holts and Winters

ForecastErrorIfc Represents the logic that estimate
error

The ForecasterAbstract is an abstraction representing

forecasting techniques. The user can sub-class from Fore-
casterAbstract and implement any forecasting technique.
The SimpleExponentialSmoothing class is a sub-class of
ForecasterAbstract that implements the simple exponential
smoothing forecasting technique. In the SimpleExponen-
tialSmoothing class, the method checkSufficientHistory
checks whether there is at least one demand to initialize the
forecast; the method initializeForecast initializes the fore-
cast with this single demand; while the method makeFore-
cast makes the forecast according to simple exponential
smoothing. All five methods are inherited abstract methods
from ForecasterAbstract. The following shows how an in-
stance of SimpleExponentialSmoothing is created:

mySimpleExponentialSmoothing = new SimpleEx-
ponentialSmoothing(0.25, this+" SES");

 The ForecastErrorIfc processes the request for the im-
plementation of the evaluation of the performance of the
forecasting technique; its concrete implementation may
make the error estimates. There are several different fore-

2734

Rossetti, Varghese, Miman, and Pohl

casting error measures and the user can implement these
error measures by implementing this interface. The class
ForecasterAbstract has the reference to the concrete im-
plementation of the ForecastErrorIfc; it is assigned within
the constructor. The class which has the information of the
demand and the forecast estimate, (i.e. ForecasterAbstract
and its subclasses) is responsible for triggering the setEr-
rorPerformance method of the concrete implementation of
the ForecastErrorIfc to evaluate the forecast error. In the
next section, we illustrate how the forecast error interface
is used.

2.3 Supply Chain Forecasting Package

This package provides abstract and concrete classes that
permit forecast based policy updating within a supply
chain. This package consists of 3 interfaces, 2 abstract
classes and 5 concrete classes. The relevant classes in this
package are listed in Table 3. The package consists of sev-
eral concrete listeners. These are the sub-classes of the ab-
stract demand arrival listener in the inventory layer which
was discussed in Section 2.1. In addition to demand arrival,
a forecast arrival event may require a particular response
and the package has another listener that listens to the arri-
val of forecasts. These listeners implement the ForecastAr-
rivalListenerIfc interface.

Table 3: Classes in supplychain.forecasting Package
Class Name Description

ForecastManager Describes the manager that triggers
forecasting and error estimation

ForecastArrivalLis-
tenerIfc

Represents objects that monitor
forecasts and respond

UpdatableIfc Describes an inventory model
whose policy can be updated

2.3.1 Concrete listeners of demand and forecast

This section briefly discusses the listeners that monitor
demand and forecast arrivals. This feature is illustrated us-
ing the DemandAndForecastArrivalListenerDefault class, a
concrete implementation of DemandArrivalListenerAb-
stract. The following code listing illustrates how a listener
can be attached to an inventory:

myListener = new DemandAndForecastArrivalLis-
tenerDefault(this, myInventory, this,
this+"DemandForecastArrivalListener", myDe-
mandAggregationLevel);

 This listener listens to the demand arrival for the in-
ventory and the implementation of its inherited abstract
method demandArrived() collects the demand. It can sche-
dule the demand aggregation at user specified levels and
subsequently make a forecast. This is achieved through the
inherited method schedulePeriodicDemandProcessing().

The forecast arrival listener inherits its behaviors from the
interface ForecastArrivalListenerIfc. DemandAndForecas-
tArrivalListenerDefault is a concrete implementation of
ForecastArrivalListenerIfc. It also inherits from Deman-
dArrivalListenerAbstract and hence it is both a forecast ar-
rival listener and a demand arrival listener. It implements
the response when a forecast is made in its inherited
method forecastArrived(). In the listener, DemandAnd-
ForecastArrivalListenerDefault the response to the forecast
arrival is to store the current forecast estimate.

The other demand arrival listeners are DemandArri-
valListenerDefault and DemandArrivalListenerWithFore-
caster. The former collects demand and aggregates it at the
user specified interval and subsequently writes it into a file.
The latter is similar to the DemandAndForecastArrivalLis-
tenerDefault with the exception that it does not have the
behavior of a forecast arrival listener. It collects demand
and aggregates it at the user specified level and then makes
a forecast. The user can easily create other demand arrival
listeners with other behaviors by implementing the de-
mandArrived() method of DemandArrivalListenerAbstract
class.

The DemandAndForecastArrivalListenerDefault im-
plements ForecastArrivalListenerIfc and thus has the be-
havior of a forecast arrival listener. The ForecastArrival-
ListenerDefault is another forecast arrival listener that
implements ForecastArrivalListenerIfc through an abstract
forecast arrival listener ForecastArrivalListenerDefaultAb-
stract. It is notified whenever a forecast is made and it re-
sponds by writing the forecast estimates and the forecast
error into a file. The user can easily create other forecast
arrival listeners with other behaviors by implementing the
forecastArrived() method of ForecastArrivalListenerIfc in-
terface. The next subsection presents how these listeners
are integrated with the forecasting package.

2.3.2 Managing the forecasters

Section 2.2 described the implementation of forecasting
techniques. The purpose here is to model an inventory lo-
cation whose policy is updated by the forecasts. This re-
quires a simulation model element that integrates the fore-
casting technique with the events in the inventory model.
This is handled by the ForecastManager which triggers
forecasting and error estimation. The ForecastManager
holds a forecasting technique.

The listener that was created in Exhibit 2, Deman-
dAndForecastArrivalListenerDefault holds a ForecastMan-
ager. Within the method schedulePeriodicDemandProcess-
ing(), the forecast manager requests the update of the
forecast. Thus, the demand arrival listener interacts with
the forecast manager. When the forecasting technique
makes the forecast, the manager will notify the forecast ar-
rival listener that forecast was made. The forecast arrival
listener in this case requests that the policy be updated. The

2735

Rossetti, Varghese, Miman, and Pohl

following code listing illustrates how to assign a forecast
manager so that it holds the forecaster that was previously
created with the listener.

myListener.setDemandForecaster(new Forecast-
Manager(this, mySimpleExponentialSmoothing,
this+" SES ME"));

The interface UpdatableIfc can be implemented by in-

ventory models to behave as an updatable inventory model.
It receives parameters through the receiveParameters()
method. The forecast arrival listener may trigger the updat-
ing for such an inventory model or the inventory model
that creates the inventory and the listeners and the fore-
caster can trigger the policy updating. Example 1 in the
next section illustrates the implementation of the Up-
datableIfc interface.

The previous discussion illustrated how to create an (s,
S) inventory model updated by the forecasts from a simple
exponential smoothing forecast. It follows the following
sequence.
• Create an inventory with its backlog policy and inven-

tory policy
• Create the forecasting technique and a forecast man-

ager and hook them together
• Create the demand arrival listener and assign the fore-

cast manager to it
• Create the forecast arrival listener and assign the fore-

cast manager to it
The next section illustrates how to build and analyze mod-
els for two different examples.

3 EXAMPLES

The first example illustrates a simple reorder point, order
up to level (s, S) inventory system where a forecast will be
used to update the policy parameters (s, S) during the
simulation. The second example illustrates the framework
in the context of a simple but interesting multi-echelon
supply chain. The performance across different update pe-
riods and forecasting techniques is considered.

3.1 Example 1

The purpose of this example is to illustrate the ability of
the software packages to model an inventory system with
forecast-based updates. Additionally, the software displays
the performance metrics necessary to analyze such sys-
tems. A simple inventory system using a (s, S) control
policy is modeled and its performance measured for two
different demand scenarios: a stationary demand scenario
(a simple Poisson) and a non-stationary demand scenario
(Non Homogeneous Poisson Process). The inventory sys-
tem is analyzed for different updating policies: no policy
updating and monthly updating based on estimates from a
simple exponential smoothing forecast SES (0.15). The s

(reorder point) and S (order up to level) are updated based
on a simple heuristic mentioned in Silver, Pike and Rein
(1998). The reorder point is updated based on the forecast
estimate, the forecast error, and a user assigned customer
service level. The order up to level is updated based on the
reorder point and the order quantity estimated using the
EOQ formula.

Exhibit 1 provides a code listing to illustrate the ease
of use of the package to simulate and run such an inventory
system. A non homogenous Poisson process is created in
line 1 where the rate linearly increases from 1 to 100
through 1825 time units and linearly decreases back to 1 in
the next 1825 time units.

1 PiecewiseRateFunction f = new

PiecewiseLinearRateFunctin(1.0, 1825.0, 100.0);
f.addRateSegment(1825.0,1.0);
NHPPTimeBtwEventRV myNHPPTimeBtwEventRV

2 double initforecastest = 1.0;
3 DistributionIfc lt = new Exponential(1.0);
4 ItemType myItemType = new ItemType(m, "Type-A");
5 int level = 3;int s = 1;int S = 3;
6 int myAggregationLevel = 30;
7 ForecastBasedContinuousUpdatingsSInventoryModel

myModel =new
ForecastBasedContinuousUpdatingsSInventoryModel
(m, myItemType, myNHPPTimeBtwEventRV,
myNHPPTimeBtwEventRV,
lt, level, s, S, myAggregationLevel,
initforecastest,
"ForecastBasedPeriodicUpdatingsSInventoryModelCa
se", true);
Exhibit 1: Building Forecast-based Update Model

In Exhibit 1, lines 1 – 4 illustrate how to construct the

non-stationary Poisson process, the lead-time distribution,
the item type, and the parameters for the (s, S) policy.
Line 7 instantiates the class ForecastBasedContinuousUp-
datingsSInventoryModel where the user specifies all the
information required to make the required inventory sys-
tem. The constructor will create the inventory system with
a (s, S) policy and updating based on a user specified fore-
casting technique (or the default forecasting technique SES
with alpha 0.15). The user can declare the item type, de-
mand arrival process, update period, whether to update or
not, initial demand rate etc. The simple heuristics to esti-
mate s and S are encapsulated within a class named De-
faultsSInventoryOptimizer. An instance of this class will
be created within the constructor of ForecastBasedCon-
tinuousUpdatingsSInventoryModel.

In this system, the inventory-position of the inventory
items constitutes the state of the system. The inventory-
position summarizes the state variables on-hand, on-order
and the backlog. Since the performance of the system over
a finite horizon is desired (the demand pattern), the simula-
tion does not have to be treated as a steady state simula-
tion. However, it may be unrealistic to initialize the sys-
tem “empty and idle”. This can be mitigated by running
the simulation prior to the start of the demand scenario pe-

2736

Rossetti, Varghese, Miman, and Pohl

riod (in essence warming up the simulation) or by more in-
telligently initializing the state. This paper takes the latter
approach.

For this paper, all of the simulations are started such
that the inventory on hand at the beginning of the run (ini-
tial inventory level) will be set equal to the order up to
level. This initialization of the on-hand inventory repre-
sents a system that begins as if the inventory system has
just received replenishment. The policy will be initialized
at a very high customer service level 99.9% in order to
minimize the risk of a back log at the beginning of the rep-
lication. The initial demand rate is assigned in line 3 based
on the demand process created in line 1. The initial values
specified in line 6 are used only for the definitions of the
inventory elements while the initial demand rate is used to
estimate the initial (s, S) policy. Then, the initial level of
the inventory is set to the initial order up to level.

Currently, the software package has a variety of fore-
casting techniques including simple exponential smooth-
ing, moving averages, Non-seasonal Winters and intermit-
tent demand forecasting techniques such as Croston,
Syntetos and Average Demand. The default updating is
based on the simple heuristics discussed previously. How-
ever, the object-oriented structure enables the user to easily
plug-in other forecasting techniques and other error meas-
ures and their own procedures to update the policies.

The software package includes a wide variety of per-
formance measures: the conventional operational perform-
ance measures like fill rate, expected backorder, average
inventory, number of replenishments, on order etc., as well
as volatility measures. In this study we have introduced
volatility measures to analyze the inventory systems in
terms of the robustness of the control policies. The volatil-
ity measures quantify the effect of the increments and the
decrements of the policy. For example, when there is a re-
order point increment, the system has to make an order
which results in an ordering cost. The ordering cost de-
pends on the number of such increments. When there is a
decrement in the order up to level, there is a possibility of
surplus inventory which results in an increase in holding
cost. This holding cost of inventory can be measured by:
the average surplus inventory due to decrements as well as
the probability of surplus inventory due to decrements. At
the end of the planning horizon, there is the possibility of
surplus inventory resulting from the policy decrements.
This surplus inventory may have to scrapped or sold, re-
sulting in a disposal cost. This cost can be quantified by the
average surplus inventory at the end of the planning hori-
zon due to increments and the probability associated with
having a surplus. The costs associated with the volatility
measures are as listed in Table 5 along with the other vola-
tility measures.

The model was executed for a run length of 3650 days
(10 years) with 30 replications. These results are tabulated
in Tables 4 and 5. According to Table 4, when there is no

update, the non-stationary case improved the on-hand in-
ventory with its smaller value of s, set at the beginning of
the simulation. Meanwhile the fill rate, as well as expected
backorders, deteriorates dramatically when the demand is
non-stationary when there is no updates in the non-
stationary case. This is because the policy parameters are
set based on the known rate at the start of the simulation,
but are not updated as the rate increases throughout the
time horizon. The number of replenishments increases in
the non-stationary case as the system attempts to catch up
with the increasing demand rate. When there are updates,
the variance of the statistics decrease considerably for the
non-stationary demand scenario. Expected backorders are
slightly higher when compared to the stationary demand
profiles when updating of the policy is allowed. While fill
rate and number of replenishments are less than those in
the stationary cases. As expected, lack of knowledge of the
demand profile and for non-stationary profiles in general,
negatively affect the ability to manage the inventory sys-
tem. At the same time, as shown in the example, updating
policies are more robust to demand profile changes and
uncertainty.

Table 4: Results for Traditional Measures

Stationary

Case a
Non-stationary

Case b

Performance Measures w/o
 updates

w/
 updates

w/o
 updates

w/
 updates

Expected Backorders
0.01

 (0.00)
0.02

(0.02)
46.12
 (0.08)

0.15
(0.01)

Average Inventory On
Hand

56.42
 (0.14)

54.75
(0.17)

0.10
 (0.00)

55.04
 (0.14)

Fill Rate
1.00

(0.00)
1.00

 (0.00)
0.00

 (0.00)
0.98

 (0.00)
Number of Replenish-
ments

18251.97
 (17.77)

17312.77
 (95.61)

92172.30
 (86.72)

16784.03
 (30.73)

Forecasting-based updates are traded-off with the ro-

bustness of the inventory control policies. To capture the
effects of volatility on items as well as robustness of the
control policy, we have introduced a variety of perform-
ance metrics, some of which are tabulated in Table 5. Note
that these measures are not applicable when there are no
updates. Table 5 indicates that non-stationary processes re-
quire more dynamic inventory control. It also increases the
likelihood that the system will have surplus inventory dur-
ing or at the end of the planning horizon. The modeling
and analysis of the cost of these trade offs are beyond the
scope of this paper. Rather, our goal is to illustrate the
value of forecast based update systems as well as the flexi-
bility of our software package, which captures the essence
of cost modeling through the performance metrics.

2737

Rossetti, Varghese, Miman, and Pohl

Table 5: Results for Additional Volatility Measures

Performance Measures

Case a
w/
up-

dates

Case b
w/

 up-
dates

Number of re-order level increments, NRIR 26.03
(1.12)

57.80
(0.36)

Size of re-order level increments, SRIR 1.34
(0.33)

2.78
(0.01)

Number of re-order level decrements, NRDR 17.90
(1.09)

59.47
(0.46)

Size of re-order level decrements, SRDR 1.73
(0.35)

3.16
(0.03)

Size of order up to level increments, SSIR 1.36
(0.22)

2.92
(0.01)

Number of order up to level decrements,
NSDR

23.20
(1.12)

59.47
(0.46)

Size of order up to level decrements, SSDR 1.75
(0.24)

3.36
(0.03)

Number of order quantity increments, NQIR 9.57
(1.02)

8.03
(0.07)

Size of order quantity increments, SRIR 1.02
(0.04)

1.00
(0.00)

Number of order quantity decrements, NQDR 10.00
(1.07)

10.07
(0.13)

Size of order quantity decrements, SQDR 1.03
(0.05)

1.20
(0.01)

Number of order up to level increments, NSIR 32.10
(1.19)

57.80
(0.36)

Average surplus inventory due to order up to
level decrement, IS

0.10
(0.06)

0.30
(0.02)

Probability of surplus inventory due to order
up to level decrement, WS

0.06
(0.02)

0.14
(0.01)

Average surplus inventory at the end of a
planning horizon due to order up to level
decrement, IRS

0.03
(0.07)

1.13
(0.42)

Probability of surplus inventory at the end of
planning horizon due to order up to level
decrement, WRS

0.03
(0.07)

0.57
(0.18)

3.2 Example 2

Example 2 considers a multi echelon system with a single
item (Type-A). The demand arrives at 4 retailers each of
which have distinct demand arrival patterns. The retailers
are replenished by a warehouse and the warehouse by a
factory. Inventory at the warehouse and at each retailer and
is controlled by (s, S) policies and updated individually by
the heuristic described in example 1. For this example, the
policies are updated at each location at the same time. Re-
tailer 1 receives a non stationary decreasing trend, retailer
2 has an increasing trend. Retailer 3 receives non stationary
demand which initially has an increasing trend, followed
by decreasing trend. Retailer 4 has stationary demand. Fig-
ure 1 illustrates the structure of the system.

Figure 1: Example2 Network for Type-A Items

 The UpdatableSSInventoryNetwork class facilitates
the modeling of a multi item multi echelon inventory net-
work with a tree-like structure. This class facilitates the
adding of updatable inventory models (as in example 1 to
multiple inventory locations. The arborescent structure
modeling is similar to the multi item multi echelon net-
work example discussed in Rossetti et al. (2006). Due to
limited space the details of this modeling has been omitted.

The purpose of this example is to illustrate the analysis
of a multi-echelon inventory network with updatable in-
ventory policies. In addition, the improvement in perform-
ance measures when the policy update period and the fore-
casting technique are changed is investigated. For the
convenience of analysis, the aggregate performance meas-
ures across each location will be considered. In the base
case, the warehouse and the retailers will be assigned a
forecasting technique appropriate to its demand. Four more
cases are considered as follows:

• Case 1 (base case): Appropriate forecast techniques

(as in Figure 3) at each location; policy update period
is 30.0 days

• Case 2: Appropriate forecast techniques (as in Figure
3) at each location; policy update period is 120.0 days

• Case 3: Same forecast technique (SES with smoothing
constant 0.15) at each location; policy update period is
30.0 days

• Case 4: Same forecast technique (SES with smoothing
constant 0.15) at each location; policy update period is
120.0 days

• Case 5: No policy updating

The operational performance measures (Fill rate, FR, On
hand, OH, On order, OO) and cost-related volatility meas-
ures are considered for the comparison of each case.

2738

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Moench, O. Rose, eds.

 The above five experiments were replicated 10 times
and each simulation executed for 3650 days. The number
of replications was arbitrarily chosen. All these metrics
are aggregated across each location in the network and the
results are shown in Table 6. The initialization of the
simulations were handled in the same manner as de-
scribed in Example 1. All of the simulations are started
such that at each location, the on hand inventory at the
beginning of the run (initial inventory level) was set equal
to the order up to level. This initialization of the on-hand
inventory represents a system that begins as if each loca-
tion has just received a replenishment. The policy is ini-
tialized at a very high customer service level 99.9% in or-
der to minimize the risk of a backlog at the beginning of
the replication. The initialization is based on the initial
demand rate.

Comparison of case 1 to 2 and case 3 to 4 helps in
making inferences on the effect of update period. Here it
is observed that when the update period is increased (i.e.
less frequent updating), the fill rate decreases and the on
hand inventory increases. Comparing case 5 (where there
is no updating) to the other cases shows considerable im-
provement in the fill rate. This justifies the use of forecast
based policy updating in non stationary demand scenarios.

The measures related to the volatility shows that the
ordering cost related to increments, the holding cost asso-
ciated with surplus inventory due to policy decrements,
and the disposal cost at the end of the planning horizon
increases, when the updating is done less frequent. It can
be inferred that longer update periods are less desirable.
This software can be integrated in the future with a pack-
age that has simulation optimization features and can be
used to find an optimal update period.

Comparison of case 1 to 3 and case 2 to 4 enables us
to make inferences on the effect of the forecasting tech-
nique. Case 1 and 2 considers the instance in which the
inventory has chosen its forecasting technique based on
the demand series. In this example, when the inventory is

observing a demand with a trend it chose Winters non
seasonal approach. The smoothing parameters are arbi-
trarily chosen. In case 3 and 4 all the locations choose the
same forecasting technique irrespective of the demand
pattern. These scenarios are realistic, when the inventory
managers ignore the appropriateness of the forecasting
technique and want to avoid the cost involved in choosing
the best forecasting technique. Here in this example it is
seen that the choice of the forecasting technique has no
statistically significant difference based on fill rate, on or-
der and on hand. However the cost associated with vola-
tility is reduced if the “nearly” best forecasting technique
is chosen. This shows that the inventory managers can use
this software to choose the best forecasting technique.
This result confirms intuition as well as results found in
previous literature.

4 SUMMARY

In this paper, we have presented a flexible object oriented
modeling and analysis framework for multi-item, multi-
echelon inventory systems. This framework is unique in
that it enables one to model a variety of demand scenarios
in an environment where the impacts of inventory policy
changes based on inventory forecasting models can be
studied. In the simple examples presented in the paper,
we demonstrated that the use of forecasting tools to up-
date inventory policies has a positive impact on the per-
formance of the inventory system. This effort is part of an
ongoing research effort in the area of sense and respond
logistics. Future research efforts include developing op-
timal strategies for policy selection as well as developing
techniques for selecting the most appropriate forecasting
model for various demand scenarios. All of the models
and code developed as part of this effort are available via
the JSL as open source software at:
<http://www.uark.edu/~rossetti>.

Table 6: Operational Performance Measures Across Each Case

Case
Fill

Rate
On

Hand
On

Order NPIR IS WS IRS WRS

1
0.95

(0.00)
158.30
(3.87)

100.74
(0.14)

1.50
(0.02)

0.79
(0.04)

0.56
(0.04)

0.26
(0.08)

0.24
(0.07)

2
0.92

(0.01)
429.01
(33.97)

98.98
(0.31)

2.52
(0.03)

1.65
(0.08)

0.79
(0.07)

0.52
(0.16)

0.30
(0.06)

3
0.95

(0.00)
158.48
(3.81)

100.75
(0.15)

1.56
(0.03)

0.90
(0.06)

0.59
(0.04)

0.34
(0.08)

0.24
(0.06)

4
0.92

(0.01)
432.68
(34.41)

98.98
(0.30)

2.91
(0.05)

1.88
(0.11)

0.92
(0.08)

0.60
(0.16)

0.36
(0.09)

5
0.51

(0.00)
286.47
(31.60)

98.73
(0.31) n/a n/a n/a n/a n/a

2739

Rossetti, Varghese, Miman, and Pohl

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Air
Force Office of Sponsored Research. Any opinions, find-
ings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessar-
ily reflect the views of the U.S. Air Force.

REFERENCES

Axsäter, S. 2006. Inventory control. 2nd ed. New York:
Springer.

Foote, B. L., and B. Leon. 1995. On the Implementation of
a Control-based Forecasting System for Aircraft Spare
Parts Procurement. IIE Transactions 27(2) 210-216.

Garcia-Flores, R., X. Z. Wang, and T. F. Burgess. 2003.
Tuning Inventory Policy Parameters in a Small
Chemical Company. Journal of the Operational Re-
search Society 54(4) 350-361.

Gardner Jr, E. S. 1990. Evaluating Forecast Performance in
an Inventory Control System. Management Science
36(4) 490-499.

Ingalls, R. G., and B. L. Foote. 2003. Control-based life-
cycle forecasting. IEEE Transactions on Electronics
Packaging Manufacturing, (see also IEEE Transac-
tions on Components, Packaging and Manufacturing
Technology, Part C: Manufacturing) 26 (1):5-13.

Ingalls, R. G., B. L. Foote, and A. Krishnamoorthy. 2005.
Reducing the bullwhip effect in supply chains with
control-based forecasting. International Journal of
Simulation and Process Modelling 1(1/2) 90-110.

Jacobs, R. A., and H. M. Wagner. 1989. Reducing Inven-
tory System Costs by Using Robust Demand Estima-
tors. Management Science 35(7) 771-787.

Janssen, F., R. Heuts, and T. de Kok. 1998. On the (R, s,
Q) Inventory Model when Demand is Modelled as a
Compound Bernoulli Process. European Journal of
Operational Research 104(3) 423-436.

Johnston, F. R., and P. J. Harrison. 1986. The Variance of
Lead-Time Demand. The Journal of the Operational
Research Society 37(3) 303-308.

Porteus, E. L. 2002. Foundations of stochastic inventory
theory. Stanford, California: Stanford Business Books,
an imprint of Stanford University Press.

Rossetti, M. D. 2007. JSL: An Open-Source Object-
Oriented Framework for Discrete-Event Simulation in
Java. International Journal for Simulation and Proc-
ess Modeling.

Rossetti, M. D., M. Miman, V. M. Varghese, and Y.
Xiang. 2006. An Object-Oriented Framework For
Simulating Multi-Echelon Inventory Systems. Piscata-
way, New Jersey ed. Institute of Electrical and Elec-
tronic Engineers.

Rossetti, M. D., M. Miman, and V. M. Varghese. 2008. An
Object-Oriented Framework for Simulating Supply
Systems. Journal of Simulation (Accepted for publica-
tion).

Sani, B., and B. G. Kingsman. 1997. Selecting the best pe-
riodic inventory control and demand forecasting meth-
ods for low demand items. Journal of the Operational
Research Society 48(7) 700-713.

Silver, E. A., and M. R. Rahnama. 1986. The Cost Effects
of Statistical Sampling in Selecting the Reorder Point
in a Common Inventory Model. The Journal of the
Operational Research Society 37(7) 705-713.

Silver, E.A., D. F. Pyke, and P. Rein. 1998. Inventory
management and production planning and scheduling.
3rd ed. New York: Wiley.

Simchi-Levi, D., P. Kaminsky, and E. Simchi-Levi 2003.
Designing and managing the supply chain : concepts,
strategies, and case studies. 2nd ed. Boston: McGraw-
Hill/Irwin.

Strijbosch, L. W. G., R. M. J. Heuts, and E.H.M. van der
Schoot. 2000. A Combined Forecast - Inventory Con-
trol Procedure for Spare Parts. Journal of the Opera-
tional Research Society 51(10) 1184-1192.

AUTHOR BIOGRAPHIES

MANUEL D. ROSSETTI is an Associate Professor in the
Industrial Engineering Department at the University of Ar-
kansas. He received his Ph.D. in Industrial and Systems
Engineering from The Ohio State University. He serves as
an Associate Editor for the International Journal of Model-
ing and Simulation and is active in IIE, INFORMS, and
ASEE. He will serve as co-editor for the WSC 2009 con-
ference. He is also author of the forthcoming textbook,
Simulation Modeling and Arena to be published by John
Wiley & Sons.

VIJITH M. VARGHESE is a Ph.D. Candidate in Indus-
trial Engineering at the University of Arkansas.

MEHMET MIMAN is a Ph.D. Candidate in Industrial
Engineering at the University of Arkansas.

EDWARD POHL is an Associate Professor of Industrial
Engineering at the University of Arkansas and holds the
John L. Imhoff Chair in Industrial Engineering. He is cur-
rently the Director of the Operations Management Pro-
gram. Ed received his Ph.D. in systems and industrial en-
gineering from the University of Arizona. His primary
research interests are in repairable systems modeling, reli-
ability, decision making under uncertainty, engineering op-
timization, and systems engineering. Ed is a Senior mem-
ber of IIE, a Senior member of ASQ, a Senior member of
IEEE, a member of INFORMS, MORS and INCOSE.

2740

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

