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ABSTRACT

Simulations often depend heavily on random numbers, yet
the impact of random number generators is recognized sel-
dom. The generation of random numbers for simulations is
not trivial, as the quality of each algorithm depends on the
simulation scenario. Therefore, simulation environments
for large-scale experimentation with safety-critical mod-
els require a reliable mechanism to cope with this aspect.
We show how to address this problem by realizing a ran-
dom number generation architecture for a general-purpose
simulation system. It provides various random number gen-
erators (RNGs), probability distributions, and RNG tests. It
is open to future additions, which allows the assessment of
new generators in a simulation context and the re-validation
of past simulation studies. We present a short example
that illustrates why the features of such an architecture are
essential for getting valid results.

1 INTRODUCTION

Random number generation is a well-studied area in gen-
eral (Knuth 1981) and also in the simulation realm (e. g.,
(L’Ecuyer 1990)); and even though this problem is im-
portant enough to motivate complete chapters in modeling
and simulation textbooks (Law and Kelton 2000), the ac-
tual influence of random number generators on simulation
results is an often neglected issue in simulation studies.
Many stochastic simulation studies are published without
even naming the generation algorithm that was used, which
may lead to unreproducible results. The reasons for this
might be manifold, but one aspect seems to be the frequent
re-creation of application-specific simulation environments
from scratch. Many components have to be realized for such
an environment — e. g., model editor, simulation algorithm,
experiment editor, data storage, a. s. o. Their development
process is quite time-consuming and often leads to single
solutions per required feature, i. e., one simulation algorithm
or random number generator only. Most modern program-

ming languages also provide built-in RNGs, which are often
used to save development time.

However, since the properties of a generator determine
the quality of its output in relation to a particular application,
simply using a single RNG may introduce additional bias to
the simulation study and therefore lead to incorrect results
and conclusions — this is common sense in the domain
of RNGs (Matsumoto et al. 2007). Moreover, there is no
silver-bullet algorithm that generates good random numbers
for any kind of application (Hellekalek 1998). A plethora
of random number generators have already been proposed,
and a typical user has difficulties in selecting one that suits
the problem at hand. This is not only due to the underlying
mathematical principles, but also because the actual usage
of random numbers within the model and the simulator
might result in subtle bias that is extremely hard to predict
(Grassberger 1993).

In our opinion, neither modelers nor simulation algo-
rithm developers should have to deal with random number
generators in detail. This is not their field of expertise.
Instead, selecting a generator from a pool of existing imple-
mentations should be facilitated, as using alternative RNGs
also improves the confidence in the selection (L’Ecuyer
1997).

Another possibility is to test several random number
generators in a competitive setup, which could give some
insights into classes of problems where certain RNGs are
more robust than others – which could lead to a semi-
automatic selection of suitable random number generators
for a given setup.

In addition, such setups can facilitate teaching and
training of RNG realization and usage: students may sim-
ply plug-in their generators and compare them with those
already available in the system. If the system is a modeling
and simulation framework with an RNG architecture, such
comparisons can either be done in a more abstract (statistical
tests) or a more practical manner (real simulations).

The following section gives a short overview on com-
mon deficiencies of random number generators and how
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these defects may distort simulation results. We then briefly
introduce JAMES II and present a random number gen-
eration framework that touches several important aspects
of modeling and simulation. Section four describes how
the effects of random number generators can be tested and
quantified, and the last section concludes the paper.

2 BACKGROUND

The relation between random number generators and the
field of modeling and simulation is twofold. On the one
side, research on random numbers often employs simulation
techniques for testing (e. g., Matsumoto et al. 2007). On
the other side, stochastic computer simulation is gaining
more importance and is applied to ever more application
domains. For example, several stochastic approaches from
Computational Biology make massive use of RNGs (e. g.,
Gillespie 1977).

Two general aspects of RNGs are of particular impor-
tance in the simulation context: period and seed size. Seed
size determines the maximum number of possible trajecto-
ries, since all (algorithmic) RNGs are deterministic functions
that only generate pseudo-random numbers, the seed being
their input parameter. This may lead to problems when the
number of possible seeds is much smaller than the number
of trajectories that would be possible (Marsaglia 2003), e. g.,
when testing safety-critical applications via simulation. The
period of the RNG determines how many random numbers
can be generated before the sequence repeats itself. This
property is usually uncritical (as the periods of many RNGs
are huge, cf. Table 1), but it still needs consideration when
executing large stochastic simulations that run several days
or weeks. It is also recommended in (Hellekalek 1998)
that the amount of generated numbers should usually not
exceed the square root of the generator’s period, since the
generation is equivalent to drawing without replacement
(Hellekalek 1998), and hence introduces bias.

2.1 Random number generation

RNG algorithms have already been investigated in the con-
text of simulation (L’Ecuyer 1990). From the bevy of
existing approaches, we limit the discussion to the most
basic and common family of algorithms, namely the linear
congruential generators (LCGs). They serve as an introduc-
tory example for terminology and common problems, as
they also form a basis for several similar and more advanced
methods. An RNG is characterized by an iteration function
(or transition function) that computes the next state of the
RNG from the given one. Iterating the function results in
a transition within the generator’s state space and yields
a new pseudo-random number (its new state). An LCG is
defined by the iteration function

xn = a · xn−1 +b (mod c)

where a, b, and c are the parameters of the LCG, and x0 is
the seed. Other approaches, most notably lagged Fibonacci
generators (LFGs), combine several former states xi, i < n.
This either requires a larger seed or an additional RNG to
initialize the first states randomly. The initialization of more
complex RNGs is one of the scenarios where LCGs are still
widely used. A very popular approach that also requires
prior initialization is the Mersenne Twister (Matsumoto and
Nishimura 1998), which is known for its very large period
(cf. Table 1), speed, and high-quality output. Additionally,
RNGs define an output function that often simply normalizes
the current state of the RNG to generate a number in [0,1).
In case of the aforementioned LCG, the output function
could calculate xn

c (L’Ecuyer 1997).

2.2 RNG properties and defects

(Hellekalek 1998) identifies the theoretical properties of
RNGs as period length, structural properties, and correla-
tions. The period length is related to the size of a generator’s
state space, but does not need to be equivalent. Additive
lagged-Fibonacci generators (ALFGs), for example, have a
toroidal state space. While the iteration function moves the
state along one dimension, moving along the other dimen-
sion will yield new seeds (i. e., states) for RNG streams
with another period of same length (Mascagni and Srinivasan
2004). Structural properties refer to intrinsic structures of
the generated numbers. For example, d-tuples of multi-
plicative RNGs are known to lie in a limited number of
(d−1)-dimensional hyperplanes (Marsaglia 1968). Finally,
correlations subsume all interdependencies of generated sub-
sequences, combinations of RNGs, or certain initialization
schemes (Hellekalek 1998).

Initialization is particularly problematic for RNGs with
a large state space. Usually, another RNG is initialized
with the actual seed and then creates the initial state. This
can lead to various correlations, or defects, especially when
both generators have similar structural properties or even
the same parameters (Matsumoto et al. 2007). A defect can
be transient, i. e., only temporary, until a certain “warm–up”
phase of the algorithm has been finished, or persistent.

In (Matsumoto et al. 2007), two related defects have
been analyzed and identified in several algorithms: affine
dependence and difference collision. Affine dependence
allows to predict xn(s)∈ {0,1, . . . ,M−1}, the n-th output of
an RNG initialized with seed s, by xn(s) = an ·s+cn mod M,
where an and cn are parameters independent of s. All
LCGs have a persistent affine dependence (Matsumoto et al.
2007). Other algorithms have nearly affine dependence,
which permits a small prediction error en(s). In a simulation,

837



Ewald, Rössel, Himmelspach and Uhrmacher

this defect may introduce a huge bias, e. g., if stochastic
model entities are initialized with subsequent seeds (cf.
Section 4.1). Difference collision refers to the similarity
of differences between subsequent random numbers from
RNGs initialized with different seeds. Such collisions may
easily render a stochastic simulation invalid. For example,
consider exploring various timed interactions of stochastic
entities: with difference collisions, the time spans of certain
actions may become heavily correlated, even though this
was not intended by the modeler.

Unfortunately, many defects can only be discovered
in practice, e. g., when highly stochastic models like the
Ising model are investigated via Monte-Carlo simulation
(Grassberger 1993). Although no RNG is able to provide
uncorrelated random numbers for all kinds of simulation
application (Hellekalek 1998), empirical tests can be used
to complement theoretical findings and to discover the most
severe defects in common setups.

2.3 RNG testing and simulations

In (Srinivasan et al. 2003), RNG tests are categorized as
either statistical or application-based. Several statistical test
suites have been proposed, e. g., NIST 800-22 (Rukhin et al.
2001), Diehard (Marsaglia 1995), or FIPS 140-1 (Federal
Information Processing Standards and Technology 1982),
and new approaches are subject of current research (e. g.,
Duggan et al. 2005). Statistical testing looks for certain
correlations within an RNG’s output. If a given RNG passes
a test, the tested kind of correlation can be ruled out. On
the other hand, statistical testing is not sufficient to ensure
an RNG’s suitability in a certain simulation scenario, as
it is usually unknown which correlations are particularly
harmful. Even the characterization of what defines a high-
quality sequence of random numbers is up for debate in the
RNG community (super-uniformity vs. LIL-uniformity, cf.
Hellekalek 1998). In some sense, statistical tests merely
express common simulation requirements and constitute
“prototypes of simulation problems” (Hellekalek 1998, p.
494).

Therefore, it is regarded as mandatory to apply
application-based testing to RNGs, i. e., to use an RNG
for simulation applications and to analyze the outcome
(Srinivasan et al. 2003). Conversely, no stochastic simula-
tion result can be validated without using different RNGs,
each having different characteristics and different defects
(Hellekalek 1998). Due to the explorative character of many
simulation studies, RNG defects may not be recognized oth-
erwise. In (Grassberger 1993), for example, defects and
long-range correlations in LFGs and other RNGs could only
be identified because of theoretical a priori knowledge. Such
knowledge is often not available for stochastic models.
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Figure 1: Framework controlled experiment execution

2.4 JAMES II

The simulation framework JAMES II is a very lean system
consisting of a set of core classes. The core, which forms the
basis of the scalable modeling and simulation framework
JAMES II, is the central and most rarely changed part
of the framework. The main parts of the core are: User
interface, Data, Model, Simulator, Simulation, Experiment,
and Registry. The Experiment package is central in the
design of JAMES II (see Figure 1).

We used common software engineering techniques
for the creation of the framework, e. g., the model-view-
controller paradigm for decoupling its parts (Gamma et al.
1994). The strict differentiation between different concerns
allows, e. g., to switch the simulation engine (even during
runtime) and to exchange the data structures used for the
executable models – an essential feature for a scalable frame-
work. In addition, this adds the possibility to use JAMES
II for reliable evaluations of new simulation algorithms. In
combination with an XML-based model component plug-in,
this flexibility enables the freedom of choice in regards to
model data type, simulator code (algorithm as such; or sub-
algorithms, e. g., event queues, random number generators),
visualization, and runtime environment.

Whenever possible and useful, JAMES II tries to pro-
vide a default behavior for tasks. That’s in particular true
for the lower levels with a larger distance to the user.

2.4.1 Extension points

The “Plug’n simulate” approach (Himmelspach and Uhrma-
cher 2007) has been developed for supporting, on the one
hand, a variety of solutions which may be provided by
third parties, and on the other hand for enabling yet un-
foreseen types of plug-ins. Functionality not included in
the core classes, especially modeling formalisms and sim-
ulation algorithms, can be added in form of plug-ins. The
scalability of JAMES II relies on these extension points as
well as on the availability of extensions for these. Extension
points in the core are, e. g., different modeling formalisms
& languages, and random number generators.
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3 RANDOM NUMBERS IN JAMES II

Following its basic principles, JAMES II provides an ex-
tension point for random number generators, by which any
RNG can be provided as a plug-in. Thus, stochastic models
and simulation algorithms for JAMES II are “future-proof”,
i. e., their re-validation with more advanced RNGs later on
is inherently supported. Such re-validation is required when
new knowledge on RNG defects or correlations is available,
or if better methods have been developed. Those can be
easily integrated into the framework, and all experiments
could then be repeated. This feature of JAMES II will also
help to provide a large suite of application-based tests for
RNG evaluation without much additional effort.

3.1 Requirements

An RNG mechanism for a general-purpose simulation sys-
tem like JAMES II needs to fulfill several additional require-
ments. First of all, RNGs usually generate pseudo-random
numbers that are uniformly distributed. To better support
stochastic modeling, it is necessary that additional proba-
bility distributions can be defined. These should convert
uniformly distributed numbers to the target distribution, so
that arbitrary combinations of RNGs and probability distri-
butions are possible.

As already pointed out, no stochastic simulation result
can be considered valid if only one RNG has been used. RNG
selection and setup (seed, initialization scheme, parameters)
have to be part of the explicit experiment description — this
makes experiments reproducible, while allowing the user
to select different RNGs for testing. One should therefore
regard the RNG setup as part of the experimental frame
— the setup is inseparably connected to the simulation
results. Such a repeatable experimental setup also allows
to test proposed enhancements of existing methods (e. g.,
L’Ecuyer and Touzin 2000), i. e., their effect on simulation
results and simulation speed. It is also important that some
classic RNGs are available, which allows re-validating past
results.

JAMES II supports parallel and distributed simulation,
which implies that multiple streams of random numbers need
to be generated on distinct hosts. There are two basic ap-
proaches to parallel random number generation (PRNG):
cycle division and parameterization (Srinivasan et al. 2003).
Cycle division splits the cycle of subsequently generated
numbers (which has the size of the RNG’s period), and then
initializes all required RNGs to generate different parts of
that cycle. While this approach is rather straightforward
to implement, it does not scale to large amounts of uncor-
related RNG streams. Parameterization aims at generating
uncorrelated RNG streams of full period size by adjusting
the parameters of the RNG’s iteration function. It is of-
ten harder to achieve and requires thorough mathematical

analysis and exhaustive testing. For example, the ALFGs
mentioned in Section 2.2 can be used for parameterization
(Mascagni and Srinivasan 2004). A flexible RNG architec-
ture for simulation needs to support both PRNG schemes.

Sometimes it is also required to sample a sublist out
of a given one. Sampling can be done with or without
replacement, i. e., resulting in lists that contain only unique
entries or not. Subset sampling is an old problem (e. g.,
(Bentley 1999)) and efficient solutions are well known. They
should be provided by a modeling and simulation framework,
so that validated implementations can be reused whenever
necessary.

3.2 Architecture

The basic RNG architecture of JAMES II consists of three
extension points: RNG generators, RNGs, and Probability
distributions (see Figure 2). They provide the main com-
ponents whose combinations fulfill the requirements from
Section 3.1.

RNG generators abstract from different parallel RNG
approaches in providing an interface that allows to create as
many RNGs as necessary — this is the well-known factory
pattern (Gamma et al. 1994). Since RNG instantiation is
now hidden from the user, both cycle division and parame-
terization can be implemented without affecting other code.
The parameters of an RNG generator have to determine the
exact order and parameterization of generated RNGs, so
that repeatability is ensured.

Random number generators are required to implement
the IRandom interface, which provides the user with meth-
ods to read and write the RNG’s seed. The RNG seed is of
type java.io.Serializable, which allows to store
it to arbitrary data sinks. Again, this is a precondition
to repeatability, and also to distributed simulation, where
RNG seeds and parameters need to be sent over the net-
work. IRandom’s sole method to generate random numbers
returns uniformly distributed values in [0,1).

Uniform random numbers in [0,1) are of limited use
in real-world models or simulations. Most often, they need
to be distributed according to a certain probability distri-
bution. This has already been considered several times and
there are solutions for this problem in several simulation
software packages (e. g., SSJ (L’Ecuyer et al. 2002)). All
probability distributions in JAMES II are subclasses of
AbstractDistribution, which is initialized with an
instance of IRandom, so that any probability distribution
can be combined with any RNG. Parameterization of distri-
butions is handled by their corresponding factories, which
are part of their plug-in definition (see Section 2.4). Fi-
nally, the class RandomSampler supports developers by
implementing sampling functions based on the IRandom
interface. JAMES II provides sampling support because it
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«interface»
IRNGGenerator

CurrentTimeRandSeedGenerator

«interface»
IRandom

creates

ISAAC LCG RANDU ...

AbstractDistribution

uses

NormalDistribution BetaDistribution ...

RandomSampler

Figure 2: Plug-in based RNG architecture for JAMES II. Each background pattern denotes a single extension point in
JAMES II (except for the random sampler, which is an auxiliary class).

is a feature required by several modeling approaches (e. g.,
in micro simulations).

All in all, this simple RNG architecture has three ad-
vantages: Firstly, RNG creation is encapsulated in RNG
generators and therefore completely separated from appli-
cation code. This allows to implement and evaluate different
approaches to create parallel RNGs. Secondly, the central
IRandom interface allows to combine all available plug-ins
and eases the extension of this framework for other mech-
anisms that rely on random numbers. Thirdly, the plug-in
based approach of JAMES II allows to reuse many existing
RNG libraries by wrapping them into new plugins — the
wheel should not be invented twice. Any new RNG gen-
erator, RNG, or probability distribution becomes instantly
available for all experimental setups.

3.3 Implementation

JAMES II includes two “built-in” RNGs: a wrapper for
java.util.Random, which is an LCG, and an im-
plementation of the Mersenne Twister (Matsumoto and
Nishimura 1998). To prove our architecture, we also imple-
mented the ISAAC (Jenkins 1996) generator, the “Mother
of all RNGs” (Marsaglia 1995) (a multiply-with-carry gen-
erator), all of which are available as plug-ins. The RANDU
generator, a classic generator that is typically no longer
in use, has also been implemented. This is for two rea-
sons: firstly, for assessing the effect that such a generator,
known for its highly correlated output, has on our cur-
rent applications (see Section 4.1). Secondly, we aim at
reproducing results of former simulation studies based on
RANDU. Finally, a parameterizable LCG is available for
evaluation. Our modular approach makes it trivial to add
further methods.

Several probability distributions are already provided
by JAMES II (see Table 2 for a selection). The ones
shown here are well-known in the field of event queues
(e. g., Rönngren and Ayani 1997), where they are typically
used for testing and evaluation.

In Figure 4, it can be seen that the results of probability
distributions may be quite dependent from the used RNG.
In all three setups, the same seed has been used to gen-
erate 100.000 random numbers with a camel distribution
of (2,0.2,0.5). The results of the Java default RNG (1)

Table 1: RNGs realized for JAMES II.

Name Period
a Java Random 248

b Mersenne Twister 219937−1
c ISAAC at least 240, on avg. 28295

d Mother of all RNGs ≈ 2160

e RANDU 231

f LCG 248

g Java SecureRandom 2?

Table 2: Selection of probability distributions realized in
JAMES II (cf. Figure 3).

Distribution Expression to compute
random values

1. Exponential −ln(rand)
2. Uniform 0.0–2.0 2∗ rand
3. Biased 0.9–1.1 0.9+0.2∗ rand
4. Bimodal 0.95238 ∗ rand+ if

rand < 0.1 then 9.5238
else 0

5. Triangular 1.5∗ rand0.5

6. Neg Triangular 1000∗ (1−
√

rand)
7. Camel (2,0.8,0.2) see (Rönngren and

Ayani 1997)
8. Camel (2,0.999,0.001) see (Rönngren and

Ayani 1997)

and the Mersenne Twister (2) are as expected and approx-
imate the desired probability density function. In contrast,
RANDU’s results (3) are lacking any values in ≈ [0.6,0.8].
This again shows that an easy-to-use framework for plug-
ging in different combinations of RNGs and probability
distributions is essential for thorough experimental analy-
sis with stochastic simulation and algorithms/datastructures
(e. g., event queues).

3.4 Testing random number generators

Although using “good” generators is no sufficient prerequi-
site for valid stochastic simulation results (see Section 2.3),
all RNGs should be tested carefully with statistical means.
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Figure 3: Pictures of the random distributions from Table 2.
Generated by using the corresponding plug-ins in JAMES
II and the default Java RNG.

(1.) (2.) (3.)

Figure 4: Camel distribution fed by three RNGs. The third
picture (from RANDU) shows strong defects. The pictures
have been generated using a simple distribution test dialog
integrated into the JAMES II GUI.

This will at least hint at their performance in realistic sce-
narios and may reveal serious defects. To integrate easy
empirical RNG testing in JAMES II, we created an interac-
tive testing framework with which any user can test available
RNGs via a GUI (see Figure 5). This should increase the
confidence of the user in the selected algorithm.

The testing framework currently supports all tests de-
scribed in Table 3. However, as the testing framework is
based on the plug-in schema as well, anyone can extend this
list easily, e. g., by integrating existing test suites (such as
TestU01 by L’Ecuyer and Simard 2007). Even tests which
are no longer considered to be trustworthy contribute to the
system, since JAMES II is used for teaching and training
as well.

3.5 Integration with JAMES II

An important design aspect of this plug-in based architecture
is its seamless integration with JAMES II. This does not
only refer to technical compatibility, which is ensured by
the plug-in schema, but also to the conceptual level. As
already mentioned in Section 3.1, we regard the RNG setup
as a crucial aspect of the experimental frame. Therefore,

Figure 5: Screenshot of the RNG testing framework inte-
grated into JAMES II.

all RNG generator parameters need to be stored in the
experiment definition, and the seeds and parameters of
RNGs used in a single simulation run need to be handled
as meta information by our data storage system for result
saving. Otherwise, experiments with JAMES II would not
be repeatable. Another challenge is to save valid snapshots
of distributed simulation runs, which can be used to resume
the simulation after a hardware breakdown. It requires to
store all RNGs as well, including their current state, seed,
parameters, and additional information to attach each RNG
to the same probability distribution when resuming. Some
of these integration issues are still open and subject of future
research.

4 EXPERIMENTS

This section subsumes some empirical and application tests
that have been conducted with the currently implemented
RNGs. At least the empirical tests enumerated in Table
3 should be used to check newly developed RNGs before
they are used for experimentation. The results of the test
are given in Table 4. The LCG (f) has been parametrized
with a bad initial multiplier value of 2 to illustrate the usage
of the already realized tests. Users and students can thus
experiment with parameters on the fly and may get a feeling
for better and worse combinations — especially if this is
accompanied with some theoretical background. Further
tests may advance this idea to a new level if some of the
other generators start failing as well.

4.1 An application example

To illustrate the importance of a reliable RNG mechanism
in day-to-day simulation, we now present a brief example
along the argumentation line of Matsumoto et al. (2007).
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Table 3: Random number generator tests.

Name Short description
FIPS 140-1

1 Monobit Test Frequency of 1s and 0s in bit stream.
2 Poker Test Frequency of four-bit values.
3 Runs Test Runs of identical consecutive bits.
4 Long Runs

Test
Checks that abnormally long runs
do not appear.

NIST SP 800-22
5 Frequency

Test
Proportion of 0s and 1s, akin to the
FIPS Monobit test.

6 Freq. Test in
Blocks

Proportion of 1s in M-bit blocks.

7 Runs Test Number of runs of various lengths.
7 Longest Run

of 1s in
Block

Longest run of 1s in M-bit blocks.

8 Spectral Test Periodic features near each other.
9 Non-

Overlapping
Template
Matching

Occurrences of pre-specified aperi-
odic patterns.

10 Overlapping
Template
Matching

Like above, but counts overlapping
matches.

11 Cumulative
Sums

Interprets the bits as a random walk
and looks for abnormal deviations.

We created a simple coupled PDEVS-model (Chow and
Zeigler 1994) with a variable number of n atomic models
that conduct iterated coin-tossing, i. e., they randomly decide
on executing action a or b at each time t = 0,1, . . . ,100.
The atomic models were initialized with single RNGs and
seeds s = 0, . . . ,n−1. Note that subsequent seeds are not
equivalent with subsequent states of an RNG, as these are
determined by its iteration function. Figures 6 and 7 show
results for n = 10 and n = 1000 as the difference |ma−mb|
of models choosing action a (ma) or b (mb).

A value of 10 in case n = 10 has a probability of
2∗ ((0.5)10)≈ 0.2%, as this is only possible if all models
choose either a or b. This means, the higher a data point in

10

12
java.util.Random

0
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1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97
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LCG

Mersenne Twister

RandomRWC

RANDU

SecureRandom

Figure 6: Difference between n = 10 models choosing a or
b per point in time.

Table 4: Test results of using the eleven tests from Table 3
on the seven random number generators from Table 1.

a b c d e f g
1 X X X X X X
2 X X X X X X
3 X X X X X X
4 X X X X X X X
5 X X X X X X
6 X X X X X X
7 X X X X X X
8 X X X X X X
9 X X X X X X X

10 X X X X X X X
11 X X X X X X

100

1000 java.util.Random

ISAAC

90 498 502 4
91 500 500 0
92 500 500 0
93 498 502 4
94 499 501 2
95 497 503 6
96 498 502 4
97 496 504 8
98 501 499 2
99 500 500 0

100 501 499 2

1

10

00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

LCG

Mersenne Twister

RandomRWC

RANDU

SecureRandom

Figure 7: Difference between n = 1000 models choosing a
or b per point in time.

the plot, the lower its probability. As can be seen in both
plots, all LCGs (RANDU, Java’s Random, and our LCG
implementation) exhibit correlations for time 0. In case
n = 1000 (Figure 7), the probability of such an outcome
would be ≈ 2 ·10−299 %. Simulation with RANDU is also
clearly correlated at times 22 and 49.

This behavior is anything but new (see (Matsumoto et al.
2007) for a detailed discussion), but merely illustrates again
that choosing the wrong RNG may have a huge impact on
simulation results. Another example of large bias could be
randomly placed particles in a 3D-simulation with a poorly
configured LCG, since three-tuples of LCGs form two-
dimensional planes in three-dimensional space (cf. spectral
test, Knuth 1981).

5 RELATED WORK

Due to the overwhelming number of different solutions in
the fields of “random number generation” and “simulation
software”, the following overview lists only a few packages
strongly related to what we have presented.

SSJ (L’Ecuyer et al. 2002, L’Ecuyer and Buist 2005)
is based on several years of research on random number
generators and tests. It is a Java library which can be
reused from different Java applications. SSJ is not as easy
to extend as JAMES II but already provides diverse random
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number generators, distributions, statistical functions, and
event queue implementations, which makes it to some degree
comparable with JAMES II. Similar to JAMES II, SSJ can
also be used for discrete, continuous, or hybrid simulations,
but in contrast to JAMES II reuse is not based on a plug-
in-based schema.

Colt (CERN ) is an “Open Source Library for High
Performance Scientific and Technical Computing in Java”.
It provides diverse classes generally applicable in modeling
and simulation applications (among them random number
generation, distributions, and sampling), but is not solely
dedicated to those.

Diehard (Marsaglia 1995), TestU01 (L’Ecuyer and
Simard 2007), and many other test suites support empirical
RNG testing. Most often these are standalone packages not
strictly associated to certain random number implementa-
tions (e. g., they are fed by CSV files). JAMES II allows the
integration of any test suite or RNG package by exploiting
the plug-in schema once more. This enables every user
to apply all available tests to all available RNGs without
having to leave the system. Most of the existing packages
could be added to JAMES II via a wrapper schema, which
enables anyone to compare results over a broad range of
RNGs.

6 CONCLUSIONS AND OUTLOOK

We presented a plug-in based architecture for the integration
of random numbers in a general modeling and simulation
framework and derived a generic RNG architecture from the
requirements motivated and analyzed in Section 2 and 3.1.
By exploiting the plug’n simulate concept, random number
generation in such a framework becomes an exchangeable
and well documented service. This forms a base of “trust”
for random numbers and simulation results likewise. The
importance of such an approach is demonstrated by a brief
example in Section 4.1. The proposed architecture has been
realized and evaluated in JAMES II. It currently provides
support for different RNG generators, RNGs, probability
distributions, random sampling algorithms, and test meth-
ods. The RNG generators allow to implement different
approaches for parallel RNG, such as cycle division and
parameterization for distributed simulation. To the best of
our knowledge, such an approach — based on a plug-in
based schema and fully integrated into a general modeling
and simulation framework — has not been developed yet.

As known from the literature (Grassberger 1993), the
quality of RNGs has a large effect on the quality of the
simulation results — a framework as the one proposed in
this paper helps to get aware of the problem and can be
easily used to check the influence of different generators
by exchanging them. It should therefore help to achieve
simulation results of better quality. Like other experimental
disciplines, simulation strives to reduce the number of po-

tential error sources. Therefore, a modeling and simulation
framework should provide as many pre-factored and well
validated methods as possible.

Furthermore, a flexible RNG architecture can help point-
ing out the importance of random number generation in the
simulation context and may put forward questions concern-
ing model validity and artifacts stemming from the experi-
mental techniques like stochastic simulation. This aspect is
closely related to teaching and training RNG implementa-
tion and usage. Although the framework in principle now
provides all prerequisites for practical teaching and training
(a GUI, clean interfaces, flexibility), its effectiveness for
increasing understanding by hands-on experience has still
to be investigated.

Finally, RNG execution speed is always an issue, espe-
cially when dealing with large-scale stochastic simulations.
Different simulation studies may require different random
number generators — there might be simulations which re-
quire “high-quality” random numbers and others for which
slightly correlated numbers (e. g., from a well parameterized
LCG) are sufficient and lead to recognizable speedup. We
also plan to add existing RNG packages (such as SPRNG,
see Mascagni and Srinivasan 2000) and test frameworks
to JAMES II, so that we can quantify the real impact of
the algorithm’s theoretical differences on simulation results.
Due to the number of modeling formalisms and the corre-
sponding simulation algorithms supported by JAMES II,
these experiments can be done for many different settings
and models.
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