

A PI-CALCULUS FORMALISM FOR DISCRETE EVENT SIMULATION

Jianrui Wang

Richard A. Wysk

Department of Industrial and Manufacturing Engineering

The Pennsylvania State University

University Park, PA 16802, USA

ABSTRACT

This paper presents PiDES, a formalism for discrete event
simulation based on Pi-calculus. PiDES provides a rigor-
ous semantics of behavior modeling and coordination for
simulation federates. The capability of PiDES is demon-
strated by translating a generalized semi-Markov process
formalism into PiDES specification. The usage of PiDES
is illustrated through a case study of a flexible manufactur-
ing system consisting of two machines, two parts, and a
robot. The major advantages of PiDES are discussed,
which include: a) a complete set of semantics for both
modeling and execution; b) supporting parallel and distrib-
uted simulation; c) adaptive modeling; d) rich coordination
semantics for developing large simulation systems; and fi-
nally e) a formalism that can be used for agent-based simu-
lation. An implementation of PiDES using Java program-
ming language is also provided.

1 INTRODUCTION

Discrete Event Simulation (DES) is a powerful tool for
modeling and controlling complex systems. For simula-
tion purposes, target systems fall into two classes: quantita-
tive analysis and qualitative analysis (Pooley 2007). For
quantitative analysis, the emphasis is often the key per-
formance indices (i.e., waiting time, queue length and re-
source utilization) of the systems. Therefore, stochastic
models, such as Generalized Semi-Markov Process
(GSMP) (Glynn 1989) become very useful. For qualitative
analysis, the focus is on the behavior of the systems.
Therefore, it is often more important to study how the
components of the systems interact with each other. As a
result, logical models, with minimum or no quantitative
properties, such as Finite State Automata (FSA) (Ramadge
and Wonham 1989), Discrete Event System Specification
(DEVS) (Zeigler et al. 2000), Petri Nets (Zhou and Venka-
tesh 1999), and process algebra (D’Argenio et al. 1998;

Harrison and Strulo 2000), have become quite popular for
these types of models. These formalisms provide rigorous
semantics and powerful mathematical tools for building
and analyzing simulation models.

Although the above formalisms have proved useful for
modeling individual systems, they become ineffective for
some large scale complex adaptive systems. For instance,
modern simulation federations often involve multiple par-
ticipants, which are geographically distributed. Each mod-
eling participant may implement simulation federates using
different software technologies. In addition, existing fed-
erates may retire from the federation, while new federates
may enter into the federation. This may require a control
flow change of the simulation to reflect a frequently chang-
ing business model. Therefore, modern simulation federa-
tions have three unique characteristics: a) heterogeneous,
b) distributed, and c) adaptive. As a result, formalisms for
modern simulations should also provide companion seman-
tics, such as: a) compositing heterogenic systems into lar-
ger ones; b) coordinating distributed systems; and c) evolv-
ing existing systems into new ones on the fly.
Unfortunately, GMSP, FSA, and Petri Net formalisms pro-
vide little support for system composition. DEVS supports
composition through coupled-DEVS, but is not fully adap-
tive. SPADE (Harrison and Strulo 2000) and ♠
(D’Argenio et al. 1998) may be improved to support many
of the above features, but they are relatively new and need
further study.

In this paper, we develop a formalism for DES based
on Pi-calculus (Milner 1999), called PiDES (Pi-calculus
Discrete Event Simulation). PiDES not only presents a set
of formal models for modeling individual simulation fed-
erates, but also supports system composition and evolution.
Furthermore, PiDES models are executable models, which
can be automatically compiled into programming lan-
guages.

The remainder of this paper is organized as follows:
Section 2 introduces the classical theory of Pi-calculus and

703 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Wang and Wysk

its stochastic extensions; Section 3 presents the syntax of
PiDES and its operational semantics based on an extended
Pi-calculus; Section 4 demonstrates the modeling power of
PiDES through translating GSMP models into PiDES
models; Section 5 presents a case study of using PiDES to
model a two-machine, two-part flexible manufacturing sys-
tem; Section 6 briefly discusses the implementation of
PiDES in Java programming language, The paper con-
cludes in Section 7 with a discussion of PiDES and relative
formalisms.

2 THEORETICAL FOUNDATION

This section introduces the theoretical foundation of
PiDES – the classical theory of Pi-calculus developed by
Milner et al. (Milner 1999) and its stochastic extensions
from contemporary literatures.

A Pi-calculus process (Pi-process) is defined as one of
four process as shown in Figure 1: 1) summation, 2) com-
position, 3) restriction, and 4) replication. A Pi-process
has up to three capabilities: a) receives a name from a
channel (i.e. x(y) means receiving y though channel x.); b)
sends a name by a channel (e.g.)(yx means sending y
through channel x.); and c) performs an internal transition
(called τ). The dynamics of Pi-process is formalized by a
set of reduction rules (Figure 1):

 TAU. A summation Pi-process τ.P+M evolves to

P by performing an internal transition τ. The in-
active component (M) is discarded.

 REACT. A composition Pi-process conducts re-
duction through an interaction between two com-
ponents that sharing the same channel name (one
component send a name and the other receives a
name through the same channel).

 PAR. If a Pi-process can evolve from P to P’,
then any composition Pi-process that has P as a
directly composition component can perform a
reduction.

 RES. Restricting a name does not affect internal
reductions of a Pi-process.

 STRUCT. Two structural congruence (will be
discussed shortly) Pi-processes (Milner 1999)
have the same reduction behavior.

A powerful tool of studying the dynamics of Pi-

calculus is bisimulation (Milner 1999). A bisimulation is a
symmetric relationship between two processes (from now
on, we use process and Pi-process interchangeably unless a
distinguishing is necessary) that one can simulate the be-
havior of another step by step and vice versa. In general,
two processes are considered equivalent (a.k.a. structural
congruence) if they can bisimulate each other. In practice,
structural congruence is obtained by applying any times of
α-conversion (substituting a bounded name with a new

name) and structural congruence rules defined in Figure 1.
One important application of bisimulation and structural
congruence is that any process can be converted into a
standard form of a restricted composition process (Figure
1).

Pi-calculus Process:

τπ

π

ν

||)(||)(

.||0

||!||||
11

yxyx

PM

PxPPMP

def

def

i

n

i
i

m

i
i

def

=

=

= ∏∑
==

∑
=

m

i
iM

1

 Summation, only one of Mi’s (1≤i≤m)
will be performed and the others are
void. The choice is non-deterministic.

∏
=

n

i
iP

1

 Composition, all Pi’s (1≤i≤n) run con-
currently.

νxP Restriction, the scope of name x is lim-
ited in P.

!P Replication, there is infinite instances
of P running concurrently.

0 An “inert process”, which means no
further actions.

π.P Process P has to wait until π is per-
formed.

x(y) Receive y though channel x.
)(yx Send y through channel x.

τ An internal transition.
Operational Semantics

'''',,'
''
|'|'

|}/{)).((|)).((
.

QPQPQPPPSTRUCT
xPxPPPRES

QPQPPPPAR
QyzPNQzxMPyxREACT

PMPTAU

→→≡≡→
→→→
→→→

→++
→+

νν

τ

α-conversion
if z is not a free name of P.

}/{.
}/{).().(

xyPyxP
yzPzxPyx

νν =
=

if y is not a free name of P.
Structural Congruence

if x is not a free name of Q.

PQQP
PPP
QPxQxP
SQPSQP

PQQP

+≡+
≡
≡
≡
≡

|!!
)|(|
)|(||)|(

||

νν

Standard Form

)|!||!||)(,(111 nmk QQMMaaP ν≡
All Mi’s are non-empty summation process
and Qi’s are also standard forms.

Figure 1: Pi-calculus syntax and operational semantics

The classical Pi-calculus is synchronized, that is, all

transactions and reactions occur instantly without any de-
lay. In addition, it only has a non-deterministic construct
(choice) without probability. Recently, several stochastic

704

Wang and Wysk

extensions have been proposed to handle probability and
time duration (D’Argenio et al. 1998; Harrison and Strulo
2000; Priami 1995) by introducing new probability and
timed constructs. In next section, a general theory of
modeling systems using Pi-calculus and a formal definition
of PiDES are proposed.

3 METHODOLOGY

This section presents the general theory of PiDES based on
Pi-calculus.

Zeigler et al. proposed a System Specification Hierar-
chy (SSH) (Zeigler et al. 2000), which defines five levels
of system specification: a) level 0 – observation frame, b)
level 1 – I/O behavior, c) level 2 – I/O function, d) level 3
– state transition, and e) level 4 – coupled component. Ac-
cording to Zeigler et al., level 4 is the highest level defini-
tion in SSH. It models the components of a system and
how they are coupled together. The components can be
detailed at lower levels and form a hierarchical structure.
In PiDES, a system is defined as a composition process,
which is equivalent with level 4 definition of SSH. As dis-
cussed in previous section, any Pi-process is structural
congruence to a composition process (a.k.a. standard
form). Thus, a composition process is sufficient to repre-
sent any system that can be modeled by pi-calculus. The
syntax of PiDES with its additional operational semantics
is presented in Figure 2.

PiDES Process

πτλπ

π

νφ

][||)],([||)(||)(

.||0

||!||||)]([
11

conditionrfyxyx

PM

PxPPMpP

def

def

n

i
i

n

i
ii

def

=

=

= ∏∑
==

Operational Semantics

2121

211222111

1

.)],([.)],([
.)],([

)]([

rrifPorP
rrifPPrfPrfRACE

PPrfWAIT

yprobabilitMMpPROB i

n

i
ii

=→
<→+

→

→∑
=

τλτλ
τλ

φ

Figure 2: PiDES syntax and operational semantics

PiDES uses Pi-calculus channels to represent events.

For example, x is an incoming event x and x is an out-
going event x in Figure 2. The data passing through these
channels are attributes related to the event. There can be
many attributes, but timestamp is the mostly interested one
in this paper. In order to model system stochastic, PiDES
introduces three extensions into the classical Pi-calculus:

1. ∑=

n

i ii Mp
1

)]([φ is a summation with probability

choices, where)(ipφ is the probability of choos-
ing Mi and 1)(

1
=∑=

n

i ipφ .)]([ipφ is optional, when

it is omitted, each choice has the same probability
to be rendered.

2. [λ(f, r)] generates a random time delay r under the
distribution function f. [λ(f, r)] only applies to τ
(the rationale is that delay is an internal transi-
tion). If no [λ(f, r)] is specified, then the reaction
occurs instantly.

3. [condition] decides whether the prefixed action is
enabled. PiDES support common arithmetic op-
erations (>, ≥, =, <, and ≤) and Boolean opera-
tions (AND, OR, and NOT). [condition] is also
optional.

PiDES has all the operational semantics from classical

Pi-calculus, plus three new operations shown in Figure 2.
The first operation, PROB, provides a choice with prob-
ability. The second, WAIT, defines that action τ is enabled
only after the associated clock runs down to 0. The last
operation, RACE, indicates that two processes are compet-
ing for the opportunity to be executed. The process with a
smaller clock value gets the chance to run, the other is
void. If the two clocks have the same value, the result is
undefined. In theory, such a non-deterministic behavior is
fine. However, such a behavior often depends on runtime
implementation and might not work as the designer ex-
pects. In practice, a conditional RACE (has condition or
PROB for each component of RACE) is better to model
non-deterministic behavior.

)|)((),(

)().(!

}{).(!

)(.

).(

)),(.()],(][[)]([

)|(

1
13

1
12

1
1

321

AttataAtS

tyytrT

ttAttaT

dtyBB

BtxB

BAdtSdfcondpB

BBBB

BTTA

def

def

r

aa

def

a

m

i
ii

def

k

i
ii

def

iiiii

n

i
i

def

def
ra

def

ν

τλφ

=

=

=

+=

=

++=

++=

+=

∑

∑

∑

=

=

=

Figure 3: PiDES agent syntax

The essential building block for PiDES is agent, which

is defined in Figure 3. An agent, A, has both a time-
regulating model and a behavior model. The time-
regulating model is fulfilled by two processes: Ta and Tr.
Ta is a synchronizing process, which receives a time-
advance event and advances A’s logical time. It is critical
that when time-advance is performed, any other capability
of A is temporarily deactivated in order to avoid time-

705

Wang and Wysk

inconsistency (this is similar to concurrent programming, a
monitor is used to guard shared data in order to avoid data
inconsistency). Tr offers a query interface for publishing
A’s current logical time through a new channel provided by
the requester. It is clear that performing Tr does not dis-
able any of A’s capability. The behavior model of A is pro-
vided by process B. It defines A’s three possible behav-
iors: 1) performs an internal transition, then evolves to a
new agent Ai (time advanced by S(t, A)) or performs a be-
havior model with probability pi and condition [condi] (i.e.
a time constraint for ignoring past-time events); 2) receives
a new event xi, then performs behavior B1; and 3) performs
behavior model B1 then sends out an event yi. It should be
noted that, Ai can be any agent including A itself, which
may be used to model memory-less agent. The time ad-
vance action is formalized as process S(t, A). It first cre-
ates a private channel ta, then send a new time t to process
A, which also has a channel ta with receiving capability.
Once A receives a new time t, it performs a α-conversion to
update its logical time to t.

The second building block of PiDES is coordination
context as shown in Figure 4. A process context is a proc-
ess with place-holdings for other processes (Milner 1999).
The classical context Pi-calculus is defined as Cπ in Figure
4. Cπ provides the capability of compositing many proc-
esses in to a larger process. However, it does not provide
much information about how to coordinate these processes.
This process context concept is extended in PiDES into
coordination context, which provides coordination mecha-
nisms for multiple agents and simulation federates. In or-
der to facilitate interactions between agents and federates,
PiDES offers two coordination contexts: Orchestration
Coordination Context (OCC) and Choreography Coordi-
nation Context (CCC).

[] πππππ

π

νπ

ττ

φ

ν

CPCxCMCC

CCCCC

conditionNOTCconditionC

CconditionC

CpC

CaCaaCaaaC

CCCCCC

CCC

def

n

i
ni

def

c

def

loop

n

i
i

def

dec

n

i
i

def

prob

nn

def

seq

loopdecprobseq

def

o

co

def

||!)|(||||.|

|||

0.][.][

][

)(

).|...|.|.)(,...,,(

||||||||

||

1
21

1

1

11121

+=

==

+=

=

=

=

=

=

=

=

=

−

∑

∑

Figure 4: PiDES coordination context

An OCC C0 provides a control flow based coordina-

tion mechanism. C0 is one of five contexts. Cπ is the clas-
sical process context. Cseq is a sequential context, where
all the sub-contexts are executed sequentially. Cprob is a

probability context that performs one of its sub-contexts
with probability. Cdec is a decision context, where a sub-
context will be performed only if the associated the condi-
tion is hold. Cloop is a loop context, where the sub-context
is performed repeatedly until the associated condition is no
longer hold. Similar to programming languages (i.e., C,
C++, and Java), Cseq, Cdec, and Cloop are sufficient to build
any sequential control flow. A CCC Cc is a coordination
context that each sub-context can freely interacts with oth-
ers. Therefore, it is defined as a parallel composition.

After formalize agent and coordination context, it is
easy to define a simulation system in PiDES. A simulation
system is simply a CCC. That is, a simulation system is
modeled as a parallel system that includes many concurrent
running sub-systems.

In next section, we show that PiDES is indeed suffi-
cient to model DES by translating GSMP specification into
PiDES specification.

4 VALIDATION

In this section, we prove PiDES is capable of modeling
DES. The proof is done by using PiDES to bisimulate
GSMP. As discussed in Section 2, bisimulation is an
equivalent relation between state transition systems. Two
systems are bisimilar if they match each other's every
move. Thus, the behavior of these systems cannot be dis-
tinguished from an outside observer (Milner 1999). If
PiDES can bisimulate GSMP, then PiDES has the equiva-
lent modeling power of GSMP. Since GSMP is a formal-
ism of DES, then PiDES is also a formalism of DES.

A GSMP is a 6-tuple (S, s0, E, P, C, F) (Glynn 1989),
where:

• S is a set all the states.
• s0 is the initial state, Ss ∈0 .
• E : is the set of all events.
• P : si × e → si+1, is a set of probability of jumping

from state si to si+1. triggered by event e, Ee∈ .
• C : is a set clocks, each clock is corresponding to

a state s and an event e. It continues to count
down to zero.

• F: is the probability function of scheduling a new
event e’ in state s’, given the previous state is s
and the triggered event is e.

In PiDES, there are no states, as each state in GSMP is

transferred into an agent. GSMP events are modeled as
channels pairs (one for sending and the other for receiv-
ing). The probability jumping function P is modeled as
behavior model B2 in Figure 3. Clocks in C are presented
by [λ(f, r)]. Finally, probability functions of scheduling
new events in F is modeled as B3 in Figure 3. Thus, a
GSMP model can be bisimulated by a PiDES model

706

Wang and Wysk

through the following steps:

1. Each state of GSMP becomes a PiDES agent.
2. The agent corresponding to s0 is the starting agent

for the system.
3. Each event becomes a pair of channel names.

One for receiving and the other for sending.
4. All the jumping relation in P related to si are

combined into the behavior model B2 of agent Ai.
5. Clocks in C are modeled as B1 in each agent.
6. All the probability functions of scheduling new

events related to si are combined into the behavior
model B3 of agent Ai.

Readers may find that the above process does not in-

volve any coordination context. This is because GSMP has
no explicit semantics for coordination. The execution of
GSMP models is determined by transition rules, which are
implicitly captured by PiDES’s CCC. It should also be
noted, although the above algorithm translates each state
into an agent, it is generally unnecessary and inefficient for
PiDES. In fact, PiDES prefers Agent-Based Modeling
(ABM)(Gilbert 2008; Macal and North 2005) perspective
due to the nature that PiDES has rich behavior models. In
the next section, we show how to model a two-machine,
two-part FMS using PiDES.

5 CASE STUDY

In this section, a simple PiDES model is presented. It
models a two-machine, two –part Flexible Manufacturing
System (FMS) (Chang et al. 1998) as shown in Figure 5.
This FMS uses one robot and two machines to process two
parts. Part 1 is send to machine A first, processed for 4
unit time, then send to machine B for another 5 unit time
processing. Part 2 is send to machine B first, then to ma-
chine A, the processing time 5 unit and 4 unit respectively.
All the material handlings are done by the robot.

Figure 5: A two-machine, two-part FMS (Chang et al.

1998)

As discussed in Section 4, PiDES uses ABM perspec-

tive. Three agents are identified: machine A, machine B,
and robot R. The system (F) is modeled in a CCC with
three agents A, B and R as shown in Figure 6.

RBAF
def

||=
Figure 6: PiDES model for a two-machine, two-part FMS

Figure 7 shows the definition of machine A. It has 6

behavior categorized in three categories: (1) processes part
(B1

1 and B1
2), which first performs a constant time delay,

then transits to model B3; (2) receives part (B2
1 and B2

2)
through event r (the first subscript denotes part number and
the second denotes the part state), then perform B1; and (3)
finishes part (B3

1 and B3
2) and starts a new cycle with per-

forming B1
0. The models of agent B and robot R can be

developed in a way similar to A, which are shown in Figure
8 and Figure 9 respectively.

Agent definition

Process part 1

Process part 2

Receive part 1

Receive part 2

Finish part 1

Finish part 2

AB

BtaB

BtaB

BtrB

BtrB

tdtBdB

tdtBdB

BBTTA

def

def

def

def

def

def

def
ra

def

.

).(

).(

).(

).(

})({.)],5([

})({.)],4([

))(|(

0
1

0
11,2

2
3

0
11,1

1
3

2
11,2

2
2

1
10,1

1
2

2
3

2
1

1
3

1
1

2
2

1
2

τ

τλ

τλ

=

=

=

=

=

+=

+=

++=

Continue
Figure 7: PiDES models for machine A

Agent definition

Process part 1

Process part 2

Receive part 1

Receive part 2

Finish part 1

Finish part 2

BB

BtbB

BtbB

BtrB

BtrB

tdtBdB

tdtBdB

BBTTB

def

def

def

def

def

def

def
ra

def

.

).(

).(

).(

).(

})({.)],4([

})({.)],5([

))(|(

0
1

0
11,2

2
3

0
12,1

1
3

2
10,2

2
2

1
11,1

1
2

2
3

2
1

1
3

1
1

2
2

1
2

τ

τλ

τλ

=

=

=

=

=

+=

+=

++=

Continue
Figure 8: PiDES models for machine B

The execution of F is performed through reductions

using PiDES operations presented in Figure 1 and Figure
2. It is obvious that F will run to deadlock quickly. The
reason is that both machine A and B are competing on a
single resource robot R and no coordination context is pro-
vided in the target system. The full deadlock analysis and

707

Wang and Wysk

solution can be found in (Chang et al. 1998). From a sys-
tem perspective, two courses of actions are available to
deal with deadlocks: (a) change the behavior of each agent
and (b) provide coordination context for the agents. For
instance, the deadlock caused by sending event 0,1r and

0,2r (or 0,2r and 0,1r) in a row can be avoid by changing the
behavior 5

3B and 6
3B of R as shown in Figure 10.

)(|(6

1 3
4

1 2 ∑∑ ==
++=

j
j

i
i

ra

def

BBTTR Agent definition

1
3

1
1 .BB

def
τ= Handling part 1

2
3

2
1 .BB

def
τ= Handling part 2

3
3

3
1 .BB

def
τ= Handling part 1

4
3

4
1 .BB

def
τ= Handling part 2

1
11,1

1
2).(BtaB

def
= Receive part 1 from

A
2
12,2

2
2).(BtaB

def
= Receive part 2 from

A
3
12,1

3
2).(BtbB

def
= Receive part 1 from

B
4
11,2

4
2).(BtbB

def
= Receive part 2 from

B
0
11,1

1
3).(BtrB

def
= Send part 1 to B

0
12,2

2
3).(BtrB

def
= Send part 2 to storage

0
12,1

3
3).(BtrB

def
= Send part 2 to storage

0
11,2

4
3).(BtrB

def
= Send part 1 to A

0
10,1

5
3).(BtrB

def
= Send part 1 to A

0
10,2

6
3).(BtrB

def
= Send part 2 to B

RB
def

.0
1 τ= Continue

Figure 9: PiDES models for robot R

However, the above approach might be constraining

for large systems. When the number of agents in the sys-
tems becomes large, it is unlikely to avoid deadlocks by
only changing behavior of individual agent. Thus, action
(b) becomes more useful. The PiDES coordination con-
texts, especially OOC, are useful to prevent deadlock.
However, deadlock problem is very complicated and it is
not the main purpose of this paper. Design deadlock-free
systems based on Pi-calculus can be found in (Kobayashi
2006).

1
20,1

5
3).(BtrB

def
= Send part 1 to A

4
20,2

6
3).(BtrB

def
= Send part 2 to B

Figure 10: Behavior change for avoiding deadlock

Another common situation for systems modeling is
how to adapt the models when changes are requested. This
problem can be solved by PiDES simply. For example,
suppose we have a new B machine (B’), then the system F
can be adapted to a new one (G) by simply adding a new
parallel agent B’ as shown Figure 11. There is no other
changes required for the model.

RBBA
BFG def

|'||
|

=
=

Figure 11: System evolution with a new machine B'

6 IMPLIMENTATION

The implementation of PiDES consists of two parts: a) a
compiler that reads, validates, and translates PiDES models
into code that understood by a computer (e.g. java code)
and b) a Runtime Infrastructure (RTI) that executes the
computer code. The detail discussion of the RTI is beyond
the scope of this paper. Here, we briefly describe the im-
plementation of compiling PiDES models into Java code.

Process

Composition

Sequence

InactionRestriction

Send

Receive

ProcessVariable

Tau

Name Process

Name

Channel Name

Channel

Name

1..n

0..n

Summation
1..n

0..n0..n

0..n

0..n 0..1

0..n

0..n

0..n 1

1

1

1

PROB

WAIT

Figure 12: PiDES grammar tree

The syntax of PiDES presented in Figure 2 is ambigu-

ous (i.e. a simple process such as x(y) can be interpreted as
either a summation or a composition) and cannot be used
to construct a compiler directly. Thus, the first step is to
make the syntax unambiguous. Figure 12 provides an un-
ambiguous grammar equivalent to the definition shown in
Figure 2, which is used in this paper. As can be seen from
Figure 12, a PiDES process is strictly defined in a hierar-
chy of PiDES terms. Therefore, for any given PiDES
process, there is a unique parsing tree from the root (Proc-

708

Wang and Wysk

ess) to the leaves (Names). Figure 12 also shows that rep-
lication is removed from the grammar. This is mainly for
convenience because infinity is hard to implement. Fur-
thermore, a replication process is structural congruence to
a recursion (Milner 1999). Therefore, PiDES implements
replication through recursion, which is obtained though
ProcessVariable (an alias of a process).

The second step is to translate PiDES models into a
compiler recognizable literal stream. PiDES uses symbols
that are not support by most programming language (i.e.
Java). It has to be encoded before being fed to the com-
piler. In this paper, an ASCII encoding similar to (Li
2005) is used. Table 1 shows how some PiDES terms are
encoded.

Table 1: ASCII encoding for PiDES terms
PiDES term ASCII encoding
x(y) in(x, y)

)(yx out(x, y)
τ tau()
νx new(x)

)(pφ prob(p)
λ(f, r) delay(f, r)

The ASCII encoded PiDES models are compiled into

Java code by the PiDES compiler. The compiler is devel-
oped in Java using JavaCC (JavaCC 2007). The detail in-
formation about the BNF grammar of PiDES can be found
in Appendix A.

7 DISCUSSION

This paper presents PiDES, a new formalism for DES.
The subject of formalizing DES has been studied exten-
sively (Smith 2003). From early formal models based on
FSA (Ramadge and Wonham 1989) and stochastic process
(Glynn 1989), to DEVS (Zeigler et al. 2000), to Petri Net
based (Zhou and Venkatesh 1999), and to recent process
algebra based formalisms (D’Argenio et al. 1998; Harri-
son and Strulo 2000). The focus of modeling simulation
systems has been gradually shifting from quantitative anal-
ysis to behavioral analysis due to the fast increasing of sys-
tem complexity and requirement of adaptive structures.
Some latest development in simulation area might be
Agent-Based Simulation (Gilbert 2008). However, ABS is
often presented as software library such as SWARM and
Repast (Gilbert 2008) without rigorous formalisms.

Formal approach for modeling system behavior has also
been well studied, such as general theory of action and

time (Allen 1984) and behavior equivalence in simulation
modeling (Pooley 2007). Recently, many system and be-

havior modeling research have been using process algebra,
especially Pi-calculus (Milner 1999). Researches about
building deadlock-free systems using Pi-calculus can be

found in literatures (Kobayashi 2006). PiDES is an exten-

sion of conventional DES formalisms with integration of
behavior modeling power provided by Pi-calculus. A

comparison of PiDES and other DES formalisms is shown
in

Table 2.

Table 2: Comparison of DES Formalisms

Formalism Semantics Concurrency compositionality

FSA Strong Weak Weak

Petri Net Strong Strong Weak

GSMP Strong Weak Weak

DEVS Strong Strong Good

PiDES Strong Strong Strong

As can be seen from
Table 2, PiDES has better support of concurrency and

compositionality than other formalisms. These two advan-
tages make PiDES more suitable for modeling large paral-
lel and distributed discrete event simulation systems.
Therefore, PiDES can also serve as a theoretical founda-
tion for to High Level Architecture (HLA) (IEEE et al.
2000). In a word, the major advantages of PiDES are: a) a
complete set of semantics for both modeling and execu-
tion; b) supporting parallel and distributed simulations; c)
models are adaptive; d) rich coordination semantics for de-
veloping large simulation systems; and e) a formalism that
can be used for Agent-Based Simulation. As a comple-
ment, the authors are working on using PiDES to provide
semantics for HLA Runtime Infrastructure (RTI) (IEEE et
al. 2000).

ACKNOWLEDGEMENT

This research was partially inspired by Dr. Albert Jones,
director of the Enterprise Systems Group at NIST, in
communication with the second author about modeling
complex systems. Some of the early ideas have been pre-
sented on IERC 2007 under title “A Framework for Simu-
lation-Based Shop Floor Control with Evolving Structure”
and a guest lecture at NIST under title “A Unified Frame-
work Using Pi-calculus for Modeling and Coordinating
Large Complex Systems”, 2007.

709

Wang and Wysk

A PIDES BNF GRAMMAR (WITHOUT
TERMINALS)

REFERENCES

Allen, J. F. 1984. Towards a general theory of action and
time. Artificial Intelligence 23(2): 123-154.

Chang, T.-C., R. A. Wysk, and H. P. Wang. 1998. Com-
puter-aided manufacturing. Upper Saddle River,
N.J.: Prentice Hall.

D’Argenio, P. R., J-P. Katoen, and E. Brinksma. 1998.
General purpose discrete-event simulation using
SPADES. Proceeding of 6th Process Algebra and
Performance Modeling Workshop, ed. C. Priami,
85-102, Nice, France: Universit di Verona.

Gilbert, G. N. 2008. Agent-based models. Los Angeles:
Sage Publications.

Glynn, P. W. 1989. A GSMP formalism for discrete event
systems. Proceedings of the IEEE 77(1): 14-23.

Harrison, P. G. and Strulo, B. 2000, SPADES - a process
algebra for discrete event simulation. Journal of
Logic and Computation 10(1): 3-42.

IEEE, et al. 2000. IEEE standard for modeling and simula-
tion (M&S) High Level Architecture (HLA) :
framework and rules. New York, NY: Institute of
Electrical and Electronics Engineers.

JavaCC. 2007. JavaCC 4.0. Retrieved 2/25/2008, from

https://javacc.dev.java.net/.
Kobayashi, N. 2006, A New Type System for Deadlock-

Free Processes. CONCUR 2006 – Concurrency
Theory, 233-247: Springer-Verlag New York, Inc.

Li, L. 2005. An Implementation of the Pi-Calculus on the
.NET. Journal of Object Technology 4(5): 20.

Macal, C. M. and North, M. J. 2005. Tutorial on agent-
based modeling and simulation. Proceedings of
the 2005 Winter Simulation Conference, ed. M. E.
Kuhl, N. M. Steiger, F. B. Armstrong, 2-15. Or-
lando, FL: IEEE Inc, Piscataway, NJ.

Milner, R. 1999. Communicating and mobile systems: the
pi-calculus. New York: Cambridge University
Press.

Pooley, R. 2007. Behavioural equivalence in simulation
modelling. Simulation Modelling Practice and
Theory 15(1): 1-20.

Priami, C. 1995. Stochastic Pi-Calculus. The Computer
Journal 38(7): 578-589.

Ramadge, P. J. G. and W. M. Wonham. 1989, The control
of discrete event systems. Proceedings of the
IEEE 77(1): 81-98.

Smith, J. S. 2003. Survey on the use of simulation for
manufacturing system design and operation.
Journal of manufacturing systems 22(2): 157-171.

Zeigler, B. P., T. G. Kim, and H. Praehofer. 2000. Theory
of modeling and simulation: integrating discrete
event and continuous complex dynamic systems.
San Diego: Academic Press.

Zhou, M. and K. Venkatesh. 1999, Modeling, simulation,
and control of flexible manufacturing systems: a
Petri net approach. River Edge, NJ: World Scien-
tific.

AUTHOR BIOGRAPHIES

JIANRUI WANG is a Ph.D. candidate at Department of
Industrial and Manufacturing Engineering, The Pennsyl-
vania State University at University Park. He received a
M.S. degree in Business Administration with concentration
on Supply Chain and Information Systems from Smeal
College of Business at Penn State University. He also
holds a M.S. degree in Mechanical Engineering, a B.S. de-
gree in Manufacturing Engineering, and a dual B.S. degree
in Computer Engineering, all from Shanghai Jiao Tong
University, China. His current research interests are dis-
crete event simulation, complex adaptive systems, business
process management, supply chain management, and ser-
vice-oriented architecture. He can be contacted by email at
<jerrywang@psu.edu>.

RICHARD A. WYSK is the Leonhard Chair in Engineer-
ing and a Professor of Industrial Engineering at Pennsyl-

710

Wang and Wysk

vania State University, University Park. Dr. Wysk has co-
authored six books including Computer-Aided Manufactur-
ing, with T.C. Chang and H.P. Wang -- the 1991 IIE Book
of the Year and the 1991 SME Eugene Merchant Book of
the Year. He has also published more than a hundred and
fifty technical papers in the open-literature in journals in-
cluding the Transactions of ASME, the Transactions of
IEEE and the IIE Transactions. He is an Associate Editor
and/or a member of the Editorial Board for five technical
journals. Dr. Wysk is an IIE Fellow, an SME Fellow, a
member of Sigma Xi, and a member of Alpha Pi Mu and
Tau Beta Pi. He is the recipient of the IIE Region III
Award for Excellence, the SME Outstanding Young Manu-
facturing Engineer Award and the IIE David F. Baker Dis-
tinguished Research Award. He has held engineering posi-
tions with General Electric and Caterpillar Tractor
Company. He received his Ph.D. from Purdue University
in 1977. He has also served on the faculties of Virginia
Polytechnic Institute and State University and Texas A&M
University where he held the Royce Wisenbaker Chair in
Innovation. His can be contacted by email at
<rwysk@psu.edu>.

711

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

