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ABSTRACT 

This paper presents PiDES, a formalism for discrete event 
simulation based on Pi-calculus.  PiDES provides a rigor-
ous semantics of behavior modeling and coordination for 
simulation federates.  The capability of PiDES is demon-
strated by translating a generalized semi-Markov process 
formalism into PiDES specification.  The usage of PiDES 
is illustrated through a case study of a flexible manufactur-
ing system consisting of two machines, two parts, and a 
robot.  The major advantages of PiDES are discussed, 
which include: a) a complete set of semantics for both 
modeling and execution; b) supporting parallel and distrib-
uted simulation; c) adaptive modeling; d) rich coordination 
semantics for developing large simulation systems; and fi-
nally e) a formalism that can be used for agent-based simu-
lation.  An implementation of PiDES using Java program-
ming language is also provided.  

1 INTRODUCTION 

Discrete Event Simulation (DES) is a powerful tool for 
modeling and controlling complex systems.  For simula-
tion purposes, target systems fall into two classes: quantita-
tive analysis and qualitative analysis (Pooley 2007).  For 
quantitative analysis, the emphasis is often the key per-
formance indices (i.e., waiting time, queue length and re-
source utilization) of the systems.  Therefore, stochastic 
models, such as Generalized Semi-Markov Process 
(GSMP) (Glynn 1989) become very useful.  For qualitative 
analysis, the focus is on the behavior of the systems.  
Therefore, it is often more important to study how the 
components of the systems interact with each other.  As a 
result, logical models, with minimum or no quantitative 
properties, such as Finite State Automata (FSA) (Ramadge 
and Wonham 1989),  Discrete Event System Specification 
(DEVS) (Zeigler et al. 2000), Petri Nets (Zhou and Venka-
tesh 1999), and process algebra (D’Argenio et al. 1998; 

Harrison and Strulo 2000), have become quite popular for 
these types of models.  These formalisms provide rigorous 
semantics and powerful mathematical tools for building 
and analyzing simulation models.  

Although the above formalisms have proved useful for 
modeling individual systems, they become ineffective for 
some large scale complex adaptive systems.  For instance, 
modern simulation federations often involve multiple par-
ticipants, which are geographically distributed.  Each mod-
eling participant may implement simulation federates using 
different software technologies.  In addition, existing fed-
erates may retire from the federation,  while new federates 
may enter into the federation.  This may require a control 
flow change of the simulation to reflect a frequently chang-
ing business model.  Therefore, modern simulation federa-
tions have three unique characteristics: a) heterogeneous, 
b) distributed, and c) adaptive.  As a result, formalisms for 
modern simulations should also provide companion seman-
tics, such as: a) compositing heterogenic  systems into lar-
ger ones; b) coordinating distributed systems; and c) evolv-
ing existing systems into new ones on the fly.  
Unfortunately, GMSP, FSA, and Petri Net formalisms pro-
vide little support for system composition.  DEVS supports 
composition through coupled-DEVS, but is not fully adap-
tive.  SPADE (Harrison and Strulo 2000) and ♠ 
(D’Argenio et al. 1998) may be improved to support many 
of the above  features, but they are relatively new and need 
further study. 

In this paper, we develop a formalism for DES based 
on Pi-calculus (Milner 1999), called PiDES (Pi-calculus 
Discrete Event Simulation).  PiDES not only presents a set 
of formal models for modeling individual simulation fed-
erates, but also supports system composition and evolution.  
Furthermore, PiDES models are executable models, which 
can be automatically compiled into programming lan-
guages. 

The remainder of this paper is organized as follows: 
Section 2 introduces the classical theory of Pi-calculus and 
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its stochastic extensions; Section 3 presents the syntax of 
PiDES and its operational semantics based on an extended 
Pi-calculus;  Section 4 demonstrates the modeling power of 
PiDES through translating GSMP models into PiDES 
models; Section 5 presents a case study of using PiDES to 
model a two-machine, two-part flexible manufacturing sys-
tem;  Section 6 briefly discusses the implementation of 
PiDES in Java programming language,  The paper con-
cludes in Section 7 with a discussion of PiDES and relative 
formalisms. 

2 THEORETICAL FOUNDATION 

This section introduces the theoretical foundation of 
PiDES – the classical theory of Pi-calculus developed by 
Milner et al. (Milner 1999) and its stochastic extensions 
from contemporary literatures.   

A Pi-calculus process (Pi-process) is defined as one of 
four process as shown in Figure 1: 1) summation, 2) com-
position, 3) restriction, and 4) replication.  A Pi-process 
has up to three capabilities: a) receives a name from a 
channel (i.e. x(y) means receiving y though channel x.); b) 
sends a name by a channel (e.g. )( yx  means sending y 
through channel x.); and c) performs an internal transition 
(called τ).  The dynamics of Pi-process is formalized by a 
set of reduction rules (Figure 1): 

 
 TAU.  A summation Pi-process τ.P+M evolves to 

P by performing an internal transition τ.  The in-
active component (M) is discarded.  

 REACT.  A composition Pi-process conducts re-
duction through an interaction between two com-
ponents that sharing the same channel name (one 
component send a name and the other receives a 
name through the same channel). 

 PAR.  If a Pi-process can evolve from P to P’,  
then any composition Pi-process that has P as a 
directly composition component can perform a 
reduction. 

 RES.  Restricting a name does not affect internal 
reductions of a Pi-process. 

 STRUCT.  Two structural congruence (will be 
discussed shortly) Pi-processes (Milner 1999) 
have the same reduction behavior.    

 
A powerful tool of studying the dynamics of Pi-

calculus is bisimulation (Milner 1999).  A bisimulation is a 
symmetric relationship between two processes (from now 
on, we use process and Pi-process interchangeably unless a 
distinguishing is necessary) that one can simulate the be-
havior of another step by step and vice versa.  In general, 
two processes are considered equivalent (a.k.a. structural 
congruence) if they can bisimulate each other.  In practice, 
structural congruence is obtained by applying any times of 
α-conversion (substituting a bounded name with a new 

name) and structural congruence rules defined in Figure 1.  
One important application of bisimulation and structural 
congruence is that any process can be converted into a 
standard form of a restricted composition process (Figure 
1). 
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All Mi’s are non-empty summation process 
and Qi’s are also standard forms.  

Figure 1: Pi-calculus syntax and operational semantics 
 
The classical Pi-calculus is synchronized, that is, all 

transactions and reactions occur instantly without any de-
lay.  In addition, it only has a non-deterministic construct 
(choice) without probability.  Recently, several stochastic 
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extensions have been proposed to handle probability and 
time duration (D’Argenio et al. 1998; Harrison and Strulo 
2000; Priami 1995) by introducing new probability and 
timed constructs.  In next section,  a general theory of 
modeling systems using Pi-calculus and a formal definition 
of PiDES are proposed. 

3 METHODOLOGY 

This section presents the general theory of PiDES based on 
Pi-calculus.   

Zeigler et al. proposed  a System Specification Hierar-
chy (SSH) (Zeigler et al. 2000), which defines five levels 
of system specification: a) level 0 – observation frame, b) 
level 1 – I/O behavior, c) level 2 – I/O function, d) level 3 
– state transition, and e) level 4 – coupled component.  Ac-
cording to Zeigler et al., level 4 is the highest level defini-
tion in SSH. It models the components of a system and 
how they are coupled together.  The components can be 
detailed at lower levels and form a hierarchical structure.  
In PiDES, a system is defined as a composition process, 
which is equivalent with level 4 definition of SSH.  As dis-
cussed in previous section, any Pi-process is structural 
congruence to a composition process (a.k.a. standard 
form).  Thus, a composition process is sufficient to repre-
sent any system that can be modeled by pi-calculus.  The 
syntax of PiDES with its additional operational semantics 
is presented in Figure 2. 

  
PiDES Process 

   

πτλπ

π

νφ

][||)],([||)(||)(

.||0

||!||||)]([
11

conditionrfyxyx

PM

PxPPMpP

def

def

n

i
i

n

i
ii

def

=

=

= ∏∑
==

 

Operational Semantics 

2121

211222111

1

.)],([.)],([
.)],([

)]([

rrifPorP
rrifPPrfPrfRACE

PPrfWAIT

yprobabilitMMpPROB i

n

i
ii

=→
<→+

→

→∑
=

τλτλ
τλ

φ

 
Figure 2: PiDES syntax and operational semantics 
 
PiDES uses Pi-calculus channels to represent events.  

For example, x is an incoming event x and x  is an out-
going event x in Figure 2.  The data passing through these 
channels are attributes related to the event.  There can be 
many attributes, but timestamp is the mostly interested one 
in this paper.  In order to model system stochastic, PiDES 
introduces three extensions into the classical Pi-calculus: 
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ing Mi and 1)(

1
=∑=

n

i ipφ .  )]([ ipφ  is optional, when 

it is omitted, each choice has the same probability 
to be rendered. 

2. [λ(f, r)] generates a random time delay r under the 
distribution function f.  [λ(f, r)] only applies to τ 
(the rationale is that delay is an internal transi-
tion). If no [λ(f, r)] is specified, then the reaction 
occurs instantly.   

3. [condition] decides whether the prefixed action is 
enabled.  PiDES support common arithmetic op-
erations (>, ≥, =, <, and ≤) and Boolean opera-
tions (AND, OR, and NOT).  [condition] is also 
optional. 

 
PiDES has all the operational semantics from classical 

Pi-calculus, plus three new operations shown in Figure 2.  
The first operation, PROB, provides a choice with prob-
ability.  The second, WAIT, defines that action τ is enabled 
only after the associated clock runs down to 0.  The last 
operation, RACE, indicates that two processes are compet-
ing for the opportunity to be executed. The process with a 
smaller clock value gets the chance to run,  the other is 
void.  If the two clocks have the same value, the result is 
undefined.  In theory, such a non-deterministic behavior is 
fine.  However, such a behavior often depends on runtime 
implementation and might not work as the designer ex-
pects.  In practice, a conditional RACE ( has condition or 
PROB for each component of RACE) is better to model 
non-deterministic behavior.  
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Figure 3: PiDES agent syntax 
 
The essential building block for PiDES is agent, which 

is defined in Figure 3.  An agent, A, has both a time-
regulating model and a behavior model.  The time-
regulating model is fulfilled by two processes: Ta and Tr.  
Ta is a synchronizing process, which receives a time-
advance event and advances A’s logical time.  It is critical 
that when time-advance is performed, any other capability 
of A is temporarily deactivated in order to avoid time-
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inconsistency (this is similar to concurrent programming, a 
monitor is used to guard shared data in order to avoid data 
inconsistency).  Tr offers a query interface for publishing 
A’s current logical time through a new channel provided by 
the requester.  It is clear that performing Tr does not dis-
able any of A’s capability.  The behavior model of A is pro-
vided by process B.  It defines A’s three possible behav-
iors: 1) performs an internal transition, then evolves to a 
new agent Ai (time advanced by S(t, A)) or performs a be-
havior model with probability pi and condition [condi] (i.e. 
a time constraint for ignoring past-time events); 2) receives 
a new event xi, then performs behavior B1; and 3) performs 
behavior model B1 then sends out an event yi.  It should be 
noted that, Ai can be any agent including A itself, which 
may be used to model memory-less agent.  The time ad-
vance action is formalized as process S(t, A).  It first cre-
ates a private channel ta, then send a new time t to process 
A, which also has a channel ta with receiving capability.  
Once A receives a new time t, it performs a α-conversion to 
update its logical time to t. 

The second building block of PiDES is coordination 
context as shown in Figure 4.  A process context is a proc-
ess with place-holdings for other processes (Milner 1999).  
The classical context Pi-calculus is defined as Cπ in Figure 
4.  Cπ provides the capability of compositing many proc-
esses in to a larger process.  However, it does not provide 
much information about how to coordinate these processes.  
This process context concept is extended in PiDES into 
coordination context, which provides coordination mecha-
nisms for multiple agents and simulation federates.  In or-
der to facilitate interactions between agents and federates, 
PiDES offers two coordination contexts: Orchestration 
Coordination Context (OCC) and Choreography Coordi-
nation Context (CCC).   
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Figure 4: PiDES coordination context 
 
An OCC C0 provides a control flow based coordina-

tion mechanism.  C0 is one of five contexts.  Cπ is the clas-
sical process context.  Cseq is a sequential context, where 
all the sub-contexts are executed sequentially.  Cprob is a 

probability context that performs one of its sub-contexts 
with probability.  Cdec is a decision context, where a sub-
context will be performed only if the associated  the condi-
tion is hold.  Cloop is a loop context, where the sub-context 
is performed repeatedly until the associated condition is no 
longer hold.  Similar to programming languages (i.e., C, 
C++, and Java), Cseq, Cdec, and Cloop are sufficient to build 
any sequential control flow.  A CCC Cc is a coordination 
context that each sub-context can freely interacts with oth-
ers.  Therefore, it is defined as a parallel composition.  

After formalize agent and coordination context, it is 
easy to define a simulation system in PiDES.  A simulation 
system is simply a CCC.  That is, a simulation system is 
modeled as a parallel system that includes many concurrent 
running sub-systems. 

In next section, we show that PiDES is indeed suffi-
cient to model DES by translating GSMP specification into 
PiDES specification. 

4 VALIDATION 

In this section, we prove PiDES is capable of modeling 
DES.  The proof is done by using PiDES to bisimulate  
GSMP.  As discussed in Section 2, bisimulation is an 
equivalent relation between state transition systems.  Two 
systems are bisimilar if they match each other's every 
move.  Thus, the behavior of these systems cannot be dis-
tinguished from an outside observer (Milner 1999).  If 
PiDES can bisimulate GSMP, then PiDES has the equiva-
lent modeling power of GSMP.  Since GSMP is a formal-
ism of DES, then PiDES is also a formalism of DES. 

A GSMP is a 6-tuple (S, s0, E, P, C, F) (Glynn 1989), 
where: 

 
• S is a set all the states. 
• s0 is the initial state, Ss ∈0 . 
• E : is the set of all events. 
• P : si × e → si+1, is a set of  probability of jumping 

from state si to si+1. triggered by event e, Ee∈ . 
• C : is a set clocks, each clock is corresponding to 

a state s and an event e. It continues to count 
down to zero.  

• F: is the probability function of scheduling a new 
event e’ in state s’, given the previous state is s  
and the triggered event is e. 

 
In PiDES, there are no states, as each state in GSMP is 

transferred into an agent.  GSMP events are modeled as 
channels pairs (one for sending and the other for receiv-
ing).  The probability jumping function P is modeled as 
behavior model B2 in Figure 3.  Clocks in C are presented 
by [λ(f, r)].  Finally, probability functions of scheduling 
new events in F is modeled as B3 in Figure 3.  Thus, a 
GSMP model can be bisimulated by a PiDES model 
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through the following steps: 
 
1. Each state of GSMP becomes a PiDES agent. 
2. The agent corresponding to s0 is the starting agent 

for the system. 
3. Each event becomes a pair of channel names.  

One for receiving and the other for sending. 
4. All the jumping relation in P related to si are 

combined into the behavior model B2 of agent Ai. 
5. Clocks in C are modeled as B1 in each agent. 
6. All the probability functions of scheduling new 

events related to si are combined into the behavior 
model B3 of agent Ai. 

 
Readers may find that the above process does not in-

volve any coordination context.  This is because GSMP has 
no explicit semantics for coordination.  The execution of 
GSMP models is determined by transition rules, which are 
implicitly captured by PiDES’s CCC.   It should also be 
noted, although the above algorithm translates each state 
into an agent, it is generally unnecessary and inefficient for 
PiDES.  In fact, PiDES prefers Agent-Based Modeling 
(ABM)(Gilbert 2008; Macal and North 2005) perspective 
due to the nature that PiDES has rich behavior models.  In 
the next section, we show how to model a two-machine, 
two-part FMS using PiDES.  

5 CASE STUDY 

In this section, a simple PiDES model is presented.  It 
models a two-machine, two –part Flexible Manufacturing 
System (FMS) (Chang et al. 1998) as shown in Figure 5.  
This FMS uses one robot and two machines to process two 
parts.  Part 1 is send to machine A first, processed for 4 
unit time, then send to machine B for another 5 unit  time 
processing.  Part 2 is send to machine B first, then to ma-
chine A, the processing time 5 unit and 4 unit respectively.  
All the material handlings are done by the robot.   
  

 

 
Figure 5: A two-machine, two-part FMS (Chang et al. 

1998) 
 
As discussed in Section 4, PiDES uses ABM perspec-

tive.  Three agents are identified: machine A, machine B, 
and robot R.  The system (F) is modeled in a CCC with 
three agents A, B and R as shown in Figure 6.   

 
 

RBAF
def

||=  
Figure 6: PiDES model for a two-machine, two-part FMS 

 
Figure 7 shows the definition of machine A. It has 6 

behavior categorized in three categories: (1) processes part 
(B1

1 and B1
2), which first performs a constant time delay, 

then transits to model B3; (2) receives part (B2
1 and B2

2) 
through event r (the first subscript denotes part number and 
the second denotes the part state), then perform B1; and (3) 
finishes part (B3

1 and B3
2) and starts a new cycle with per-

forming B1
0.  The models of agent B and robot R can be 

developed in a way similar to A, which are shown in Figure 
8 and Figure 9 respectively. 
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Figure 7: PiDES models for machine A 
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Continue  
Figure 8: PiDES models for machine B 

 
The execution of F is performed through reductions 

using PiDES operations presented in Figure 1 and Figure 
2.  It is obvious that F will run to deadlock quickly.  The 
reason is that both machine  A and B are competing on a 
single resource robot R and no coordination context is pro-
vided in the target system.  The full deadlock analysis and 
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solution can be found in (Chang et al. 1998).  From a sys-
tem perspective,  two courses of actions are available to 
deal with deadlocks: (a) change the behavior of each agent 
and (b) provide coordination context for the agents.  For 
instance, the deadlock caused by sending event 0,1r  and 

0,2r (or 0,2r and 0,1r ) in a row can be avoid by changing the 
behavior 5

3B  and 6
3B  of R as shown in Figure 10. 

 

)(|( 6

1 3
4

1 2 ∑∑ ==
++=

j
j

i
i

ra

def

BBTTR  Agent definition 

1
3

1
1 .BB

def
τ=  Handling part 1 

2
3

2
1 .BB

def
τ=  Handling part 2 

3
3

3
1 .BB

def
τ=  Handling part 1 

4
3

4
1 .BB

def
τ=  Handling part 2 

1
11,1

1
2 ).( BtaB

def
=  Receive part 1 from 

A 
2
12,2

2
2 ).( BtaB

def
=  Receive part 2 from 

A 
3
12,1

3
2 ).( BtbB

def
=  Receive part 1 from 

B 
4
11,2

4
2 ).( BtbB

def
=  Receive part 2 from 

B 
0
11,1

1
3 ).( BtrB

def
=  Send part 1 to B 

0
12,2

2
3 ).( BtrB

def
=  Send part 2 to storage 

0
12,1

3
3 ).( BtrB

def
=  Send part 2 to storage 

0
11,2

4
3 ).( BtrB

def
=  Send part 1 to A 

0
10,1

5
3 ).( BtrB

def
=  Send part 1 to A 

0
10,2

6
3 ).( BtrB

def
=  Send part 2 to B 

RB
def

.0
1 τ=  Continue 

Figure 9: PiDES models for robot R 
 
However, the above approach might be constraining 

for large systems.  When the number of agents in the sys-
tems becomes large, it is unlikely to avoid deadlocks by 
only changing behavior of individual agent.  Thus, action 
(b) becomes more useful.  The PiDES coordination con-
texts, especially OOC, are useful to prevent deadlock.  
However, deadlock problem is very complicated and it is 
not the main purpose of this paper.  Design deadlock-free 
systems based on Pi-calculus can be found in (Kobayashi 
2006). 
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Figure 10: Behavior change for avoiding deadlock 
 

Another common situation for systems modeling is 
how to adapt the models when changes are requested.  This 
problem can be solved by PiDES simply.  For example, 
suppose we have a new B machine (B’), then the system F 
can be adapted to a new one (G) by simply adding a new 
parallel agent B’ as shown Figure 11.  There is no other 
changes required for the model. 
                                         

RBBA
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|'||
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Figure 11: System evolution with a new machine B' 
 

6 IMPLIMENTATION 

The implementation of PiDES consists of two parts: a) a 
compiler that reads, validates, and translates PiDES models 
into code that understood by a computer (e.g. java code) 
and b) a Runtime Infrastructure (RTI) that executes the 
computer code.  The detail discussion of the RTI is beyond 
the scope of this paper.  Here, we briefly describe the im-
plementation of compiling PiDES models into Java code.   

 
Process

Composition

Sequence

InactionRestriction

Send

Receive

ProcessVariable

Tau

Name Process

Name

Channel Name

Channel

Name

1..n

0..n

Summation
1..n

0..n0..n

0..n

0..n 0..1

0..n

0..n

0..n 1

1

1

1

PROB

WAIT

 
Figure 12: PiDES grammar tree 

 
The syntax of PiDES presented in Figure 2 is ambigu-

ous (i.e. a simple process such as x(y) can be interpreted as 
either a summation or a composition) and cannot be used 
to construct a compiler directly.  Thus, the first step is to 
make the syntax unambiguous.  Figure 12 provides an un-
ambiguous grammar equivalent to the definition shown in 
Figure 2, which is used in this paper.  As can be seen from 
Figure 12, a PiDES process is strictly defined in a hierar-
chy of PiDES terms.  Therefore, for any given PiDES 
process, there is a unique parsing tree from the root (Proc-
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ess) to the leaves (Names).   Figure 12 also shows that rep-
lication is removed from the grammar.  This is mainly for 
convenience because infinity is hard to implement.  Fur-
thermore, a replication process is structural congruence to 
a recursion (Milner 1999).  Therefore, PiDES implements 
replication through recursion, which is obtained though 
ProcessVariable (an alias of a process). 

The second step is to translate PiDES models into a 
compiler recognizable literal stream. PiDES uses symbols 
that are not support by most programming language (i.e. 
Java).  It has to be encoded before being fed to the com-
piler.   In this paper, an ASCII encoding similar to (Li 
2005) is used.  Table 1 shows how some PiDES terms are 
encoded. 

 
Table 1: ASCII encoding for PiDES terms 
PiDES term ASCII encoding 
x(y) in(x, y) 

)( yx  out(x, y) 
τ tau() 
νx new(x) 

)( pφ  prob(p) 
λ(f, r) delay(f, r) 

 
The ASCII encoded PiDES models are compiled into 

Java code by the PiDES compiler.  The compiler is devel-
oped in Java using JavaCC (JavaCC 2007).  The detail in-
formation about the BNF grammar  of PiDES can be found 
in Appendix A. 

7 DISCUSSION 

This paper presents PiDES, a new formalism for DES.   
The subject of formalizing DES has been studied exten-
sively (Smith 2003).  From early formal models based on 
FSA (Ramadge and Wonham 1989) and stochastic process 
(Glynn 1989), to DEVS (Zeigler et al. 2000), to Petri Net 
based (Zhou and Venkatesh 1999), and to recent process 
algebra based  formalisms (D’Argenio et al. 1998; Harri-
son and Strulo 2000).  The focus of modeling simulation 
systems has been gradually shifting from quantitative anal-
ysis to behavioral analysis due to the fast increasing of sys-
tem complexity and requirement of adaptive structures.  
Some latest development in simulation area might be 
Agent-Based Simulation (Gilbert 2008).  However, ABS is 
often presented as software library such as SWARM and 
Repast (Gilbert 2008) without rigorous formalisms.  

Formal approach for modeling system behavior has also 
been well studied, such as general theory of action and 

time (Allen 1984) and behavior equivalence in simulation 
modeling (Pooley 2007).  Recently, many system and be-

havior modeling research have been using process algebra, 
especially Pi-calculus (Milner 1999).  Researches about 
building deadlock-free systems using Pi-calculus can be 

found in literatures (Kobayashi 2006).  PiDES is an exten-

sion of conventional DES formalisms with integration of 
behavior modeling power provided by Pi-calculus.  A 

comparison of PiDES and other DES formalisms is shown 
in  

Table 2.   
 
 
 

 
Table 2: Comparison of DES Formalisms 

Formalism Semantics Concurrency compositionality 

FSA Strong Weak Weak 

Petri Net Strong Strong Weak 

GSMP Strong Weak Weak 

DEVS Strong Strong Good 

PiDES Strong Strong Strong 
 

As can be seen from  
Table 2, PiDES has better support of concurrency and 

compositionality than other formalisms.  These two advan-
tages make PiDES more suitable for modeling large paral-
lel and distributed discrete event simulation systems.  
Therefore, PiDES can also serve as a theoretical founda-
tion for  to High Level Architecture (HLA) (IEEE et al. 
2000).  In a word, the major advantages of PiDES are: a) a 
complete set of semantics for both modeling and execu-
tion; b) supporting parallel and distributed simulations; c) 
models are adaptive; d) rich coordination semantics for de-
veloping large simulation systems; and e) a formalism that 
can be used for Agent-Based Simulation.  As a comple-
ment, the authors are working on using PiDES to provide 
semantics for HLA Runtime Infrastructure (RTI) (IEEE et 
al. 2000).   
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A PIDES BNF GRAMMAR (WITHOUT 
TERMINALS) 
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