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ABSTRACT

We extend the basic theory of kriging, as applied to the
design and analysis of deterministic computer experiments,
to the stochastic simulation setting. Our goal is to provide
flexible, interpolation-based metamodels of simulation out-
put performance measures as functions of the controllable
design or decision variables. To accomplish this we charac-
terize both the intrinsic uncertainty inherent in a stochastic
simulation and the extrinsic uncertainty about the unknown
response surface. We use tractable examples to demonstrate
why it is critical to characterize both types of uncertainty, de-
rive general results for experiment design and analysis, and
present a numerical example that illustrates the stochastic
kriging method.

1 INTRODUCTION

Discrete-event simulation is a general-purpose tool for an-
alyzing dynamic, stochastic systems. Virtually any level of
detail can be modeled and any performance measure es-
timated, which explains simulation’s popularity. However,
simulation models are often tedious to build, need substan-
tial data to parameterize, and require significant time to run,
particularly when there are many alternatives to evaluate.

The objective of the methodologydescribed in this paper
is to get more benefit from a simulation investment. The
specific context we have in mind is when time to exercise
the simulation model in advance of the decision making
it will support is relatively plentiful, but decision-making
or decision-maker time is relatively scarce or expensive.
Therefore, rather than executing a simulation run whenever
a “what if” question is posed, or trying to anticipate every
scenario of interest in advance, we use the simulation to
“map” the performance response surfaces of interest as
functions of the controllable design or decision variables.
Ideally, these response surface maps provide the fidelity of
the full simulation model with the ease of use of, say, a
spreadsheet model.

Using simulation to construct metamodels (models
of the simulation model) is not new (see Barton and
Meckesheimer 2006 for a review). Starting with classi-
cal response-surface modeling in statistics (e.g., Myers and
Montgomery 2002), simulation researchers have adapted
experiment designs for linear regression models to account
for dependence within a replication for steady-state sim-
ulations (e.g., Law and Kelton 2000); to permit the use
of common random numbers (CRN) and antithetic variates
across design points (e.g., Schruben and Margolin 1978,
Nozari et al. 1987, Tew and Wilson 1992, 1994); and to
compensate for the strong relationship between response
variance and customer load in queueing simulations (e.g.,
Cheng and Kleijnen 1998, Yang, Ankenman and Nelson
2007). However, linear regression models (that are usu-
ally polynomials in the design variables and linear in their
unknown coefficients) tend to fit well locally but do not
provide the sort of robust global maps we desire. Nonlin-
ear models based on queueing theory work very well for
queueing simulations, but require domain knowledge of the
problem context and specialized fitting algorithms.

We are interested in more general-purpose approaches
that assume less structure than linear or queueing-specific
nonlinear models; that tend to be more resistant to overfitting
than general interpolators (e.g., neural networks, see for
instance Sabuncuoglu and Touhami 2002); that facilitate
sequential, adaptive experimental design rather than fixed,
a priori designs; and that can provide statistical inference
about when a good fit is obtained. We also want to account
for the reality that the simulation output is stochastic, with
variance that usually changes significantly across the design
space.

To satisfy these requirements we extend the kriging
methodology that is popular, and has been highly success-
ful, in the design and analysis of (deterministic) computer
experiments (DACE). DACE methodology is particularly
well suited for systematically reducing uncertainty about
the unknown response surface as experiments (computer
runs at different design settings) are performed and leads to
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interpolation-based models. Our central contribution is to
fully account for the sampling variability that is inherent to
a stochastic simulation. We show that correctly accounting
for both sampling and response-surface uncertainty has an
impact on experiment design, response-surface estimation
and inference.

In the next section we describe our extended metamodel
under the special case that all model parameters are known;
this setting allows us to demonstrate why the extension is
critical without cluttering the discussion with estimation
issues, which are resolved in Section 3. A numerical illus-
tration and conclusions close the paper in Sections 4 and 5,
respectively.

2 THE METAMODEL

We describe our approach by refining a sequence of
models. We are interested in modeling an unknown
performance-measure surface (or surfaces) y(x), where
x = (x1,x2, . . .,xd)> is a vector of design variables and
y(x) is a deterministic function of x. For instance, in a
semiconductor fabrication simulation x might represent the
release rates of d products and y could be the steady-state
mean cycle time of product 1 (however, y need not be a
mean).

The classical approach is to assume that the observed
response obtained from the jth simulation replication at x
is described by the model

Yj(x) = f(x)>β + ε j(x) (1)

where f(x) is a vector of known functions of x, β is a
vector of unknown parameters of compatible dimension, and
ε j(x) has mean 0 and represents the sampling variability
inherent in a stochastic simulation. The distribution of
ε j(x), and in particular its variance, may depend on x,
although this dependence is often ignored. We refer to ε
as intrinsic uncertainty, because it comes from the nature
of the stochastic simulation itself. An experiment design
specifies settings of x at which to observe Y (x), and the
number of replications to obtain at each x. In this paper we
primarily address the replication setting (as opposed to the
single-run experiment design sometimes used in steady-state
simulation).

Now consider the following thought experiment: Sup-
pose that the response y(x) could be observed without noise,
but we are still interested in developing a metamodel after
observing y(x) at a few design points x. This problem
is treated in the DACE literature (Kennedy and O’Hagan
2000, Sacks et al. 1989, Stein 1999, Santner et al. 2003). A
remarkably successful approach is to cast this deterministic
problem into a statistical framework by representing the

unknown response surface as

Y(x) = f(x)>β +M(x) (2)

where M is a realization of a mean 0 random field; that is,
we think of M as being randomly sampled from a space of
functions mapping ℜd → ℜ. The functions in this space are
assumed to exhibit spatial correlation , which means that
values M(x) and M(x′) will tend to be similar if x and x′

are close to each other in space. We refer to the stochastic
nature of M as extrinsic uncertainty, since it is imposed
on the problem (not intrinsic to it) to aid in developing a
metamodel. This paradigm embeds a deterministic problem
into a probabilistic framework so that statistical concepts
such as mean squared error (MSE) of estimation can be
brought to bear. Statistical inference about Y(x) at values
of x not simulated can aid experiment design and provide
estimates of the metamodel’s precision, a feature we want
to exploit.

We argue that the following model is more useful
than (1) or (2) for representing a stochastic simulation’s
output on replication j at design point x:

Y j(x) = f(x)>β +M(x)+ ε j(x). (3)

The intrinsic noise ε1(x),ε2(x), . . . at a design point x is
naturally independent and identically distributed across repli-
cations, but we allow the possibility that V(x)≡ Var[ε(x)]
is not constant and that Corr[ε j(x),ε j(x′)] > 0 to model the
effect of CRN. The intent of CRN is to reduce the variance of
estimated differences through inducing positive correlation
across design points by driving their simulations with the
same sequence of pseudorandom numbers (see, for instance,
Law and Kelton 2000). Later we propose simultaneously
modeling M and V, which is a central contribution of this
paper.

In our setting an experiment design consists of pairs
(xi,ni), i = 1,2, . . .,k, where ni is the number of simulation
replications taken at design setting xi. Let the sample mean
at xi be

Ȳ (xi) =
1
ni

ni

∑
j=1

Y j(xi) (4)

and let Ȳ =
(
Ȳ (x1), Ȳ (x2), . . ., Ȳ (xk)

)>.
We want a metamodel that predicts the response Y(x0)≡

f(x0)>β +M(x0) at any x0, simulated or not. Until further
notice we only consider the case f(x0)>β = β0 (that is,
just a constant term representing the overall surface mean),
because this model has tended to be the most useful in
practice for DACE.
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As is typical in spatial correlation models, we consider
linear predictors of the form

λ0(x0)+λ (x0)>Ȳ (5)

where λ0(x0) and λ (x0) are weights that depend on x0 and
are chosen to give the predictor good properties, such as
minimum MSE for predicting Y(x0) = β0 +M(x0). Later,
when we make Gaussian assumptions on the intrinsic and
extrinsic uncertainty, this form drops out as the best predictor,
linear or otherwise.

Let ΣM(x,x′) = Cov[M(x),M(x′)] be the covariance
implied by the extrinsic spatial correlation model, let
ΣM be the k × k covariance matrix across all design
points x1,x2, . . .,xk, and let ΣM(x0, ·) be the k × 1 vec-
tor (Cov[M(x0),M(x1)], . . .,Cov[M(x0),M(xk)])

>. Also
let Σε be the k × k covariance matrix with (h, i) ele-

ment Cov
[
∑nh

j=1 ε j(xh)/nh,∑ni
j=1 ε j(xi)/ni

]
across all design

points xh and xi.
To illustrate the key issues, suppose that ΣM,Σε and

β0 are known (clearly, in a real application they need to be
estimated, which is a contribution of our research). We can
show that the MSE-optimal predictor of the form (5) is

Ŷ(x0) = β0 +ΣM(x0, ·)> [ΣM +Σε]−1 (Ȳ −β01k
)

(6)

where 1k is the k×1 vector of ones. We refer to this predictor
as stochastic kriging. Notice that the only computationally
intensive operation in evaluating (6) is the matrix inversion,
which is done once since it is independent of x0. If there were
no intrinsic uncertainty due to simulation, Σε would vanish
and (6) would reduce to the standard kriging estimator
that matches the data Ȳ at design points, and predicts
Y(x0) by a weighted average of Ȳ elsewhere (e.g., Cressie
1993). Equation (6) clearly shows that the presence of
intrinsic uncertainty impacts the prediction everywhere on
the surface. We can also show that the optimal MSE is

MSE? = ΣM(x0,x0)−ΣM(x0, ·)> [ΣM +Σε]
−1 ΣM(x0, ·)

=
[
ΣM(x0,x0)−ΣM(x0, ·)>Σ−1

M ΣM(x0, ·)
]

+ ΣM(x0, ·)>ΞΣM(x0, ·) (7)

where Ξ is a positive definite matrix that depends on Σε
and ΣM. The term in brackets in (7) is the usual kriging
MSE; the additional term is positive, showing that intrinsic
uncertainty inflates MSE.

To actually estimate a stochastic kriging metamodel
from data we need ΣM(·, ·) to have more structure. In
particular, we will assume that M is second-order stationary,
meaning that

ΣM(x,x′) = τ2RM(x−x′; θ ) (8)

where τ2 can be interpreted as the variance of M(x) for
all x, and RM is the correlation which depends only on
x−x′ and may be a function of some unknown parameters
θ . Further, we will require that RM(x−x′ ; θ )→ 0 as the
distance between x and x′ goes to infinity, and RM(0; θ )= 1.

Use of kriging for metamodeling in stochastic simu-
lation was first mentioned by Mitchell and Morris (1992),
but has only been explored in depth by Kleijnen and his
collaborators; the papers most closely related to our work
are van Beers and Kleijnen (2003) and Kleijnen and van
Beers (2005) (see also Biles et al. 2007 and van Beers
and Kleijnen 2007). The central idea in these papers is to
first model out any trend using least squares or generalized
least-squares techniques, and then to apply kriging to some
form of standardized residuals. They do not incorporate a
model of the intrinsic uncertainty, which means that they
cannot be used for the sort of adaptive design we desire
that jointly considers the placement of design points and
simulation effort. To illustrate the insights gained from our
approach, we examine a tractable example in detail.

Consider the case of k = 2 design points x1 and x2 with
equal numbers of replications n1 = n2 = n. Suppose that

ΣM = τ2
(

1 r12

r12 1

)
and ΣM(x0, ·) = τ2

(
r0

r0

)
.

The term τ2 > 0 represents the extrinsic variance of M,
r12 is the extrinsic correlation between M(x1) and M(x2),
and r0 is the extrinsic correlation between the point to be
predicted Y(x0) and each of the design points (these usually
would not be equal). Typically we expect r12 and r0 to be
positive.

For the intrinsic uncertainty due to sampling at a design
point, suppose

Σε =
V

n

(
1 ρ
ρ 1

)

where in this example the variance at the design points
is a common V > 0, and −1 ≤ ρ ≤ 1 represents intrinsic
dependence between the design points; for instance, we
would expect ρ > 0 if we used CRN. Substituting these
into (6)–(7), the MSE-optimal predictor of Y(x0) is Ŷ(x0) =

β0 +
2τ2r0

(1 + r12)τ2 +(1 +ρ)V/n

(
Ȳ (x1)+ Ȳ (x2)

2
−β0

)

(9)
with MSE

MSE? = τ2
(

1− 2τ2r2
0

(1 + r12)τ2 +(1 +ρ)V/n

)
. (10)

Equation (9) shows that stochastic kriging is a bit like
a control-variate estimator (e.g., Nelson 1990), where a
correction term is applied to the mean based on the deviation
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of the observed responses from their expectations and the
strength of the correlation (r0) between the design points
and the response to be predicted.

The MSE (10) is even more revealing: MSE is decreas-
ing in r2

0, meaning the stronger the correlation between the
design points and the response at x0, the smaller the MSE
because the design points provide more information. How-
ever, MSE is increasing in r12, since the more correlated
the design points themselves are, the less additional infor-
mation they provide. Intrinsic uncertainty, V, also increases
MSE, but can be reduced by increasing the sample size n.
Most interesting is that the assumed impact of CRN, which
is to make ρ > 0, increases MSE relative to independent
sampling. This may seem surprising because in standard
linear regression models such as (1) the impact of CRN is
to reduce the variance of the slope coefficients. However,
the stochastic kriging predictor is a weighted average of
the outcomes from the design points, and CRN inflates the
variance of averages. In fact, (10) shows that antithetic
variates (e.g., Law and Kelton 2000), which tries to induce
ρ < 0, would reduce MSE.

There are two messages in this example: (i) In stochastic
kriging there is an important interplay between the placement
of design points (through their extrinsic correlation with
each other) and the simulation effort at the design points
(through their intrinsic variance); and (ii) CRN will not be
helpful for predicting Y(x) in general.

3 PARAMETER ESTIMATION

To actually apply stochastic kriging for simulation meta-
modeling, a method for estimating the unknown parameters
is required. The DACE literature contains several methods
and refinements when there is only extrinsic uncertainty;
see for instance Santner et al. (2003) and Fang et al. (2006).
Here we focus on extending the most well-known method—
maximum likelihood—to allow for intrinsic uncertainty.

Recall that our model for the simulation output is

Y j(x) = β0 +M(x)+ ε j(x).

We now adopt the following
Assumption 1 The random field M is a station-

ary Gaussian random field, and ε1(xi),ε2(xi), . . . are i.i.d.
N(0,V(xi)), independent of ε j(xh) for all j and h 6= i (i.e.,
no CRN), and independent of M.

That M is a stationary Gaussian random field is a
standard assumption in DACE. We refer the reader to,
for instance, Santner et al. (2003, §2.3.2) for technical
details, but in brief this assumption implies that for any
finite collection of design points x1,x2, . . .,xk the random
vector (M(x1),M(x2), . . .,M(xk)) has a multivariate nor-
mal distribution with constant marginal mean 0, variance
τ2 > 0, and positive definite correlation matrix RM such that

Corr(M(xi),M(xh)) depends only on xi−xh. The normality
of ε j(x) could be anticipated if, for instance, the output of
each replication was itself the average of a large number
of more basic random variables (e.g., the average of hun-
dreds of individual product cycle times in the semiconductor
fabrication example).

Under Assumption 1, (Y(x0), Ȳ (x1), . . ., Ȳ (xk)) is
multivariate normal and the stochastic kriging predictor (6)
is the conditional expectation of Y(x0) given Ȳ , making it
the minimum MSE predictor (Santner et al. 2003, Theorem
3.2.1).

We begin by assessing the impact of estimating the
intrinsic variance Σε , then derive the maximum likelihood
estimators given Σε and conclude by addressing experiment
design.

3.1 Estimating the Intrinsic Variance

In this section we confront the fact that V is typically
unknown. In summary, our approach is as follows:

Because we are interested in sequential experiment
design, we need a model for V. To obtain it, we will
assume V is also represented by a spatial correlation model

V(x) = σ2 +Z(x) (11)

where Z is a mean zero stationary random field that is
independent of M. Denote the estimated model by V̂(x).

Since V(xi) is not observable, even at the design points,
we let

S 2(xi) =
1

ni −1

ni

∑
j=1

(
Y j(xi)− Ȳ (xi)

)2 (12)

stand in for it. Under Assumption 1, S 2(xi) is strongly
consistent for V(xi) and has a scaled chi-squared distribution.

Because we observe S 2, not V, there is extrinsic and
intrinsic uncertainty, just as in estimating β0 + M from
Ȳ . However, since we are not interested in V except as it
impacts our design and analysis, we will ignore the intrinsic
uncertainty and fit model (11) using standard kriging as if S 2

had no noise. Therefore, V̂(xi) = S 2(xi) at design points
xi since standard kriging interpolates the response at the
design points exactly. We will show that the consequences
of estimating V in this way are slight as long as the ni are
not too small.

We do not describe estimation of model (11) from
S 2(x1),S 2(x2), . . .,S 2(xk) here, since no new ideas are
introduced. In the numerical illustration in Section 4 we
cite a specific approach.

Our first key result is that estimating Σε in this way
introduces no prediction bias.
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Theorem 1 Let
Σ̂ε = Diag

{
V̂(x1)/n1, V̂(x2)/n2, . . ., V̂(xk)/nk

}
and define

̂̂
Y(x0) = β0 +ΣM(x0, ·)>

[
ΣM + Σ̂ε

]−1 (
Ȳ −β01k

)
. (13)

If Assumption 1 holds, then E

[
̂̂
Y(x0)−Y(x0)

]
= 0.

As a consequence of Theorem 1, our key concern is
how much variance inflation occurs when V is estimated.
Clearly if the ni are large enough there is little inflation.
But how large do they have to be? To answer this question
we consider another tractable example:

Suppose that

ΣM = τ2




1 r · · · r
r 1 · · · r
...

...
. . .

...
r r · · · 1


 ,

ΣM(x0, ·) = τ2(r0, r0, . . ., r0)> with r0, r ≥ 0, and Σε =
(V/n)I. This represents a situation in which the extrin-
sic correlations among the design points are all equal and
the design points are equally correlated with the point we
wish to predict, which might be (approximately) plausible if
the design points are widely separated, say at the extremes
of the region of interest, while x0 is central. Note that
for the covariance matrix of (Y(x0), Ȳ (x1), . . ., Ȳ (xk))> to
be positive definite we must have r2

0 < 1/k + r(k− 1)/k.
The structure of Σε arises because we assume the intrinsic
variance is the same across all design points and n repli-
cations have been allocated to each of them. Suppose also
that we have an estimator V̂ ∼ Vχ2

n−1/(n− 1), meaning

that (n − 1)V̂/V has a chi-squared distribution. We use
a common estimator of the intrinsic variance rather than
estimating it at each design point individually to make the
example tractable. Finally, let γ = V/τ2 be the ratio of the
intrinsic variance to the extrinsic variance, which is (roughly
speaking) a measure of the sampling noise relative to the
response surface variation.

For this example we can show that the MSE of Ŷ(x0),
the stochastic kriging predictor with V known, is

MSE? = τ2

(
1− kr2

0

1 +(k−1)r + γ
n

)
. (14)

On the other hand, the MSE of ̂̂Y(x0) obtained by substituting
V̂ for V is MSE =

τ2E





1+

(
1+(k−1)r + γ

n

)
kr2

0(
1+(k−1)r + γ

n
V̂
V

)2 −
2kr2

0(
1+(k−1)r + γ

n
V̂
V

)





 .

(15)

Figure 1: MSE inflation as a function of γ = V/τ2 when
n = 10 and correlation r0 is 95% of its maximum possible
value.

We assess the inflation by evaluating the ratio of (15)
to (14) numerically. The ratio is largest when n is small
and r0 and r are large, so Figure 1 shows the inflation as
a function of γ = V/τ2 for n = 10, r = 0,0.1,0.2 and r0

at 95% of the maximum value it can take. Even with this
small value of n the inflation is slight over an extreme range
of γ values. As n increases the inflation vanishes. This
suggests that the penalty for estimating V will typically be
small.

3.2 Maximum Likelihood Estimation

In this section we derive the maximum likelihood estimators
of (β0,τ2,θ ) assuming Σε is known. To reduce notation,
let Vi ≡ V(xi)/ni; thus, Σε = Diag{V1,V2, . . .,Vk}. Also
define RM(θ ) to be correlation matrix of M across the design
points.

For a fixed experiment design {(xi,ni), i = 1,2, . . .,k},
and under Assumption 1, the log likelihood function of
(β0,τ2,θ ) is

`(β0,τ2,θ ) = (16)

− ln
[
(2π)k/2

]
− 1

2
ln
[
|τ2RM(θ )+Σε|

]

−1
2

(
Ȳ −β01k

)> [τ2RM(θ )+Σε
]−1(

Ȳ −β01k
)
.

If the Σε terms are removed then this is the log likelihood
function for kriging when M is a Gaussian random field.
We have been intentionally vague about the covariance
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function RM(θ ), because we want the results to be general,
but when we apply stochastic kriging later we will use a
standard model from the DACE literature.

Finding the maximum likelihood estimators requires
simultaneously solving

∂ `(β0,τ2,θ )
∂β0

= 0
∂ `(β0,τ2,θ )

∂τ2 = 0
∂ `(β0,τ2,θ )

∂θ
= 0

(17)
for (β̂0, τ̂2, θ̂) which is no more computationally difficult
than when Σε is not present, and in fact is more likely to
be numerically stable.

To summarize, given the data Y j(xi), j = 1,2, . . .,ni, i =
1,2, . . .,k, a stochastic kriging metamodel is obtained as
follows:

1. Estimate V̂ as in Section 3.1 and let Σ̂ε =
Diag

{
V̂(x1)/n1, V̂(x2)/n2, . . ., V̂(xk)/nk

}
where

V̂(xi) = S 2(xi).
2. Using Σ̂ε instead of Σε , solve the likelihood equa-

tions (17) for (β̂0, τ̂2, θ̂).
3. Predict Y(x0) by the metamodel

̂̂
Y(x0) = β̂0 + τ̂2RM(x0, ·; θ̂)>

[
τ̂2RM(θ̂ )+ Σ̂ε

]−1

×
(
Ȳ − β̂01k

)
(18)

with plug-in MSE estimate

M̂SE(x0) = τ̂2

− τ̂4RM(x0, ·; θ̂)>
[
τ̂2RM(θ̂ )+ Σ̂ε

]−1

× RM(x0, ·; θ̂)

+ δ>δ
(

1>k
[
τ̂2RM(θ̂)+ Σ̂ε

]−1
1k

)−1

(19)

where δ = 1−1>k [τ̂2RM(θ̂)+ Σ̂ε]−1RM(x0, ·; θ̂) τ̂2.
The last term on the right-handside of (19) accounts
for the variability due to estimating β0.

3.3 Experiment Design

In this section we describe an approach to obtain experi-
ment designs with low integrated MSE (IMSE). Our results
assume that the extrinsic covariance function ΣM(·, ·) and
the extrinsic variance function V(·) are known; later in the
section we describe how we might use the results when
these functions are estimated.

Let X be the d-dimensional experiment design space
of interest, and suppose that we have k fixed design points
x1,x2, . . .,xk to which we want to allocate N replications.

Let n> = (n1,n2, . . .,nk). Then our goal is to

minimize IMSE(n) =
∫

x0∈X
MSE(x0; n)dx0 (20)

subject to:

n>1k ≤ N (21)

ni ∈ Z + (22)

where the integrand MSE(x0; n) = ΣM(x0,x0) −
ΣM(x0, ·)> [ΣM +Σε(n)]−1 ΣM(x0, ·) and Σε(n) =
Diag{V(x1)/n1,V(x2)/n2, . . .,V(xk)/nk}. In words,
we minimize the IMSE for the MSE-optimal stochastic
kriging estimator as a function of the number of replications
allocated to each design point. To obtain an approximate
solution to this problem, we relax the integrality con-
straint (22) and assume only that ni ≥ 0. Since we will
have repeated need of it, let Σ(n) = ΣM +Σε(n).

Assuming M is second-order stationary, as in (8), we
can let ΣM(xi,x0) = τ2ri(x0). We can then show that the
optimal solution n? to (20), with integrality relaxed, satisfies
n?

i ∝
√

V(xi)Ci(n?) where

Ci(n) =
[
Σ(n)−1WΣ(n)−1]

ii

and W is the k× k matrix with elements

Wi j =
∫

x0∈X
ri(x0)r j(x0)dx0.

To gain some insight into this result, suppose that N is
large enough that Σ(n) ≈ ΣM so that

Ci(n) ≈Ci =
[
Σ−1

M WΣ−1
M

]
ii .

Then

n?
i ≈ N

√
V(xi)Ci

∑k
j=1

√
V(x j)Cj

. (23)

Notice that Ci is only a function of the extrinsic correlation
structure, and V is the intrinsic variance. Expression (23)
shows how the response surface, as represented by its corre-
lation structure, distorts the allocation of replications from
one that is proportional to only the extrinsic standard de-
viation at the design point; it tends to favor design points
that are centrally located because they do more to reduce
MSE throughout the design space. This further emphasizes
that both intrinsic and extrinsic uncertainty matter in the
experiment design.

In practice neither ΣM(·, ·) nor V(·) are known in ad-
vance, and the design points are not given. One way to use
these results is via a two-stage design strategy:
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1. In Stage 1, select a space-filling design of m pre-
determined design points x1, . . .,xm and allocate
n0 replications to each.

2. Fit V̂ and τ̂2RM(·, ·; θ̂) as described above.
3. In Stage 2, jointly select k−m additional design

points xm+1, . . .,xk from a larger set and optimally
allocate the N−mn0 additional replications among
x1, . . .,xk to minimize IMSE using V̂ and RM(·, ·; θ̂)
in place of the true functions.

4 ILLUSTRATION

To illustrate the methodology developed in this paper, we
consider the steady-state mean number in an M/M/1 queue.
The statistic we record from each replication is the average
number of customers in the system from time 0 to T . For
the M/M/1 queue we can initialize each replication in steady
state by independently sampling the number in the system
at time 0 from the steady-state distribution. We keep the run
length per replication T the same for all arrival rates x so that
we entirely control intrinsic variance through the number of
replications. We do not employ CRN. For fitting the mean
and variance models we assume a Gaussian correlation
structure of the form RM(xi,x j; θM) = exp(−θM(xi − x j)2)
and RV(xi,x j; θV) = exp(−θV(xi − x j)2), respectively, with
the θ ’s unknown. All of the simulation and fitting of
the metamodels was done using our own code written in
S-PLUS; fitting was via maximum likelihood.

To illustrate stochastic kriging, we consider an experi-
ment that starts with four design points, x = 0.3,0.5,0.7,0.9,
making 20 replications of length T = 1000 time units at
each of them (80 replications total). Based on the results
we allocate a total of N = 500 replications among these
four design points, plus 3 additional points x = 0.4,0.6,0.8,
using the approximately optimal allocation formula (23),
and view the final fit.

Figure 2 shows the results for the mean number in

queue metamodel ̂̂Y(x0) from the first-stage experiment.
In the plot a circle represents an estimated response from
the simulation (the data points); the solid-line curve is
the stochastic kriging metamodel, which is surrounded by

±
√

M̂SE intervals at a fine grid of points; and the dashed-
line curve is the true surface. Since this is stochastic kriging,
as opposed to ordinary kriging, the fitted surface need not
pass through the data points (see especially at x = 0.9),

and the ±
√

M̂SE intervals account both for intrinsic and
extrinsic uncertainty about the surface. Notice that the true

surface is within the ±
√

M̂SE bounds on the fitted surface.
The fitted variance curve V̂(x0) is shown in Figure 3.

Since we use ordinary kriging for this model the fitted
curve passes through the data points, and it is clear that the
simulation provided a particularly poor estimate of V(0.9).
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Figure 2: Fitted via stochastic kriging (solid line) and true
(dashed line) expected number in an M/M/1 queue from
the first-stage experiment.

For reference we also plot the known variance function
V(x)/T = 2x(1 + x)/(T (1− x)4) (Whitt 1989).

Using the results from the first-stage experiment (in
particular θ̂M and V̂(x)) we apply (23) to obtain the optimal
allocation of N = 500 replications to the full set of design
points x = 0.3,0.4,0.5,0.6,0.7,0.8,0.9. The variance model
is required as the full design includes design points that
were not simulated in the first-stage experiment. The es-
timated optimal allocation is n = 2,80,11,81,33,165,128,
respectively. That design points 2 and 4 (0.4 and 0.6) re-
ceive relatively large allocations relative to design points 1,
3 and 5 (0.3,0.5 and 0.7) results mostly from their variance
being overestimated by V̂. More interesting is that x = 0.8
receives a larger allocation than x = 0.9, even though the
standard deviation at 0.9 is predicted to be substantially
greater than at 0.8 by V̂. This occurs because our optimal
allocation considers not only the relative standard deviations
at the design points, but also their range of influence in the
metamodel; x = 0.8 is closer to more points in the design
than 0.9 and therefore is more valuable.

Since several of the design points have already received
more replications than optimal—always a danger when the
initial sample size has to be selected arbitrarily—we reran
the experiment allocating the 500 replications optimally (in
practice we would not discard the data we already have
and would instead allocate as close to the optimal design as
possible). Figure 4 shows the result. The most important
thing to notice is not the close fit to the true curve as much

as the nearly constant ±
√

M̂SE intervals surrounding the
fitted curve.
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Figure 3: Fitted via ordinary kriging (solid line) and true
(dashed line) variance of average number in an M/M/1 queue
from the first-stage experiment.

5 CONCLUSIONS

This paper provides a mathematical foundation for stochas-
tic kriging, a method that extends the power of kriging
metamodeling for deterministic computer experiments to
modeling responses from stochastic simulations. To realize
the full potential of this technique we need to, and are,
addressing these follow-up issues:

Our initial results on experimental design should lead
to methods for sequential, adaptive design that places design
points and allocates simulation effort as we learn more about
the response surface being modeled. The ability to capture
intrinsic and extrinsic uncertainty in the design is a strength
of stochastic kriging.

In our limited experiments it appeared that the Gaussian
random field model with Gaussian correlation structure did
not work as well for representing estimator variance as it
did for the response mean. Other alternative models should
be explored, as well as whether there is any benefit from
fitting a joint model for (M,V).

We largely ignored the possibility of including a trend
term, f(x)>β , in our metamodel. Clearly there are applica-
tions for which the form of such a term is known or suspected
and including it may leads to better fits. The presence of
a trend term may make the use of CRN worthwhile.

The examples in this paper employed only a one-
dimensional design variable x, but the theory is for general
d-dimensional x. In addition to the numerical issues that
can arise in fitting high-dimensional kriging models, there
is also a practical matter of visualizing and exploring the
fitted surface. Tools such as ATSV (Stump et al. 2007) may
be particularly helpful in this regard.
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Figure 4: Fitted via stochastic kriging (solid line) and true
(dashed line) expected number in an M/M/1 queue from
the second-stage experiment.
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