
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

A SYSTEMS APPROACH TO SCALABLE TRANSPORTATION NETWORK MODELING

Kalyan S. Perumalla

Oak Ridge National Laboratory
One Bethel Valley Road

Oak Ridge, Tennessee 37831-6085, U.S.A.

ABSTRACT

Emerging needs in transportation network modeling and
simulation are raising new challenges with respect to scal-
ability of network size and vehicular traffic intensity, speed
of simulation for simulation-based optimization, and fidel-
ity of vehicular behavior for accurate capture of event phe-
nomena. Parallel execution is warranted to sustain the re-
quired detail, size and speed. However, few parallel
simulators exist for such applications, partly due to the
challenges underlying their development. Moreover, many
simulators are based on time-stepped models, which can be
computationally inefficient for the purposes of modeling
evacuation traffic. Here an approach is presented to de-
signing a simulator with memory and speed efficiency as
the goals from the outset, and, specifically, scalability via
parallel execution. The design makes use of discrete event
modeling techniques as well as parallel simulation meth-
ods. Our simulator, called SCATTER, is being developed,
incorporating such design considerations. Preliminary per-
formance results are presented on benchmark road net-
works, showing scalability to one million vehicles simu-
lated on one processor.

1 INTRODUCTION

Accurate estimation of metrics related to transportation in
planning under time deadlines (as in emergencies) requires
fast evaluation of multiple candidate scenarios using high-
fidelity simulations. Fast models optimized for such sce-
narios are required for best possible simulation speed that
capture the right amount of fidelity and provide sufficient
accuracy. The short amount of decision times can demand
fast simulation turnaround times, while large geographical
coverage for decisions requires evaluating large-scale sce-
narios. Quantitatively, these requirements translate to the
ability to perform detailed simulation of traffic on the order
of a few million vehicles traversing across a few million
road intersections. Added to these temporal and spatial s-
cales is the need to capture other related sociological and
1501-4244-0501-7/06/$20.00 ©2006 IEEE
behavioral phenomena that affect the traffic patterns and
behaviors. Together, the new requirements create the need
for a simulation environment that can scale up to several
cities worth of traffic and road networks, requiring the use
of parallel simulation techniques. However, few traffic
simulators have been built for scalable parallel execution.
Based on the needs of meeting the simulation fidelity,
speed and scale of anticipated scenarios, we are building a
new simulation environment called SCATTER – Scalable
Tool for Transportation and Emergency Research – which
(a) employs an appropriately determined level of micro
simulation at vehicular level to capture sociological behav-
iors pertinent to the scenarios (b) optimizes the data struc-
tures for modeled entity representations to minimize mem-
ory usage (c) casts the execution as a discrete event
modeling formulation to skip over uninteresting aspects of
vehicular movement (d) structures the models from the
outset to enable efficient parallel execution.

1.1 Related Work

Tools such as TRANSIMS (Smith, et al. 1995), VISSIM
(Innovative Transportation Concepts 2001), CORSIM (ITT
Systems & Sciences Corporation 1998, Prevedouros and
Wang 1999), MITSIM, PARAMICS (Cameron and Dun-
can 1996) and OREMS (Bhaduri, et al. 2006, Franzese and
Han 2001) have been developed with varying goals and
capabilities (Fujimoto and Leonard II 2002). Each of those
tools has been designed for their respective target applica-
tions. The SCATTER approach is, at a fairly high-level,
distinguishable by its modeling framework to accommo-
date new sociological phenomena, its discrete event model-
ing approach for speed, and, most importantly, the struc-
ture and design for scalable parallel execution.

The rest of the document is organized as follows. The
modeling framework of SCATTER is described in Section
0. Details of the discrete event simulation algorithm that
underlies the vehicular mobility models is presented in
Section 3. A preliminary performance study of memory
usage and execution speed on parallel computing platforms
0

Perumalla

Segment

Lane

In

te
rs

ec
tio

n

Lane

In

te
rs

ec
tio

n

Segment

Segment

Lane

Lane

Segment

In

te
rs

ec
tio

n

Figure 1: Illustration of the Basic Modeling Unit (Grayed Region), Which is the Intersection Plus Lanes of All Incoming
Road Segments

is presented in Section 4. Summary and future work are
outlined in Section 5.

2 MODELING FRAMEWORK

We will describe the main features of SCATTER’s model-
ing framework, its design elements and uses. Additional
considerations on interfacing the traffic movement features
with various data sources is discussed in (Perumalla and
Bhaduri 2006), and hence not duplicated here.

2.1 Generalized Time Advancing Framework

The framework is designed for incorporating time-stepped
(TS), discrete-event (DES) or any combinations of TS &
DES across modeling units. For example, time-stepping
can be employed for road segments in which accurate
driver behavior needs to be captured (e.g., arbitrary num-
ber of dynamic lane switching decisions between entry and
exit on a single, short/congested road segment), and DES-
based time-stepping can be used on other road segments
(e.g., relatively vacant highway).

2.2 Indivisible Modeling Unit

Following the overriding goal of parallel execution, the
network model is first structured into multiple indivisible
units whose states are by design decoupled from each
other. All interaction between the units is via exchange of
time-stamped events, with no shared memory/state across
units. This permits maximum flexibility for arbitrary map-
ping of units to processors. Also, by mapping each unit to
a logical process, it enables parallel execution via paral-
lel/distributed discrete event simulation techniques.

There are multiple alternatives for the definition of
such modeling units. For example, the network model
could be divided by cutting each intersection in the inter-
section area. Such partitioning, however, suffers from po-
tential violation of mutual exclusion conditions – the ne-
cessity for preventing more than one vehicle occupying the
same physical position at an intersection. Another alterna-
tive is to cut a road segment in the middle. This suffers
150
from zero lookahead(Fujimoto 1990) limitation across the
cut road segments.

Our partitioning approach uses a novel combination of
intersection and incoming slices of road segments, as
shown in Figure 1.

The basic modeling unit consists of a slice of the road
network that is strangely shaped at first sight. Given a set
of roads and intersections, our modeling approach divides
them into units. Each intersection is associated with one
unit. This unit also then includes all the lanes of incoming
roads incident onto that intersection. The benefit of this
modeling approach is that all routing decisions and vehicle
forwarding decisions can be performed without mutual ex-
clusion violations at the intersection. Also, sophisticated
traffic light controllers can be encoded without paral-
lel/distributed memory considerations.

2.3 Vehicle Identity

Vehicles retain their identity during the entire duration of
simulation. As in real life, all vehicles are instantiated at
initialization, and persist throughout the period of simula-
tion. Vehicles are not deleted during periods of inactivity
– they remain “parked” at the nodes that are intermediate
points in their trip (e.g., at work, home, etc.).

Vehicles are exchanged as events. When a vehicle
leaves one intersection and enters another intersection, it is
modeled as a time-stamped event sent by the source logical
process to the destination logical process.

2.4 Basic Kinetics

The basic set of kinetics associated with typical vehicular
traffic micro models are included. Each intersection unit is
responsible for advancing the state of vehicles on all its in-
coming road segments. For each vehicles, the following
kinetics are modeled.

 Car following: A simple car-following model is

included in which vehicles obey the acceleration,
deceleration and velocity constraints imposed by
1

rumalla
Pe

vehicles in front of them. Inter-vehicular gap is
always maintained for greater realism.

 Lane changing: A simple variant of lane-changing
behavior is modeled, which is slightly biased to-
wards filling all lanes of road segment. This type
of lane-changing is a specialization for emer-
gency/evacuation scenarios; the lane choice is
made by the vehicle upon entry onto a road seg-
ment from an intersection. This decision is per-
formed at every intersection; hence, a vehicle can
make multiple lane changes during its trip along a
route.

2.5 Trip Modeling

Sophisticated trip behavior is incorporated via the ability to
define trip plans (home, work, grocery, etc.) of arbitrary
combinations, on a per-vehicle basis. Care has been taken
to minimize the memory usage due to the power of such a
feature, by encoding the trip in a tight manner. A trip plan
consists of several trip steps. Each step is a triple: <desti-
nation type, destination identifier, time>. Destination type
could be an ordinal value such as HOME, WORK, GAS,
etc. Destination identifier could be the unique identifier of
any intersection in the network, in which case the vehicle
is routed towards that specific destination. Alternatively, it
could be a specification of a node “around” which the des-
tination type should be explored by the system, and the
most preferred one chosen automatically (e.g., gas station
closest to the desired node). Time could be the precise
amount of time to elapse while parked at the destination, or
it could be an absolute time for departure from that node to
its next destination in the trip. Absolute times are useful to
encode behaviors that are resilient to delays experienced by
traffic due to network conditions.

Despite the complexity, the total vehicle byte size has
been kept to under 150 bytes on a 64-bit machine.

2.6 Traffic Light Controllers

Simple traffic light controllers have been modeled that
have synchronous light sets that change light colors in syn-
chrony in round robin fashion. More sophisticated sched-
ules can be easily added, without overhaul to the frame-
work. Also, smart controllers such as those that operate
based on detection of vehicular presence can also be easily
added without violation of the discrete event modeling ap-
proach described next.

3 DISCRETE EVENT MODEL

The discrete event modeling approach is based on the sim-
ple insight that the most interesting events in the vehicular
movement are easily captured by an intersection node
15
process. At each intersection, the algorithm shown in
Figure 2 is executed.

3.1 Algorithm

Intersection::execute(Event *event)

 switch(event->type)
 case LIGHT_CHANGE:
 Update_Lights();
 break;
 case VEHICLES_UPDATE:
 Reset_NERUTS();
 break;
 case VEHICLE_HANDOFF:
 AddArrival(event->vehicle);
 break;

 Update_InSegments();
 Update_ParkedVehicles();

Figure 2: Discrete Event Algorithm Executed by Intersec-
tion Node

The execute() method of an intersection node is executed
by the discrete event simulation engine whenever there is
an event destined for the intersection. Events are time-
stamped and are executed in global time-stamp order.

As part of Update_InSegments(), each vehicle on all
lanes of the intersection’s incoming road segments are ad-
vanced by delta time equal to current time stamp minus the
last time at which they were updated. In Up-
date_ParkedVehicles(), vehicles parked at that node, if any,
are checked for departure readiness.

If and when any vehicles are ready to depart, either
from parked queue or from the front of incoming lane
segments, then traffic control and congestion effects are
incorporated for decision on whether the vehicle will be
permitted to leave. For example, the traffic light corre-
sponding to its next hop in its trip is consulted for
green/yellow color. Also, availability of room in the lanes
of outgoing road segment ahead is verified.

Both updates, to in segments and to parked vehicles,
result in the scheduling of a new local
VEHICLES_UPDATE event into the future for this inter-
section. Similarly, next time for light changes are sched-
uled via a local event of type LIGHT_CHANGE. As an
optimization, only the earlier of the two event types
VEHICLES_UPDATE and LIGHT_CHANGE is sched-
uled, since one automatically implies updates for the other.

When a vehicle is ready to depart this intersection, and
has met all condition of departure (destination outgoing
road segment is not full, light is green, etc.), then a
VEHICLE_HANDOFF event is sent to the intersection
that owns the outgoing road segment of that vehicle. Upon
receiving a VEHICLE_HANDOFF event, the intersection
adds the vehicle onto the incoming road segment corre-
02

Perumalla

sponding to the outgoing road segment on which it was
sent. At this point a lane changing algorithm is invoked on
the vehicle which currently switches the vehicle to the least
congested lane on its road segment (of course, while pre-
serving an inter-vehicular gap).

The earliest departure time for vehicles is computed by
simple Newtonian physics calculations which involve solv-
ing the quadratic equation on acceleration, velocity and po-
sition of the lead vehicle on each lane of each incoming
road segment on all road segments incident on an intersec-
tion. Care is taken to handle all special cases arising out of
dual and/or imaginary roots of the quadratic equation. It is
this next earliest required update time that is used to
schedule the next VEHICLE_UPDATE event.

3.2 Routing

Routing table computation is clearly a computationally in-
tensive operation, which is incurred at simulation initializa-
150
tion. However, we are adapting the optimizations that have
been discovered in the area of large-scale Internet (TCP/IP
network) simulations, such as Nix-Vector routing. More-
over, we are using a “ghost-node” approach to representing
the entire network at every processor for accurate routing
table computation in the absence of shared memory.

3.3 Data Structures

The hierarchy realized in data structures for this is shown
in Figure 3. Note that only in-segments are represented in
full detail at each intersection (with lanes holding vehicles
at different locations). Every in-segment of an intersection
has a corresponding out-segment on another intersection.
Another protocol is used to synchronize out-segment occu-
pancy information with their origin intersections. This is
necessary to accurately capture congestion spanning multi-
ple intersections.

Figure 3: Model Data Structures

Network

Intersection … Intersection

In-Segment … In-Segment Out-
Segment

… Out-
Segment

Lane

…

Lane

Vehicle … Vehicle

Vehicle Model Components
Physical
 ID, Length, #Occupants
Kinetics
 Position, Velocity,
 Acceleration
Plan
 List of Nodes
 <Type, ID, Time>
Trip
 Current Destination
 Disposition: Parked/Moving
Behavior
 Aggression Factor

Length
Speed limit

Length

Speed limit
3

Perumalla

3.4 Configuration

Configuration of simulation is performed via a simple con-
figuration file provided as input to SCATTER. The file
consists of simple directives such as NODE, LINK and
VEHICLES, which are straightforward to encode for any
given network topology, including number of lanes, speed
limits and geographical coordinates.

4 EXPERIMENTAL STUDY

We now turn to a preliminary performance study for the
current implementation of SCATTER. In order to facili-
tate this study, we first define a simple synthetic bench-
mark. This is followed by test of simulation speed. Scal-
ability of the simulator with increasing number of vehicles
is examined, followed by initial report on parallel execu-
tion performance.

4.1 Benchmark

Our synthetic benchmark road network consists of
road segments enclosing a grid of n x n blocks as shown in
Figure 4. Each intersection has a single-lane road segment
into the interior of the block, nominally representing lanes
into parking lots in that grid element, as shown in close-up
view in Figure 5. Each main road segment has two lanes,
and there is a traffic light controller at every intersection,
as illustrated in a zoom-in picture of an intersection in
Figure 6. The perimeter road segments on the four
boundaries have a slightly higher speed limit than the inte-
rior roads. For benchmarking a parallel execution, m in-
stances of this grid are created and placed in a circular pat-
tern, and the four corners of each instance are connected to
adjacent (left and right) neighbor’s corners. Vehicles are
created, v per grid element (i.e., v vehicles parked in the
parking lot of each grid location). Vehicles’ destinations
are picked randomly from all available blocks. The pic-
tures of the benchmark network are generated as screen-
shots from the SCATTER visualization and animation tool.

Although we have access to more realistic road net-
work topologies, we chose this benchmark as it represents
a more controlled scenario whose properties are easier to
understand. However, we also plan to perform benchmark
studies on realistic networks shortly, after establishing the
scalability of speed and size on synthetic benchmarks.

150

Figure 4: Benchmark Road Network with an n x n Grid

Figure 5: Close-Up View of a Few Grid Elements of the
Benchmark Road Network
4

Perumalla

Figure 6: Close-up View of Streets at an Intersection of the
Benchmark Road Network

4.2 Computation Platform

All experiments were executed on a cluster of nodes, each
node containing dual Intel 3.4GHz Xeon EM64T proces-
sors, 4GB of memory and dual Gigabit Ethernet intercon-
nects.

4.3 Performance

The number of microseconds taken by each event is
tracked with varying number of vehicles introduced on two
configurations of the benchmark network. One configura-
tion uses n=3 (which gives 9 intersection nodes), and the
other configuration uses n=33 (which gives 1089 intersec-
tion nodes). The number of vehicles v per node is varied
from 1 to 1000, which gives up to 1 million vehicles total
on the 1089 node configuration.

Event processing speed

1

10

100

1000

10000 100000 1000000

#Vehicles

M
ic

ro
se

co
nd

s/
ev

en
t

Nodes=9 Nodes=1089

Figure 7: Event Processing Speed with Increasing Number
of Vehicles on the Benchmark Road Networks
1505
It can be seen from Figure 7 that event processing computa-
tion time is very low, and scales well even up to 1 million
vehicles (on a single processor). The event processing stays
in the 100 microsecond range even in the largest case.

Speedup over real-time

1

10

100

1000

10000

10000 100000 1000000

#Vehicles

R
ea

lti
m

e
/ s

im
ul

at
ed

 ti
m

e
Nodes=9 Nodes=1089

Figure 8: Speedup Over Real-Time as the Number of Ve-
hicles on the Benchmark Road Networks is Increased

An important metric is the amount of speedup afforded by
the simulation relative to real-time. A factor of r > 1 says r
predictive simulation runs of 1-day can be explored in one
day of wallclock time. Clearly, the higher the value of r,
the more desirable it is, to be able to explore many alterna-
tive planning/emergency scenarios. This is tracked in
Figure 8.

Memory Usage

1

10

100

1000

1 10 100 1000 10000 100000 1000000 1000000
0

#Vehicles

M
eg

ab
yt

es

Nodes=9 Nodes=1089

Figure 9: Memory Usage as The Number of Vehicles On
the Benchmark Road Networks is Increased

Perumalla

Memory usage is kept low by design, as shown in
Figure 9. Even with 64-bit computing overheads, each ve-
hicle is represented in 144 bytes, each intersection is repre-
sented in 630 bytes and in/out segments consume less than
100 bytes each. The memory for each intersection is rela-
tively high because of the overhead of approximately 500
bytes imposed by the underlying parallel simulation engine
for each logical process (recall that each intersection is re-
alized as one logical process).

Parallel Speedup

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4

#Processors

Sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l r

un

Figure 10: Speedup Due to Parallel Execution

Parallel execution is enabled via simple directives in

the configuration file, to specify a mapping from intersec-
tion identifier to a processor identifier (integer to integer).
The performance improvement from parallel execution is
shown in Figure 10 for a benchmark test case of n=15 and
m=4.

5 CONCLUSIONS

Efficient simulation of vehicular traffic on large spatial
scenarios is an emerging need. Parallel simulation is
needed to best meet the geographical scales and real-time
speeds warranted by related applications. To the best of
our knowledge, SCATTER is one of the few transportation
simulators that is discrete-event based and also enabled for
parallel execution. The SCATTER simulator currently
runs on cluster of workstations platform connected by net-
work, and does not rely on availability of shared-memory
across processors.

5.1 Future Work

We are incorporating efficient routing algorithms for dy-
namic traffic behavior (change of individual routes based
1506
on congestion levels and/or events). While full or incre-
mental re-computation of shortest path routes seem to be
applicable, that is not necessarily an accurate representa-
tion of real life operation, since not every driver is aware of
entire network state instantaneously. We are exploring
more representative models such as localized self-
rerouting. Also, efficient geographical abstract routing is
being explored, based on the observation that road net-
works are clustered in terms of towns and cities, with
sparse connectivity across the clusters. We are exploiting
this structure by computing routes only on demand, and
cache the computed routes. This approach avoids comput-
ing shortest paths between all pairs of intersections, and
instead computes only those routes that are actually in-
voked in the particular simulated scenario.

Benchmarking on more realistic scenarios based on
actual highway topologies is underway. SCATTER is also
being ported to supercomputing platforms. Being built on
the scalable µsik(Perumalla 2005) system is making this
port easier. µsik supports a micro-kernel framework that
scales well the with number of logical processes (LPs), the
number events exchanged by the LPs and with the number
of processors. Virtual time synchronization is realized us-
ing a scalable asynchronous algorithm(Perumalla and Fu-
jimoto 2001) that provides rapid time advances. In some
of the largest configurations, up to one million LPs are
tested to exchange a 1-billion event population. Since in-
tersections are mapped to LPs and vehicle transfers are
mapped to events, µsik’s scalability could potentially be
exploited by SCATTER.

ACKNOWLEDGEMENTS

This paper has been authored by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the U.S. Department
of Energy. Accordingly, the United States Government re-
tains and the publisher, by accepting the article for publica-
tion, acknowledges that the United States Government re-
tains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States
Government purposes.

The author gratefully acknowledges insights from Dr.
Budhendra Bhaduri (ORNL) into the needs of emergency
scenarios.

REFERENCES

Bhaduri, B., C. Liu and O. Franzese, "Oak Ridge evacua-
tion modeling system (OREMS): A PC-based com-
puter tool for emergency evacuation planning," Sym-
posium on GIS for Transportation, 2006.

Cameron, G. D. B. and G. I. D. Duncan, "PARAMICS,
parallel microscopic simulation of road traffic," Jour-
nal of Supercomputing, vol. 10(1), pp. 25-53, 1996.

Perumalla

Franzese, O. and L. Han, "A methodology for the assess-

ment of traffic management strategies for large-scale
emergency evacuations," 11th Annual Meeting of ITS
America, 2001.

Fujimoto, R. M., "Parallel discrete event simulation," Com-
munications of the ACM, vol. 33(10), pp. 30-53, 1990.

Fujimoto, R. M. and J. Leonard II, "Grand challenges in
modeling and simulating urban transportation sys-
tems," in Proceedings of the First International Con-
ference on Grand Challenges for Modeling and Simu-
lation, January ed. January, 2002, 2002.

VISSIM Simulation Tool, Innovative Transportation Con-
cepts, I., 2001, <http://www.itc-world.com/
VISSIMinfo.htm>.

ITT Systems & Sciences Corporation, "CORSIM user's
manual, version 1.04," Federal Highway Administra-
tion, U.S. Department of Transportation 1998.

Perumalla, K. and R. Fujimoto, "Virtual time synchroniza-
tion over unreliable network transport," Workshop on
Parallel and Distributed Simulation, 2001.

Perumalla, K. S., "µsik - A micro-kernel for paral-
lel/distributed simulation systems," Workshop on Prin-
ciples of Advanced and Distributed Simulation, 2005.

Perumalla, K. S. and B. Bhaduri, "On accounting for the
interplay of kinetic and non-kinetic aspects in popula-
tion mobility models," European Modeling and Simu-
lation Symposium, 2006.

Prevedouros, P. D. and Y. Wang, "Simulation of large
G=freeway and arterial network with CORSIM,
INTEGRATION, and WATSIM," Transportation Re-
search Record(1678), pp. 197-207, 1999.

Smith, L., R. Beckman, D. Anson, K. Nagel, and M. E.
Williams, "TRANSIMS: Transportation analysis and

150
simulation system," in Proceedings of the Fifth Na-
tional Conference on Transportation Planning Meth-
ods. Seattle, Washington: Transportation Research
Board, 1995.

AUTHOR BIOGRAPHIES

KALYAN S. PERUMALLA is a senior researcher in the
Computational Sciences and Engineering Division at the
Oak Ridge National Laboratory. He also holds an adjunct
faculty appointment with the College of Computing, Geor-
gia Tech. He received a Ph.D. in Computer Science from
Georgia Tech (1999). Dr. Perumalla has over 10 years of
research and development experience in the area of parallel
and distributed simulation systems, including high-
performance runtime infrastructures and large-scale simu-
lation, and has published widely on these topics. He co-
developed the Federated Simulations Development Kit
(FDK), a widely-disseminated high-performance runtime
infrastructure for HLA-like distributed simulator federa-
tions. He has also built several additional research proto-
type systems and tools (e.g., for distributed debugging,
network modeling, interoperable simulations and parallel
optimization), most of which are in use by researchers
worldwide. He has served as co-PI on multiple federally-
funded projects on scalable parallel/distributed discrete
event simulation systems.. He can be reached via email at
<perumallaks@ornl.gov>, and his homepage is at
<www.ornl.gov/~2ip>.
7

http://www.itc-world.com/VISSIMinfo.htm
http://www.itc-world.com/VISSIMinfo.htm
mailto:perumallaks@ornl.gov
http://www.ornl.gov/~2ip

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

