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ABSTRACT 

Emerging needs in transportation network modeling and 
simulation are raising new challenges with respect to scal-
ability of network size and vehicular traffic intensity, speed 
of simulation for simulation-based optimization, and fidel-
ity of vehicular behavior for accurate capture of event phe-
nomena. Parallel execution is warranted to sustain the re-
quired detail, size and speed.  However, few parallel 
simulators exist for such applications, partly due to the 
challenges underlying their development.  Moreover, many 
simulators are based on time-stepped models, which can be 
computationally inefficient for the purposes of modeling 
evacuation traffic.  Here an approach is presented to de-
signing a simulator with memory and speed efficiency as 
the goals from the outset, and, specifically, scalability via 
parallel execution.  The design makes use of discrete event 
modeling techniques as well as parallel simulation meth-
ods.  Our simulator, called SCATTER, is being developed, 
incorporating such design considerations.  Preliminary per-
formance results are presented on benchmark road net-
works, showing scalability to one million vehicles simu-
lated on one processor. 

1 INTRODUCTION 

Accurate estimation of metrics related to transportation in 
planning under time deadlines (as in emergencies) requires 
fast evaluation of multiple candidate scenarios using high-
fidelity simulations.  Fast models optimized for such sce-
narios are required for best possible simulation speed that 
capture the right amount of fidelity and provide sufficient 
accuracy.  The short amount of decision times can demand 
fast simulation turnaround times, while large geographical 
coverage for decisions requires evaluating large-scale sce-
narios.   Quantitatively, these requirements translate to the 
ability to perform detailed simulation of traffic on the order 
of a few million vehicles traversing across a few million 
road intersections.  Added to these temporal and spatial s-
cales is the need to capture other related sociological and 
1501-4244-0501-7/06/$20.00 ©2006 IEEE
behavioral phenomena that affect the traffic patterns and 
behaviors.  Together, the new requirements create the need 
for a simulation environment that can scale up to several 
cities worth of traffic and road networks, requiring the use 
of parallel simulation techniques.  However, few traffic 
simulators have been built for scalable parallel execution.  
Based on the needs of meeting the simulation fidelity, 
speed and scale of anticipated scenarios, we are building a 
new simulation environment called SCATTER – Scalable 
Tool for Transportation and Emergency Research – which 
(a) employs an appropriately determined level of micro 
simulation at vehicular level to capture sociological behav-
iors pertinent to the scenarios (b) optimizes the data struc-
tures for modeled entity representations to minimize mem-
ory usage (c) casts the execution as a discrete event 
modeling formulation to skip over uninteresting aspects of 
vehicular movement (d) structures the models from the 
outset to enable efficient parallel execution. 

1.1 Related Work 

Tools such as TRANSIMS (Smith, et al. 1995), VISSIM 
(Innovative Transportation Concepts 2001), CORSIM (ITT 
Systems & Sciences Corporation 1998, Prevedouros and 
Wang 1999), MITSIM, PARAMICS (Cameron and Dun-
can 1996) and OREMS (Bhaduri, et al. 2006, Franzese and 
Han 2001) have been developed with varying goals and 
capabilities (Fujimoto and Leonard II 2002).  Each of those 
tools has been designed for their respective target applica-
tions.  The SCATTER approach is, at a fairly high-level, 
distinguishable by its modeling framework to accommo-
date new sociological phenomena, its discrete event model-
ing approach for speed, and,  most importantly, the struc-
ture and design for scalable parallel execution. 

The rest of the document is organized as follows.  The 
modeling framework of SCATTER is described in Section 
0.  Details of the discrete event simulation algorithm that 
underlies the vehicular mobility models is presented in 
Section 3.  A preliminary performance study of memory 
usage and execution speed on parallel computing platforms 
0



Perumalla 
 

 

 
 
 
 
 

Segment 

Lane 

 
In

te
rs

ec
tio

n 

Lane 

  
In

te
rs

ec
tio

n 

Segment  
 
 
 
 

Segment 

Lane 

Lane 

 
 
 
 

Segment 

 
In

te
rs

ec
tio

n 

 
Figure 1: Illustration of the Basic Modeling Unit (Grayed Region), Which is the Intersection Plus Lanes of All Incoming 
Road Segments 
 
is presented in Section 4.  Summary and future work are 
outlined in Section 5. 

2 MODELING FRAMEWORK 

We will describe the main features of SCATTER’s model-
ing framework, its design elements and uses.  Additional 
considerations on interfacing the traffic movement features 
with various data sources is discussed in (Perumalla and 
Bhaduri 2006), and hence not duplicated here. 

2.1 Generalized Time Advancing Framework 

The framework is designed for incorporating time-stepped 
(TS), discrete-event (DES) or any combinations of TS & 
DES across modeling units.  For example, time-stepping 
can be employed for road segments in which accurate 
driver behavior needs to be captured (e.g., arbitrary num-
ber of dynamic lane switching decisions between entry and 
exit on a single, short/congested road segment), and DES-
based time-stepping can be used on other road segments 
(e.g., relatively vacant highway). 

2.2 Indivisible Modeling Unit 

Following the overriding goal of parallel execution, the 
network model is first structured into multiple indivisible 
units whose states are by design decoupled from each 
other.  All interaction between the units is via exchange of 
time-stamped events, with no shared memory/state across 
units.  This permits maximum flexibility for arbitrary map-
ping of units to processors.  Also, by mapping each unit to 
a logical process, it enables parallel execution via paral-
lel/distributed discrete event simulation techniques. 

There are multiple alternatives for the definition of 
such modeling units.  For example, the network model 
could be divided by cutting each intersection in the inter-
section area.  Such partitioning, however, suffers from po-
tential violation of mutual exclusion conditions – the ne-
cessity for preventing more than one vehicle occupying the 
same physical position at an intersection.  Another alterna-
tive is to cut a road segment in the middle.  This suffers 
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from zero lookahead(Fujimoto 1990) limitation across the 
cut road segments. 

Our partitioning approach uses a novel combination of 
intersection and incoming slices of road segments, as 
shown in Figure 1. 

The basic modeling unit consists of a slice of the road 
network that is strangely shaped at first sight.  Given a set 
of roads and intersections, our modeling approach divides 
them into units.  Each intersection is associated with one 
unit.  This unit also then includes all the lanes of incoming 
roads incident onto that intersection.  The benefit of this 
modeling approach is that all routing decisions and vehicle 
forwarding decisions can be performed without mutual ex-
clusion violations at the intersection.  Also, sophisticated 
traffic light controllers can be encoded without paral-
lel/distributed memory considerations. 

2.3 Vehicle Identity 

Vehicles retain their identity during the entire duration of 
simulation.  As in real life, all vehicles are instantiated at 
initialization, and persist throughout the period of simula-
tion.  Vehicles are not deleted during periods of inactivity 
– they remain “parked” at the nodes that are intermediate 
points in their trip (e.g., at work, home, etc.). 

Vehicles are exchanged as events.  When a vehicle 
leaves one intersection and enters another intersection, it is 
modeled as a time-stamped event sent by the source logical 
process to the destination logical process. 

2.4 Basic Kinetics 

The basic set of kinetics associated with typical vehicular 
traffic micro models are included.  Each intersection unit is 
responsible for advancing the state of vehicles on all its in-
coming road segments.  For each vehicles, the following 
kinetics are modeled. 

 
 Car following: A simple car-following model is 

included in which vehicles obey the acceleration, 
deceleration and velocity constraints imposed by 
1
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vehicles in front of them.  Inter-vehicular gap is 
always maintained for greater realism. 

 Lane changing: A simple variant of lane-changing 
behavior is modeled, which is slightly biased to-
wards filling all lanes of road segment.  This type 
of lane-changing is a specialization for emer-
gency/evacuation scenarios; the lane choice is 
made by the vehicle upon entry onto a road seg-
ment from an intersection.  This decision is per-
formed at every intersection; hence, a vehicle can 
make multiple lane changes during its trip along a 
route. 

2.5 Trip Modeling 

Sophisticated trip behavior is incorporated via the ability to 
define trip plans (home, work, grocery, etc.) of arbitrary 
combinations, on a per-vehicle basis.  Care has been taken 
to minimize the memory usage due to the power of such a 
feature, by encoding the trip in a tight manner.  A trip plan 
consists of several trip steps.  Each step is a triple: <desti-
nation type, destination identifier, time>.  Destination type 
could be an ordinal value such as HOME, WORK, GAS, 
etc.  Destination identifier could be the unique identifier of 
any intersection in the network, in which case the vehicle 
is routed towards that specific destination.  Alternatively, it 
could be a specification of a node “around” which the des-
tination type should be explored by the system, and the 
most preferred one chosen automatically (e.g., gas station 
closest to the desired node).  Time could be the precise 
amount of time to elapse while parked at the destination, or 
it could be an absolute time for departure from that node to 
its next destination in the trip.  Absolute times are useful to 
encode behaviors that are resilient to delays experienced by 
traffic due to network conditions. 

Despite the complexity, the total vehicle byte size has 
been kept to under 150 bytes on a 64-bit machine. 

2.6 Traffic Light Controllers 

Simple traffic light controllers have been modeled that 
have synchronous light sets that change light colors in syn-
chrony in round robin fashion.  More sophisticated sched-
ules can be easily added, without overhaul to the frame-
work.  Also, smart controllers such as those that operate 
based on detection of vehicular presence can also be easily 
added without violation of the discrete event modeling ap-
proach described next. 

3 DISCRETE EVENT MODEL 

The discrete event modeling approach is based on the sim-
ple insight that the most interesting events in the vehicular 
movement are easily captured by an intersection node 
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process.  At each intersection, the algorithm shown in 
Figure 2 is executed. 

3.1 Algorithm 

Intersection::execute( Event *event ) 
 
    switch( event->type ) 
        case LIGHT_CHANGE: 
            Update_Lights(); 
            break; 
        case VEHICLES_UPDATE: 
            Reset_NERUTS(); 
            break; 
        case VEHICLE_HANDOFF: 
            AddArrival( event->vehicle ); 
            break; 
 
    Update_InSegments(); 
    Update_ParkedVehicles(); 

Figure 2: Discrete Event Algorithm Executed by Intersec-
tion Node 
 
The execute() method of an intersection node is executed 
by the discrete event simulation engine whenever there is 
an event destined for the intersection.  Events are time-
stamped and are executed in global time-stamp order. 

As part of Update_InSegments(), each vehicle on all 
lanes of the intersection’s incoming road segments are ad-
vanced by delta time equal to current time stamp minus the 
last time at which they were updated.  In Up-
date_ParkedVehicles(), vehicles parked at that node, if any, 
are checked for departure readiness. 

If and when any vehicles are ready to depart, either 
from parked queue or from the front of incoming lane 
segments, then traffic control and congestion effects are 
incorporated for decision on whether the vehicle will be 
permitted to leave.  For example, the traffic light corre-
sponding to its next hop in its trip is consulted for 
green/yellow color.  Also, availability of room in the lanes 
of outgoing road segment ahead is verified. 

Both updates, to in segments and to parked vehicles, 
result in the scheduling of a new local 
VEHICLES_UPDATE event into the future for this inter-
section.  Similarly, next time for light changes are sched-
uled via a local event of type LIGHT_CHANGE.  As an 
optimization, only the earlier of the two event types 
VEHICLES_UPDATE and LIGHT_CHANGE is sched-
uled, since one automatically implies updates for the other. 

When a vehicle is ready to depart this intersection, and 
has met all condition of departure (destination outgoing 
road segment is not full, light is green, etc.), then a 
VEHICLE_HANDOFF event is sent to the intersection 
that owns the outgoing road segment of that vehicle.  Upon 
receiving a VEHICLE_HANDOFF event, the intersection 
adds the vehicle onto the incoming road segment corre-
02
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sponding to the outgoing road segment on which it was 
sent.  At this point a lane changing algorithm is invoked on 
the vehicle which currently switches the vehicle to the least 
congested lane on its road segment (of course, while pre-
serving an inter-vehicular gap). 

The earliest departure time for vehicles is computed by 
simple Newtonian physics calculations which involve solv-
ing the quadratic equation on acceleration, velocity and po-
sition of the lead vehicle on each lane of each incoming 
road segment on all road segments incident on an intersec-
tion.  Care is taken to handle all special cases arising out of 
dual and/or imaginary roots of the quadratic equation.  It is 
this next earliest required update time that is used to 
schedule the next VEHICLE_UPDATE event. 

3.2 Routing 

Routing table computation is clearly a computationally in-
tensive operation, which is incurred at simulation initializa-
150
tion.  However, we are adapting the optimizations that have 
been discovered in the area of large-scale Internet (TCP/IP 
network) simulations, such as Nix-Vector routing.  More-
over, we are using a “ghost-node” approach to representing 
the entire network at every processor for accurate routing 
table computation in the absence of shared memory. 

3.3 Data Structures 

The hierarchy realized in data structures for this is shown 
in Figure 3.  Note that only in-segments are represented in 
full detail at each intersection (with lanes holding vehicles 
at different locations).  Every in-segment of an intersection 
has a corresponding out-segment on another intersection.  
Another protocol is used to synchronize out-segment occu-
pancy information with their origin intersections.  This is 
necessary to accurately capture congestion spanning multi-
ple intersections. 
 

 
Figure 3: Model Data Structures 
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3.4 Configuration 

Configuration of simulation is performed via a simple con-
figuration file provided as input to SCATTER.  The file 
consists of simple directives such as NODE, LINK and 
VEHICLES, which are straightforward to encode for any 
given network topology, including number of lanes, speed 
limits and geographical coordinates. 

4 EXPERIMENTAL STUDY 

We now turn to a preliminary performance study for the 
current implementation of SCATTER.  In order to facili-
tate this study, we first define a simple synthetic bench-
mark.  This is followed by test of simulation speed.  Scal-
ability of the simulator with increasing number of vehicles 
is examined, followed by initial report on parallel execu-
tion performance. 

4.1 Benchmark 

Our synthetic benchmark road network consists of 
road segments enclosing a grid of n x n blocks as shown in 
Figure 4.  Each intersection has a single-lane road segment 
into the interior of the block, nominally representing lanes 
into parking lots in that grid element, as shown in close-up 
view in Figure 5.  Each main road segment has two lanes, 
and there is a traffic light controller at every intersection, 
as illustrated in a zoom-in picture of an intersection in 
Figure 6.  The perimeter road segments on the four 
boundaries have a slightly higher speed limit than the inte-
rior roads.  For benchmarking a parallel execution, m in-
stances of this grid are created and placed in a circular pat-
tern, and the four corners of each instance are connected to 
adjacent (left and right) neighbor’s corners.  Vehicles are 
created, v per grid element (i.e., v vehicles parked in the 
parking lot of each grid location).  Vehicles’ destinations 
are picked randomly from all available blocks.  The pic-
tures of the benchmark network are generated as screen-
shots from the SCATTER visualization and animation tool.  

Although we have access to more realistic road net-
work topologies, we chose this benchmark as it represents 
a more controlled scenario whose properties are easier to 
understand.  However, we also plan to perform benchmark 
studies on realistic networks shortly, after establishing the 
scalability of speed and size on synthetic benchmarks. 
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Figure 4: Benchmark Road Network with an n x n Grid 

 

 
Figure 5: Close-Up View of a Few Grid Elements of the 
Benchmark Road Network 
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Figure 6: Close-up View of Streets at an Intersection of the 
Benchmark Road Network 

4.2 Computation Platform 

All experiments were executed on a cluster of nodes, each 
node containing dual Intel 3.4GHz Xeon EM64T proces-
sors, 4GB of memory and dual Gigabit Ethernet intercon-
nects. 

4.3 Performance 

The number of microseconds taken by each event is 
tracked with varying number of vehicles introduced on two 
configurations of the benchmark network.  One configura-
tion uses n=3 (which gives 9 intersection nodes), and the 
other configuration uses n=33 (which gives 1089 intersec-
tion nodes).  The number of vehicles v per node is varied 
from 1 to 1000, which gives up to 1 million vehicles total 
on the 1089 node configuration. 
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Figure 7: Event Processing Speed with Increasing Number 
of Vehicles on the Benchmark Road Networks 
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It can be seen from Figure 7 that event processing computa-
tion time is very low, and scales well even up to 1 million 
vehicles (on a single processor).  The event processing stays 
in the 100 microsecond range even in the largest case. 
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Figure 8: Speedup Over Real-Time as the Number of Ve-
hicles on the Benchmark Road Networks is Increased 
 
An important metric is the amount of speedup afforded by 
the simulation relative to real-time.  A factor of r > 1 says r 
predictive simulation runs of 1-day can be explored in one 
day of wallclock time.  Clearly, the higher the value of r, 
the more desirable it is, to be able to explore many alterna-
tive planning/emergency scenarios.  This is tracked in 
Figure 8. 
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Figure 9: Memory Usage as The Number of Vehicles On 
the Benchmark Road Networks is Increased 
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Memory usage is kept low by design, as shown in 
Figure 9.  Even with 64-bit computing overheads, each ve-
hicle is represented in 144 bytes, each intersection is repre-
sented in 630 bytes and in/out segments consume less than 
100 bytes each.  The memory for each intersection is rela-
tively high because of the overhead of approximately 500 
bytes imposed by the underlying parallel simulation engine 
for each logical process (recall that each intersection is re-
alized as one logical process). 
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Figure 10: Speedup Due to Parallel Execution 

 
Parallel execution is enabled via simple directives in 

the configuration file, to specify a mapping from intersec-
tion identifier to a processor identifier (integer to integer).  
The performance improvement from parallel execution is 
shown in Figure 10 for a benchmark test case of n=15 and 
m=4. 

5 CONCLUSIONS 

Efficient simulation of vehicular traffic on large spatial 
scenarios is an emerging need.  Parallel simulation is 
needed to best meet the geographical scales and real-time 
speeds warranted by related applications.  To the best of 
our knowledge, SCATTER is one of the few transportation 
simulators that is discrete-event based and also enabled for 
parallel execution.  The SCATTER simulator currently 
runs on cluster of workstations platform connected by net-
work, and does not rely on availability of shared-memory 
across processors. 

5.1 Future Work 

We are incorporating efficient routing algorithms for dy-
namic traffic behavior (change of individual routes based 
1506
on congestion levels and/or events).  While full or incre-
mental re-computation of shortest path routes seem to be 
applicable, that is not necessarily an accurate representa-
tion of real life operation, since not every driver is aware of 
entire network state instantaneously.  We are exploring 
more representative models such as localized self-
rerouting.  Also, efficient geographical abstract routing is 
being explored, based on the observation that road net-
works are clustered in terms of towns and cities, with 
sparse connectivity across the clusters.  We are exploiting 
this structure by computing routes only on demand, and 
cache the computed routes.  This approach avoids comput-
ing shortest paths between all pairs of intersections, and 
instead computes only those routes that are actually in-
voked in the particular simulated scenario. 

Benchmarking on more realistic scenarios based on 
actual highway topologies is underway.  SCATTER is also 
being ported to supercomputing platforms.  Being built on 
the scalable µsik(Perumalla 2005) system is making this 
port easier.  µsik supports a micro-kernel framework that 
scales well the with number of logical processes (LPs), the 
number events exchanged by the LPs and with the number 
of processors.  Virtual time synchronization is realized us-
ing a scalable asynchronous algorithm(Perumalla and Fu-
jimoto 2001) that provides rapid time advances.  In some 
of the largest configurations, up to one million LPs are 
tested to exchange a 1-billion event population.  Since in-
tersections are mapped to LPs and vehicle transfers are 
mapped to events, µsik’s scalability could potentially be 
exploited by SCATTER. 
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