
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

AUTOMATED DATABASE AND SCHEMA-BASED DATA
INTERCHANGE FOR MODELING AND SIMULATION

 Gregory A. Harrison
David S. Maynard

Eytan Pollak

Lockheed Martin Simulation, Training & Support
12506 Lake Underhill Road
Orlando, FL 32768, U.S.A.

ABSTRACT

Creating a simulation of a large enterprise system by
manually coding all the details into a simulator tool is not
just time consuming, but yields a system that is difficult to
maintain. By separating the model-configuration data from
the models, a higher level of automation can be achieved,
and enhance the usefulness of the simulation. The underly-
ing data can be manipulated by the subject matter experts,
and then transformed into the appropriate structure for
simulator use. This paper describes a method that auto-
matically configures a simulation using external data that
interfaces to generic processing flow. The models and the
simulation were co-designed along with the interchange
data representation to enable generic models to be config-
ured under software sequenced by a workflow system. This
allowed model re-use, and automatic configuration
changes, in support of optimization. We also describe the
application of this technique to the simulation of an enter-
prise, student-training system.

1 INTRODUCTION

In the simulation of large systems, there can be great quan-
tities of details involved in the configuration of all the sub-
systems in the model. Programming all the details by hand
could be very tedious and error-prone. In some cases, the
details would be very necessary to the validity of the
model, and to the usefulness of the results of the simula-
tion. To help overcome this difficulty we developed a
method to configure a simulation automatically, using data
stored in a relational database.

We concentrated on the configuration of systems of
models in a discrete event simulation. Discrete event
simulation is described in Banks (2001). The discrete
event simulator that we used was Arena, from Rockwell
Software. Arena supplies a visual interface to create the
models, and a VBA interface to allow passing data in and
out of the simulation. To accommodate automatic con-

figuration using outside data, generic models were de-
signed, having slots for external data. These configurable
data slots defined many things within the model, such as
resources that were required, the amount of time different
operations within the model would take, and other required
configurations, such as the model’s hierarchical position in
the overall architecture.

In the ordinary case, once the generic models were en-
tered through the visual interface, they would be un-
changeable. But the techniques described in this paper al-
lowed us to use the capabilities of the visual-user-interface-
programmed discrete simulator, as well as to control the
settings of all the individual models within, using configu-
ration data from a source outside the program.

The main technologies involved were Visual Basic,
Applications Edition, or VBA and the Extensible Markup
Language, XML, especially the XML schema capabilities.
These allowed the transfer of large amounts of articulated
data right into the Arena application. In the use of other
simulators, it is still recommended to use XML, but the
VBA section may change depending on the capabilities of
the simulator.

A workflow system sequenced all the various software
applications, and served to pass the date from one applica-
tion to the next. This workflow proceeded in a completely
automatic manner. It used the Java programming language
to interface with the database to create the XML data that it
passed to the VBA of the discrete event simulator.

This paper describes the methodology that enabled the
creation of a complex, external-data-driven simulation.
Discussion of the various components, and the reasons for
their use is included. It also describes an application of
this methodology in the simulation of an enterprise-level
student-training system.

2 SEPARATING THE MODEL FROM THE DATA

There is a certain regularity in models of a similar type.
Even if there are some differences between models in a type

Harrison, Maynard, and Pollak

class, the differences may be small. Thus, you may be able
to group your models into distinct types, enabling you to
identify pertinent characteristics about each type of model,
and create individual data items to control the setting of each
of the pertinent characteristics in the simulator model.

Data-driven modeling allows automation to be applied
so as to specify the operation of each model instance in the
simulation. For instance, if you have twelve different
classes of models that need to be used in a certain simula-
tion, you can represent the different model types as each
having a certain set of data that applies to that type. You
can create a database that holds these sets of data, with dif-
ferent data sets for each model type. Then, this data would
provide information as to how to represent the internal
structure of each model in the simulation.

In a discrete event simulator, two of the most impor-
tant variables are the temporal position in the chain of e-
vents in each model, or the event ‘flow’ position, and the
amount of time to take in that flow position. Flow posi-
tions can be modeled as either occurring in parallel (as in
simultaneous), or in a sequential flow. This modeling is
specified by the configuration of the model in the simula-
tor. It is necessary that the discrete event simulation model
flows and time duration information requirements are
specified early in the design process, so as to allow simul-
taneous development in the design team.

Now that the abstraction items of flow and time-delay
are available, the specification of the state can be tabulated
as part of the data, and encoded into the database, or ex-
tracted from an existing database. The model can state that
there is a delay at time index three, but the amount of the
delay is part of the data realm.

The existence of flow states can be turned off by not
specifying them in the data, and the discrete event simula-
tor model must know to skip this step in the resulting flow.
Similarly, the amount of delay can be controlled by the
data also. This is the basis behind the ability to specify the
operation of the simulation by a detached data model.

A versatile simulation model needs to be provided by
the simulation tool. It must be possible to specify the vari-
ous states and delays inside the model using data that
comes from a source external to the simulation tool. Many
different model operations should be able to be specified
through the data, enough so that the set of models can rep-
resent the totality of all possible configurations expected in
the final system.

One of the benefits of this representation is that having
the knowledge of how the underlying model operates,
which should closely match how the actual physical proc-
ess operates, then the Subject Matter Experts (SME) can
have an expedited method to specify the underlying system
performance properties, while the model would remain un-
changed. The SME can specify the control data using or-
dinary desktop tools, such as a spreadsheet or database,
and not have to be experts in the simulation tool. The
families of generic models are automatically configured
using the SME data. This exemplifies code reuse, if the
underlying models can be made flexible enough.

2.1 The Link Between Database and Simulator

To accomplish the inter-process communication between
the creation of the data and the simulation use by the mod-
els in the simulator, some method must be used to transfer
the data. With the prevalent, and expanding, use of XML,
it was apparent that the best technology for the current and
future data transfer was XML. XML allowed a detailed,
hierarchical transfer of data, while still being readable by
human operators.

One benefit of XML was that development could con-
tinue in parallel, after the XML schema was decided upon.
The modern XML parsers and generation tools all rely
upon a data format specification mechanism, called a
schema to ensure that the information transmitted corre-
sponds to the information that was sent. The sender has to
ensure that their data is valid with respect to the schema,
and the recipient of the data can use library routines to en-
sure that the data format is valid with respect to the pub-
lished schema. This is a great improvement over prior,
stove-piped, implementations, where the utmost care
would be required to ensure that the binary or ASCII data
met the expectations of the sender and the user.

2.2 Database Choice

In the application that we will describe later, the source
data was already encoded in the Microsoft® SQL Server
relational database system. Due to this constraint, we de-
veloped a system to translate the source data into the data
formats that were immediately useful by our discrete event
simulator. While other database products may perform
equally admirably, we stayed with the Microsoft® SQL
Server because it allowed the suitable creation of the XML
data-transfer format, and was robust enough for our appli-
cation. We used the stored-procedure system to create in-
termediate tables that were more directly converted into
XML text. This system is described in Šunderić (2003).

The XML text was obtained in two ways, depending
on the stage of system operation we were in, whether engi-
neering or on-line operation. As the maximum record size
for Microsoft® SQL Server was 8192 characters, it re-
quired some newer techniques to extract 1000 pages of
XML text from the system. During the engineering stage,
we were able to obtain the full XML information through a
Microsoft® Internet Information Services link, that al-
lowed us to manually combine the information using Al-
tova XMLspy, an XML editor. But during the automated,
on-line operation, our best application of the available
technology involved using Java Database Connectivity
software, JDBC, to get the bulky information, and supply it

Harrison, Maynard, and Pollak

to the next level in the workflow. This allowed a fully-
automated method to get to the database information, and
supply it to the discrete simulator.

As a separate issue, the generation of suitable XML
from the Microsoft® SQL Server proved to be one of the
hardest issues to overcome. We had come up with an
XML schema before trying to make the database accom-
modate the schema, and even so, due to the complexity of
information to be transmitted, it would not have been easy
to use the ‘standard’ XML format that the database pro-
duces. Instead, we had to go to the SQL Server ‘Explicit
XML’ format, to create XML text that matched the pre-
existing schema for data transfer. This is a rather difficult,
but accomplishable, process, and it enabled us to match the
schema that the discrete simulator parser was looking for.

2.3 XML Schema

The XML schema proved to be an enabling technology for
the creation of the application. Since XML lets you pro-
vide hierarchical data separation, we took advantage of this
capability to supply detail for the models. An example of
the schema is shown in Figure 1. The hierarchical nature
of the data is seen by inspection.

There are multiple ‘Configuration Class’ entities that
each describe different portions of the underlying system to
be simulated. Each entity may contain differently formatted
hierarchies of data. This is quite a different mechanism
than would be found in a relational database. Relational da-
tabases organize the data in tables, which supplies a
‘breadth’ view of the information. Instead, XML, as well as
object-oriented programming, organizes the data in a hierar-
chical, ‘depth’-type format. This was the primary hurdle to
overcome in the creation of an XML document to represent
the information in the relational database. It required mak-
ing a huge table, called a Universal Table, full of a high
number of null locations, in order to contain the ‘depth’-type
information in a ‘breadth’-type format.

Delving deeper into the schema, it is seen that in Con-
figuration Class 3, there are models available. There may
be thousands of models at this level. Each module con-
tains the information that the discrete event simulator

needs in order to configure itself to represent the individual
module correctly.

An example of XML code that would be generated
from this schema is shown below. In actual XML code,
there would be much data below the Configuration Class
headings, and likely many models to be addressed.

<Top Level System >
 <Configuration Class 1/>

 <Configuration Class 2/>

 <Configuration Class 3>

 <Model>

 <Model Identifier>14</Model Identifier>

 <Model Name>Your Model</Model Name>

 <Model Parameters>

 <Model Parameter 1/>

 <Model Parameter 2>

 <Setting 1>6</Setting 1>

 <Setting 2>5</Setting 2>

 <Duration>20</Duration>

 <Details>anon</Details>

 </Model Parameter 2>

 </Model Parameters>

 </Model>

 </Configuration Class 3>

 <Configuration Class 4/>

 </Top Level System>

2.4 Content of Database Tables

The data and the organization of the underlying database,
in our application, was previously established by subject
matter experts. It was established for another purpose, but
contained the details we needed. Therefore, we had to sup-
ply some method to interpret the information, and make it
amenable to the discrete event simulator. In a simulation
system that was created all at one time, it would be helpful
to organize the data so that it would be easier to transform
it into a form that would be readily acceptable by the
simulator. As it was, the table organization, and the data
content, was such that we had to create a secondary set of
data tables to use in the creation of the XML that would be
directly read by the simulator.

Figure 1: An Example of an XML Schema for Data-Driven Model Information

Harrison, Maynard, and Pollak

This was accomplished through the use of stored pro-
cedures, that could be activated by the workflow engine we
used. This resulted in tables that were more-easily parsed
by the XML-generation utilities that were part of the data-
base. It was important to allow one record for each of the
underlying XML syntax elements, and to supply suitable
sorting mechanisms to ensure that the information was
output in the correct locations in the resulting file to sup-
port the XML Explicit mechanism.

3 TECHNOLOGIES USED

Modern software technology was used to support the pass-
ing of data fluidly throughout the entire application, start-
ing from the requirements, through to the databases, and
finally to the discrete event simulation. These technologies
were chosen for their generic properties and highly exten-
sible usages, so as to allow for the additions to, or subtrac-
tions from, the overall application system with minimal ex-
tra development.

3.1 JDBC

Since the workflow engine used the Java programming
language, having a way for Java to interface with the data-
base proved to be very helpful. The database supported a
Java Database Connection, JDBC, system, which allowed
Java code to link to the database, perform queries, and get
results. The results obtained through this method avoided
the 8192 character SQL Server limit on record size, and we
were able to get 1000-page XML files.

3.2 Stored Procedures

Stored procedures are a product of the Microsoft® SQL
Server environment. They allow batches of Transact-
SQL code to be run, controlling the process of making the
XML from the source data. The workflow engine was
able to cause these stored procedures to run, using the
JDBC connection.

3.3 Web Server Integration

This interface allowed the XML data to be obtainable from
a PC workstation. Again, the 8192 character limit on re-
cord size, caused the returned XML to have just 8192
characters, when using the ordinary database query tools.
This problem was overcome with the JDBC interface, but
for quick checks, and manual creation of the interface file,
the database would output the xml results through a web
server. Then the file would appear on your web browser,
and you would just copy it out.

3.4 Why Use XML?

XML provides a great improvement over binary or textual
information, in that it indicates a hierarchical relationship
between all the data elements. Parsers can be written using
parser standards such as DOM or SAX in all modern lan-
guages such as C++ and Java. Many desktop tools and ap-
plications are now being written with Import / Export op-
tions to write out, and accept, XML. Therefore, much
support was available, with more on the way. It seemed
like a good technology to invest in.

3.5 Generic Properties of XML

XML describes its content in terms of what the data is that is
being described. For example, an <AuthName> parent tag
can indicate that the data following it is the author’s name,
and an <AuthAffil> as a child tag can indicate the affiliation
of same author. This type of definition allows an XML file
to be processed purely as data by an application as well as
being organized and viewed via most Internet Browsers.
XML is called ‘extensible’ since, unlike HTML, the markup
symbols are unlimited, customizable, and self defining.

4 INTERNAL SYSTEM OPERATION

We used a workflow engine as a collection of related tasks
that are organized into, and associated with, a collaborated
set of resources or assets. It controlled the execution of the
business process we designed by triggering, through appli-
cation automation, all tools and processes in the overall
application. This methodology not only triggers one appli-
cation after another in order, but also includes using the
output of one sequential application as the input to another.
Figure 2 illustrates the overall system.

The workflow process can start with a Java GUI that
allows for certain custom-built choices to be selected.
These choices can typically be selections of whether or not
to have the internal simulation output be optimized, to al-
low for what-if scenarios to be run, or to view runtime
simulation animation.

The first application in the workflow process could be
a requirements analysis tool to enter certain custom data
into the SQL Server databases. Once the data was popu-
lated within the databases the workflow would trigger
stored procedures, Explicit XML and conversion technolo-
gies to create the complete XML file. The workflow en-
gine would then write the XML file to disk to be used as an
input to the discrete event simulator. During and after the
simulation runs, the discrete event simulator writes student
logs, Microsoft® Excel plots and graphs, and web deploy-
able reports, as outputs. After the simulation runs to com-
pletion these outputs can be presented visually by having
the workflow engine automatically bring up these various
applications. Also, if the selection was made in the begin-
ning of the workflow run to allow for what-if scenarios, the
workflow would then present the user with more Java
GUIs. This allows the user to make changes to the data-
base entries or the XML directly, an then perform a new
full simulation run.

Harrison, Maynard, and Pollak

Figure 2: Overall System Application Superset
4.1 Workflow Engine

The WfMOpen workflow engine was used within the ap-
plication superset, which is based on WfMC; an GNU Li-
censed Open Source standard. WfMOpen also implements
XPDL, or XML Process Definition Language; which is in-
clusive in the same standard. XPDL provides a framework
for implementing business process management and work-
flow engines.

4.2 XML Generation

Two methods were used to create the XML files. One
method involved hand creation of the XML files directly
from the schema, using XMLspy tools. The XML created
in this manner would have the proper form, but need to
have the data put in, to be useful. This method was helpful
early on in the development, and provided a way to quickly
get XML text to experiment with.

The online, automatic creation of the XML file used a
technology inside Microsoft SQL Server called XML Ex-
plicit to create an intermediate table, and output the table
as XML text. This method required cryptic, and tricky
coding of it’s instructions, but was the most powerful and
flexible method.

4.3 XML to VBA

Visual Basic, Applications Edition, or VBA, is a Micro-
soft® derivative of the Visual Basic programming lan-
guage that allows its host application to interoperate with

the Microsoft® Windows Platform Environment. VBA
was used to create a generic, customizable XML parser via
the MSXML parsing framework. Using Visual Basic cod-
ing standards, object classes and data structures were cre-
ated, in order to map, and hold within memory, all of the
pertinent data from the XML file. Typically, parent tags
within the XML are mapped to Visual Basic class names,
and the children tags are mapped to class member vari-
ables. These data structures were not only used for refer-
ence, but also used to populate all applicable variables and
modeling object constructs within the Discrete Event
Simulation. The organization of these data structures is
shown in Figure 3, which is a Unified Markup Language
class diagram that implements the schema of Figure 1.

4.4 Discrete Event Simulator

Discrete Event Simulation concerns the modeling of a sys-
tem as it evolves over time by representing any changes
within the system as separate events. Bank, et al (2001)
provides more information about discrete event simulation.
Arena® was used due to its versatile VBA standard inter-
face and graphical nature for building small to large scale
models.

The user interface is a simple drag and drop mecha-
nism for creating and populating all ‘modules’ or ‘blocks’
within the model. The model consists of one or multiple
process flows much like that of a flow-chart. As the entity,
or actor, moves through the flow it will enter model object
constructs such as 1-to-many decisions, processes where
resources can be seized and utilized, delays consisting of

Harrison, Maynard, and Pollak

Figure 3: UML Class Diagram of Model Schema

both static digits and random statistical distributions, and
output modules where numerical data can be captured and
written out to disk in many different mediums.

Because the XML data being is populated into VBA
classes and subclasses, all the data is within the discrete
event simulation’s memory. During runtime, but before
the simulation begins, the generic process model can be
modified using the aforementioned data. Resources can be
given specific names, costing data, and capacities. Internal
variables, expressions and process delays can be populated
with static numerical data, or random statistical distribu-
tions that are specific to the given dataset. Within our ex-
ample, an entire specific curriculum with a plethora of
course, lesson and student data was populated all within
the generic discrete event simulation model turning it into
a runtime specific model.

Due to the VBA coding interface the outputs can be
in the form of Microsoft® Excel spreadsheets using the
Microsoft® standard ODBC object. By having the dis-
crete event simulation write to the same area in an Excel
spreadsheet between simulation runs, dynamic graphs and
plots can be fully realized. The outputs can also be writ-
ten out to an XML schema for use within other applica-
tions, or to be deployed over the web. HTML can be
written to show the output data in a standard web format
for viewing over the web. Standard comma delimited
data can also be written out to be utilized within other ap-
plications such as Microsoft® Project for showing the
progression and traceability of events.

5 SIMULATION OF AN ENTERPRISE
TRAINING SYSTEM

We created a generic model of an enterprise training sys-
tem. An enterprise training system could be viewed as a
schoolhouse, having students, lessons, syllabi, and re-
sources. We investigated helicopter training. The students
would come to the school daily, and take the lessons that
were specified by the syllabus for the course they were in.
We simulated a detailed syllabus that was created by In-
structional System Designers for an actual enterprise train-
ing system. Students would take lessons an entire specific
curriculum with a plethora of course, lesson and student
data was populated all within the generic discrete event
simulation model turning it into a runtime specific model.

Different types of lessons were modeled, such as in-
structor-led, computer-based-training, and flying lessons.
Each type of lesson had its own set of control variables that
were set using data from the database. These variables
would include what resources were required, and how long
each section of the lesson takes, such as time to drive to the
airfield, and how long to fly.

CONCLUSIONS

While these data-driven modeling techniques were devel-
oped primarily for a given application, they have general
applicability for a large class of simulations, where many
detailed elements must be configured, and potentially
changed. Using modern software practices, and tools, al-
lowed the effort to be completed without being limited by
the tools. As it was, we had to reach out onto the some of
the newest branches of the application capabilities, such as
the automatic XML generation, and VBA simulator con-
trol. And, once the choice for use of these newer tech-
nologies was made, it set the minimum capability level for
all the other tools that were used in the system. Having the
workflow engine enabled all the various simulator compo-
nents, including the database, to interoperate. This frame-
work, and modeling paradigm can be used for many differ-
ent applications, especially where extensive and detailed
information is involved.

ACKNOWLEDGMENTS

Thanks go to the following Lockheed Martin individuals
for their efforts in creating the system described in the text:
Lorie Ingraham, Vivian Wong, Yushan Chen, Bruce Cas-
tle, Fred Madsen, Ed Reed, Richard Brent, Bruce Eddy and
Mark Falash.

REFERENCES

Banks, J., Carson, J.S, II, Nelson, B.L, Nicol, D. M. 2001.
Discrete-Event System Simulation, Third Edition. Up-
per Saddle River, NJ.: Prentice-Hall.

Šunderić, D. 2003. SQL Server 2000 Stored Procedure &
XML Programming, Second Edition. New York, NY:
McGraw-Hill/Osbourne.

Harrison, Maynard, and Pollak

AUTHOR BIOGRAPHIES

GREGORY A. HARRISON is a research and develop-
ment engineer at Lockheed Martin Simulation, Training &
Support in Orlando, Florida. He investigates modeling and
simulation technologies, and was actively involved in the
automation of discrete simulations. He received his Ph.D.
in Computer and Electrical Engineering from the Univer-
sity of Florida. His research includes large-scale simula-
tions, coordinate systems, digital signal processing, real-
time computing, robotics, mathematical modeling, and arti-
ficial intelligence techniques such as neural networks, ge-
netic algorithms and intelligent agents. He is a member of
the Graduate Faculty of the Florida Institute of Technol-
ogy. Dr. Harrison is the author of numerous papers, with
two patents in artificial intelligence techniques. He is a
member of IEEE. His e-mail address is <gregory.a.
harrison@lmco.com>.

DAVID S. MAYNARD is a Software Engineer with
Lockheed Martin Simulation, Training & Support within
the Independent Research and Development department.
He received his B.S. in Computer Science with a Minor is
mathematics from Florida State University (2001) and is
working on his M.S. in Computer Science from the Florida
Institute of Technology with a emphasis in Artificial Intel-
ligence using genetic algorithms. He has worked for sev-
eral years in the Open-Source Commercial Video Game
Modification community. His current research interests in-
clude the use of commercial video game technologies in
Military / Special Forces Training Systems and the use of
genetic algorithms to create a more realistic video game
opponent. His e-mail address is <david.s.maynard@
lmco.com>.

EYTAN POLLAK is a Research and Development Man-
ager for Lockheed Martin Simulation, Training & Support
in Orlando, Florida. He has published papers dealing with
distributed simulation, embedded simulation, reconfigur-
able simulators, and common architecture for simulation
systems. Dr. Pollak serves as adjunct professor of Electri-
cal Engineering at the University of Central Florida. He
received his Ph.D. from Purdue University. His e-mail ad-
dress is <eytan.pollak@lmco.com>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 191
	02: 192
	03: 193
	04: 194
	05: 195
	06: 196
	07: 197

