
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

“PLUG AND TEST” – SOFTWARE AGENTS IN VIRTUAL ENVIRONMENTS

Adelinde M. Uhrmacher

Department of Computer Science
University Rostock

D-18051 Rostock, GERMANY

Bernd G. Kullick

Faculty of Computer Science
University Ulm

D-89069 Ulm, GERMANY

o
n
e

e
t
r

th
h
a

in

n

u

n

s

ts

ts
on
t in
r,

-
r

d.
n

te

s.

ne
al,
s
It
ct
d

o
A

e
n
of

g
ase

d
e

r-
g
in
es
s

ABSTRACT

James - A Java Based agent modeling environment f
simulation has been developed to support the compositio
construction of test beds for multi-agent systems and th
execution in distributed environments. The modeling fo
malism of James imposes only few constraints on th
modeling of agents and facilitates a “plug and test” wi
pieces of agent code which has been demonstrated in ea
work. However, even entire agents can be run inJames as
they are run in their run-time environment. The integratio
of agents as a whole is based on model templates wh
serve as the agents’ interface and representative during
simulation run. The effort which is put into defining mode
templates for selected agent systems obviates the need
the single agent programmer to get acquainted with
underlying modeling and simulation formalism. Instead t
agent programmer can compose the experimental frame
test the programmed agents as they are. The approac
illustrated with agents of the mobile agent systemMole .

1 INTRODUCTION

Testing is an obligatory step of each software engineer
process and becomes even more important if the developm
of a software system must be considered as experime
itself. “At the time of writing, the development of any
agent system - however trivial - is essentially a process
experimentation. There are no tried and trusted techniq
available to assist the developer” (Wooldridge and Jennin
1998). Agent systems typically comprise multiple agen
which are bounded for open and dynamic environmen
They should be sufficiently flexible to adapt themselves
changed environments and changed functional requireme
and they should be able to do this in time.

The implementation and application of dynamic te
scenarios for multi-agent systems require considerable
forts. The virtual environment has to be modeled, as ha
the interaction between agent and virtual environment. Ty
ically, simulation systems allow to plug in code fragmen
or single modules whereas the agent itself is described
17
r
al
ir

r-

h
lier

n
ich
the
l
for
e

e
nd

h is

g
ent
tal

of
es
gs
ts
ts.
to
ts,

t
ef-
ve
p-
,
as

part of the model. Other simulation systems treat agen
as external source and drain of events. These simulati
systems save the user the extra effort to describe the agen
the modeling language of the simulation system. Howeve
they require typically more effort in analyzing the interac
tion and actions of agents in the virtual world, since neithe
agents nor their interaction belongs to the modeled worl

Based on a discrete event modeling and simulatio
formalism for testing multi-agent systems and its concre
implementationJames (Uhrmacher 2000) we will explore
how agents can be plugged and executed in virtual world

2 EMBEDDING AGENTS IN VIRTUAL WORLDS

Testing of agents in simulation systems requires to defi
and implement the interface between agents and the virtu
dynamic environment including typically, as stated by Hank
and his colleagues (Hanks et al. 1993), the time model.
describes the time the agent will probably need, e.g. to rea
to changes in its environment or to come up with a detaile
plan, when being executed in the target environment.

2.1 Defining Time Models

A variety of different time models have been proposed t
capture the temporal dimension of an agent’s activity.
constant time model is only employed if the functionality
of the agent is not time sensitive or the latter shall not b
analyzed. Alternatively, the time needed for deliberatio
or reaction is sometimes calculated based on the state
the agent. Yet, to foretell the performance of a plannin
system based on the size and structure of a knowledge b
is rather difficult. Therefore, the virtual deliberation time
is often modeled as a function of the wall clock time use
for executing the deliberation, even though executing th
experiment on different machines might affect the perfo
mance of the agents influencing the overall result. Countin
executed instructions is less susceptible to variations with
the execution environments (Anderson 1997), but presum
a “timed” version of the language in which the agent i
programmed.
22



Uhrmacher and Kullick

s
k
e

o
t
e

n

k

d
i
u

i
e
h
l
n

h

f

e

e

nt

r
er
p-
ts.
of
x-

ms
c-
l
sm

n
n
g

n
in

n

n
ed
98).
it
ed
It

e
r
n
h
t

e
s
t

el,

nt
t it

nt
n
et
d

Other test beds for multi-agent systems do not emplo
an explicit time model, at all. The simulation and agent
communicate with each other asynchronously in wall cloc
time (Itsuki 1995, Saphira Manual 1997). For exampl
the simulator of the environment checks frequently whethe
the agents have decided on an action that the simulati
engine has to take into account, otherwise it proceeds wi
its own calculation. If the agents are not the only sourc
of dynamics the execution time of agents and the virtua
time of the simulation system have to be put into relatio
which is typically done by slowing down the execution of
the simulation system. Due to varying loads on a networ
additional noise will be introduced and restrains the contro
of the experiment.

2.2 The Interface between Agents and Simulation

If the simulation system is not built for one agent type
only, functions which realize the interaction of the agen
with its normal execution environment are re-implemente
or replaced by functions directed to the simulation env
ronment. Agents place timed events on the event que
of the simulation system (Pollack 1996, Anderson 1997
or direct events asynchronously to the ports of the simu
lation system. For the simulation system an agent form
just an external source and drain of events. If an explic
time model is employed, the agent produces time stamp
events which are scheduled as any other events by t
simulation system. If agents communicate asynchronous
synchronization means agents and simulation are checki
frequently their ports for new information.

Messages and activities of the agents have to be tran
lated into events of the simulated virtual world. Events tha
are produced by the simulation system and directed to t
agent have to be translated into sensory inputs, messag
and calls of methods that are comprehensible by the agen
modules.

Both simulation and agents will keep some kind o
representation of the other. Within the virtual world those
of the agent’s properties are represented that are of glob
interest, e.g. the position of the soccer player in the field
Depending on the type of agent the agent will maintain a
individual view of the virtual world, as it would maintain
a representation of the real environment. Agents and te
environment are clearly separated and no “model” of th
agent exists in the test environment.

To perceive an agent as part of the virtual world, mor
or less rigorous frames are provided to compose agen
based on partly re-using and partly re-implementing a
agent’s modules, e.g. (Montgomery et al. 1992, Atkin
et al. 1998). Thus, they defer the problem of defining
the interface between agent and simulation to the modul
that are re-used. The agent itself is described within th
ed

172
y

r
n
h

l

,
l

t

-
e

)
-
s
t
d
e

y,
g

s-
t
e
es,
t’s

al
.
n

st
e

ts
n

s
e

modeling formalism which more or less favors certain age
architectures.

3 MODELING AND TESTING AGENTS IN JAMES

James, a Java-Based Agent Modeling Environment fo
Simulation (Uhrmacher and Schattenberg 1998, Uhrmach
et al. 2000), constitutes a framework which is aimed at su
porting experiments with agents under temporal constrain
Its core libraries provide the means for the description
variable structure models and their distributed, parallel e
ecution. It is not the intention ofJames to provide a
reference model for an agent architecture. Instead, it ai
at building a firm ground for testing agents and their intera
tion with dynamic environments, while imposing minima
restrictions on the type of agent or the reasoning mechani
to be tested.

The model design ofJames, resembles that ofDevs
(Zeigler et al. 2000) extended by means for reflectio
which allows agents to adapt their composition, interactio
and behavior pattern (Uhrmacher 2000). In the followin
section, we will illustrate the model design ofJames by
describing earlier experiments in which the model desig
in James was used as a frame to describe agents and
which the user had to plug in agent modules.

Figure 1 illustrates how a planning agent has bee
described as a time-triggered automaton inJames and how
different functionalities, e.g. updating beliefs, deciding o
goals, and the development of plans, have been invok
and thus been tested (Uhrmacher and Schattenberg 19
If the agent receives an external event in its input port
updates its beliefs and if no plan exists it develops bas
on its current beliefs, goals, and operators a new one.
determines the time it will become active again. This is th
time needed for deliberation or its pure reaction time. Afte
that time the agent will be activated again by the simulatio
system. The output function will charge the output port wit
the first entry of the list of intended things to do. Outpu
function and internal transition function form a unity in
James as they do inDevs , so directly after the output
function the internal transition function is invoked to updat
the internal beliefs and things still to do. It also execute
that part of the activity which is not sent via the outpu
port. This kind of activity includes e.g. the initiation to
change its own interaction structure, to create a new mod
to delete itself, or to move itself to a different interaction
context. By setting the time advance to infinity the age
signalizes that after having processed this internal even
will wait “forever” for a new input to arrive. In the above
example, the actions realize the interface from an age
to its environment. The actions are partly directed to a
agent’s internal world, e.g. its knowledge base and its s
of intentions, those will be interpreted by the planning an
belief modules of the agent, part of the actions are direct
3



Uhrmacher and Kullick

-
o

o

e
b
t

o
t
h

l
e

e
or

m
is

x-
n
in
e
d
be

a
ts

e
d
o
nt

et-
y
rce

n
ty
on
d
e

d,
es
rt

nd
al
e
in

a

n
e

or
for
class StillSimplePlanningAgent extends AtomicModel {

State deltaExt(State state, double elapsedTime) {
state.beliefs.update(input, elapsedTime);
if (intentions.plan == "noOp") {

state.goals.update();
state.intentions.update(beliefs,goals,operators);
state.setTimeAdvance(intentions.deliberationTime);

} else {
state.setTimeAdvance(REACTION);

}
return state;

}

void lambda(State state) {
Action action = state.intentions.getAction();
if (state.beliefs.entail(action.pre))

outPortPut("out",action.outputEffect(state));
else outPortPut("out", noOp);

}

State deltaInt(State state) {
Action action = state.intentions.getAction();
if (state.beliefs.entail(action.pre)) {

action.transitionEffect(state);
state.intentions.popAction();
state.setTimeAdvance(INFINITY); }

else { // re-planning ...
state.intentions.update(beliefs,goals,operators);
state.setTimeAdvance(intentions.deliberationTime);

}
return state;

}
}

Figure 1: Extract of the “Still Simple Planning Agent” in
James (Uhrmacher and Schattenberg 1998)

to the virtual environment, i.e.James models and their
interpretation of the incoming events.

As in Devs , atomic models can be grouped into cou
pled models. They define the current interaction context
a model. The modular, hierarchical modeling concept fa
cilitates the re-use of components and thus the constructi
of virtual test environments by composition. The modeling
formalism provides a general frame which imposes littl
constraints on the agent architecture and modules to
tested. However, still the user has to get acquainted wi
the basic notions of the underlying modeling formalism
and the additional effort - inJames to model agents as
time triggered automata - might hold little appeal to agen
programmers.

One would like to have both: the ability to execute
agents as they are, switching arbitrarily between an executi
in the real environment and the virtual test environmen
On the other side agents should be an integral part of t
experimental setting and should as such be perceivable a
controllable rather than function as black boxes loose
interacting with the test environment. One idea to oblig
both is to associate a discrete model, a kind of abstra
172
f
-
n

e
h

t

n
.
e
nd
y

ct

representative of the agent, with the real agent running. Th
role of the representative is to reflect the relevant behavi
of the running agent within the virtual world. The questions
to be solved are where do the representatives come fro
and how are the virtual representative and the agent it
representing interconnected and synchronized.

4 PLUGGING AGENTS INTO JAMES

To interrelate and synchronize the representative and the e
ternally running agent a means for communicating betwee
both is required. These mechanisms do already exist
James. They have originally been developed to integrat
deliberation processes into simulation runs explicitly an
efficiently (Uhrmacher and Gugler 2000). Processes can
started by the atomic model to run concurrently with the
simulation and report their results back to the model at
time determined by the employed time model. The resul
are put into a special port, allJames models are equipped
with, the “peripheral” port. It complements the ports with
which atomic models communicate with other models. Th
peripheral port is charged at a certain simulation time an
represents the link from the agent to its representative. T
illustrate the approach we choose agents of the mobile age
systemMole (Baumann et al. 1997a, 1997b).

4.1 Mole Agents

The environment ofMole agents comprises engines, which
represent theMole runtime system. The engine transforms
and forwards messages between the locations and the n
work. Each engine might comprise a set of locations. The
offer certain services to the agent and represent the sou
and destination of moving agents.

The life of aMole agent (Figure 2) starts in the moment
a location or another agent initiates the creation of a
agent. To become an active member of an agent’s socie
the preparation method signs responsible. The preparati
method is invoked if an agent is created or just awakene
after a successful migration. Thereafter, the working phas
of an agent starts, which includes invoking the start metho
activating the heart beat, and handling incoming messag
and calls concurrently. Whereas the start and the hea
beat runs exactly once (if at all), several messages a
calls can arrive at the same time which require sever
computation processes to handle them. Also within th
agent the user can start additional threads of control. If
one of the several running threads the code encounters
migrateTo , the agent prepares itself for its migration and
suspends all active threads. This phase will, if the migratio
succeeds, finally lead to all threads being stopped. If th
migration fails the processes are resumed.

Mole agents are equipped with a set of methods, e.g. f
migrating, RPCs, sending and receiving messages, and
4



Uhrmacher and Kullick

d

d
o
e

n
d

re
le
,

e

g
s.
y

e
at

s-
e

s

n

t

its

o

import mole.*;
public class Sputnik extends UserAgent

implements MobileAgent {
protected LocationName orbit;
protected boolean inOrbit;
public Sputnik() {}
public boolean init(Hashtable hash) {

Strin g s = (String)parameters.get("Orbit");
if (s != null) orbit = new LocationName(s);
else

return false;
return true;

}
public boolean prepare() {

// are we in orbit already?
if (getCurrentLocation().

locationName().equals(orbit))
inOrbit = true;

else
inOrbit = false;

}
public void start() {

if (inOrbit) Engine.out("beep!");
else

Engine.out("Sputnik: launching into orbit...");
migrateTo(orbit);
Engine.error("Sputnik: launch failed,

self-destruct activated.");
die();

}
public void stop() {

Engine.out("Sputnik: going down...");
}

Figure 2: An Example of aMole Agent <http://mole.

informatik.uni-stuttgart.de/docs/cookbook.

html>

handling the individual life cycle. In addition,Mole agents
can use the entire functionality ofJava , only constrained
by the security model employed. Agents can comprise
dynamic set of concurrent running or waiting threads an
are not restricted to one line of activity.

4.2 The Representative

In modeling Mole agents inJames, we decided on a
model, where the agent is represented as one atomic mo
surrounded by atomic models that represent its running
waiting threads. On demand, the thread models are creat
and deleted. Thus, a stop of a thread at theMole layer
implies the deletion of the corresponding atomic model a
theJames layer. Figure 3 shows an atomic model with its
satellites which represent aMole agent with a heartbeat,
the start method, and the method “DispatchRPC” running
The representative provides an abstract view of the state a
the behavior of the agent. The latter of which is describe
by piecewise constant trajectories, where each episode
separated from the next by the occurrence of an event.
172
a

el
r
d

t

.
d

is

Location

Satellites

Agent

Start

Heartbeat

DispatchRPC

Location -
Concierge

Figure 3: Locations, Agents and
their Processes inJames

The sending and receiving of messages, the departu
and arrival of an agent, denote events which are also notab
in the interaction with the virtual environment. Other events
e.g. being started or being stopped, highlight “internal” state
changes that will influence an agent’s reaction to incoming
events. These are the events we wish to distinguish in th
representative (Figure 4).

Some of the state changes are initiated by incomin
events produced by other models, including other agent
Other state changes are initiated by the agent itself b
invoking methods which trigger certain transitions and the
creation of outputs. The time at which they trigger those
transitions depends on the time used to come up with th
event and the time model employed. The agent’s heart be
is triggered according to the pre-defined frequency.

A subset of theMole API has been re-implemented
e.g. migration, RPC, heartbeat, and asynchronous me
sage passing. The re-implemented methods install th
relation between aMole agent and its run-time envi-
ronment, e.g. to send messages with different degree
of reliability sendUnreliable, sendReliable,
sendMailbox , calling the method of an agentcall ,
a form of suicidedie , a time triggered activation of the
agentheartbeat , creating a new agentcreateAgent ,
and migrating to a new locationmigrateTo . Each of
which is defined with a name and a signature as it ca
be found in the agent class ofMole whereas its inter-
nal implementation differs by being directed to the virtual
environment ofJames.

The methods of the agent are triggered via events tha
reach the model and which are translated viaJava reflection
into calling concrete methods of the agent or into forwarding
concrete message types to theMole agent. For that purpose,
the representative holds a reference to the agent as do
satellites. All of the incoming events will either lead to
generating an additional real-time process at theMole
layer, which implies the creation of a new satellite at the
James layer, or to resuming (in the case of the RPC)
an old process at theMole layer, which is reflected by a
state change from waiting to running in the corresponding
satellite. The migration of an agent causes all satellites t
vanish.
5



Uhrmacher and Kullick
Created
do/exec Agent.init()

Prepared
do/exec Agent.prepare()

Stopped
do/exec Agent.stop()

InitIt in LocationPort

PrepareIt in LocationPort

StartUp in LocationPort/
create Start-Satellite,
[Periodical]create
Heartbeat-Satellite

EndIt in SatellitePort/
exec Agent.end()

PrepareIt in LocationPort

die in SatellitePort/
remove all Satellites,
exec Agent.stop(),
exec Agent.end()

Migrating

do/move Model
migrateTo in
SatellitePort/
suspend Satellites

[MigrationFailure] /
resume Satellites

[MigrationSuccess]

MessageHandling

do/send Message

- Message in LocationPort/
create Satellite (DispatchMessag),
OutPortPut("SatellitePort", Message)
- RPC in LocationPort/
create Satelitte (DispatchRPC),
OutPortPut("SatellitePort", RPC)
- Response in LocationPort/
outPortPut("SatellitePort", Response)
- Message in SatellitePort/
OutPortPut("LocationPort", Message)
- RPC in SatellitePort/
OutPortPut("LocationPort", RPC)
- Reponse in SatellitePort/
OutPortPut("LocationPort", Response)

Started

StopIt in
LocationPort/
remove all
Satellites

after Sending Message

Figure 4: TheJames Core Model of aMole Agent Described as Statechart
h
n
s

,

t
e

h
e

g

s

t

The statechart (Figure 4) describes the behavior of t
atomic model which represents the agent. After initializatio
and preparation the agent enters its normal working pha
The start method is invoked. If the agent implements th
periodical interface, a heartbeat is started as well. At th
moment the location forwards a message to the agent
dispatch handler is created and started initialized with
reference to the agent and the message received. At
moment a method of the agent is called a satellite is creat
initialized with the reference to the agent, the name o
the method and its parameters. Thus, all satellites of t
representative hold a reference to the same “external” ag
as does the representative they surround.

The working phase of an agent is characterized b
concurrent threads each represented as a satellite and eac
two different states, i.e.Running , andWaiting (Figure
5). The working phase of those satellites starts with runnin
that is executing the agent code. If the agent executes one
the asynchronousMole methods, e.g.sendReliable ,
the satellite associated with the thread will notice it in
the moment its peripheral portZ is charged. The atomic
model will fill its own output port with the message, send
the message, and stays in the running phase. If the co
172
e

e.
e
e
a

a
he
d,
f
e
nt

y
h in

,
of

de

Running
do/exec agent code in

seperate thread

Waiting
do/block execution

of agent code

Message in Z/
OutPortPut("AgentPort", Message)

all agent code executed/
[RPC-Satellite]
OutPortPut("AgentPort",
Response)

RPC in Z/
OutPortPut("AgentPort", RPC)
die in Z/
OutPortPut("AgentPort", die)
migrateTo in Z/
OutPortPut("AgentPort", migrateTo)

Response in AgentPort/
OutPortPut("Z", Response)

Figure 5: TheJames Model of a Satellite Described as a
Statechart

produced a remote procedure call then again the output por
of the atomic model is filled, its state changes to waiting.

The peripheral port represents the link from the agent to
the simulation whereas the connection from the simulation
to the agent is realized by a reference to the agent code
from the atomic models’state. The re-implemented methods
cause the simulator to fill in the peripheral port and thus,
trigger (internal or confluent) state changes within the atomic
6



Uhrmacher and Kullick

a

e
h
n

h
s
i
n
n

e
y
m
le
a
s

o

e
y

io

h
io
s

e
e

ti
h

a

e
w
h

ts

In

l
es
in

is
y
e

me
ts,
d-
e
la-
n
9,
ler

-

s
ti-
e
of
tep.
ion

e
ed
he
ur-

ck
y
art
ed.
e
al

.
rt,

ate.
y
nts
.

model. The methods of the agent are triggered via the “usu
external events which are translated viaJava reflection into
calling concrete methods of the agent or into forwardin
concrete message types to the agent.

The re-implemented API transforms calls, messag
etc. sent by the agent to the virtual environment, into t
modeling formalism. Communicating in the other directio
necessitates no special re-implementation, since theJava
reflection can be used.

4.3 The Environment of Mole Agents

The physical network represents the environment of t
Mole system. Compared to many network simulation sy
tems (Cowie et al. 1999), our view of the physical network
currently rather coarse. However, the underlying modeli
formalism allows a step-wise refinement of components a
supports an inter-operation with other simulation system
(Zeigler et al. 1999): mechanisms which can be exploit
for a fine grained network model in the future. Currentl
connections and nodes are explicitly represented as ato
models whose efficiency and effectiveness are control
by a small set of parameters. For example, connections
characterized by bandwidth, reliability, and latency. The
attributes influence the throughput of connections: wheth
and how fast they transport incoming messages to the c
responding output ports.

Mole agents do not directly communicate with th
physical network, their messages and calls are conve
by two other important types of components in theMole
system: engines and locations.

The engine represents theMole runtime system. It
transforms and forwards messages between the locat
and the network. Each engine might comprise a set
locations, each of which offers certain services and mig
embrace several agents. The hierarchy of engines, locat
and agents is reflected in a hierarchy of coupled model

Each location is described by a coupled model and
concierge: an atomic model responsible for welcoming ne
agents in the location, for forwarding messages to the ag
and the engine, and for storing messages directed to ag
which are currently abroad. Since coupled models do n
have a behavior of their own inJames the functionality of
a “Mole location” has been encoded in an atomic mode
that is the concierge, whereas the aspect of embeddenc
described as a coupled model. As is the agent, the loca
is associated and interacts with a location object of t
Mole system.

The engine has a similar structure and, as agents
locations, is connected with aMole engine. Its concierge
provides additional service methods, e.g. creating n
names for new agents. The engine represents the gate
to the virtual network, as an engine typically represents t
gate for an agent to the physical network. However in th
17
l”

g

s,
e

e
-

s
g
d
s
d
,
ic
d
re
e
er
r-

ed

ns
of
t
ns
.
a
w
nt
nts
ot

l,
e is
on
e

nd

w
ay
e

is

case the connectedMole engine solely interacts with its
representative in the simulation.

Thus, all three models, engine, location, and agen
do not only represent components of theMole system
and the hierarchical structuring of these components.
addition, they are connected to accordingMole objects.
Calls to methods and messages are forwarded to theMole
components by usingJava reflection. After a time needed
for their calculation, their reaction is fed into the virtua
environment through the peripheral port. Crucial chang
of theMole engine, location, and agent are reflected with
state changes of the introducedJames representatives.

5 SIMULATION

One possible execution of multiple plugged-in agents
to forego the need for synchronization in virtual time b
installing an asynchronous protocol without explicit tim
model (Itsuki 1995). Another possibility is to sequentially
execute simulations and agents based on an explicit ti
model. Each time the agent is affected by some even
the simulation waits for the agent’s reactions to be sche
uled (Anderson 1997). However, if the simulation and th
agents shall be executed by a concurrent, distributed simu
tion mechanism in an efficient manner the synchronizatio
becomes more difficult (Theodoropolous and Logan 199
Logan and Theodoropoulos 2000, Uhrmacher and Gug
2000).

In the work by Uhrmacher and Gugler (2000) a simu
lator has been introduced inJames which splits simulation
and external deliberation into different threads. It allow
simulation and deliberation to proceed concurrently by u
lizing simulation events as synchronization points. Th
simulation proceeds only if the already consumed time
the deliberation processes exceeds the current time s
Thus, the simulator gives a guarantee that the deliberat
will finish at a simulation time which lies after the “current”
simulation time. Since a simulator might finish before th
“current” time and other processes might have process
events being due at the proposed time, a rollback to t
very last state might prove necessary. Stepwise and conc
rently, the simulation and agents approach the wall-clo
and simulation time at which an external process will finall
complete its execution. On the way, other agents can st
and finish external processes and the simulation can proce
At a simulation time, which is calculated according to th
time model, the simulator places the results of the extern
process into the peripheral portZ of the atomic model. At
that time an internal or confluent transition will be enforced
Based on the state and the content of the peripheral po
the model produces an output and determines the next st
Originally developed to relieve the simulation from heav
deliberation processes, it turned out, that for plugging age
into simulation this kind of simulator is particularly useful
27



Uhrmacher and Kullick

rt
i

o
e

n
,
e
n
rs
fo
a
ed

n

r

th
d
le

ru
n
in
r

n
e

x
e

ic
i-
a

es
tr
t
ic
b
e
s

in
io

l

e

7.

b

l
-

-
e

.
p

st
d

,

:

s.
However, we slightly re-defined the simulator to suppo
an arbitrary number of concurrent processes associated w
each atomic model and not just one as the prior versi
allowed. Also we changed the optimistic into a conservativ
simulation strategy to avoid inconsistent states of the age
which are external to the simulator. In the original algorithm
models whose normal events were due were asked to proc
the events and concurrently other models that had an exter
process running were asked for a guarantee. Now, fi
all models with external processes running are asked
guarantees for the current time. Only thereafter norm
events which are due at the, meanwhile possibly updat
“current” time are processed.

6 CONCLUSION

Test beds provide dynamic environments to conduct co
trolled experimentation with agents. Thereby, they follow
different approaches. Some handle agents as external p
cesses loosely coupled to the simulation by the exchange
events. Other simulation systems describe agents within
modeling formalism. Therefore, they provide pre-define
frames based on which an agent’s structure can be mode
and modules of an agent can be invoked.

By testing and pluggingMole agents inJames we
nurtured both approaches. During simulation agents are
as they are run in their normal execution environment. O
the other hand each agent is associated with a model, a k
of representative within the virtual world, whose behavio
and structure reflects discrete changes during the age
simulated life and which serves as its individual interfac
to the simulation.

Simulation and agents run concurrently. Based on e
plicit time models defined by the user, the simulation engin
of James supports to execute multiple agents with dynam
patterns of interaction and composition in distributed env
ronments, and synchronizes soundly the activity of extern
threads with the simulation system.

Thus, for the modeler the testing of agents requir
besides composing the experimental frame hardly any ex
effort. However, to provide this service for certain agen
classes in a general simulation system, the methods wh
are directed from the agent to its environment have to
re-implemented. This effort should not be under-estimat
but fortunately, as the definition of the representative clas
has only to be done once and will partly be re-usable
supporting other mobile agent systems. The communicat
from simulation to theMole agent we got for free due to
the extensive use ofJava reflection.
172
th
n

ts

ss
al
t
r
l
,

-

o-
of
e

d

n

d

t’s

-

l

a

h
e
d
,

n

ACKNOWLEDGMENT

We would like to thank theMole research group for their
cooperation and for facilitating our work tremendously by
making the source code available.

REFERENCES

S.D. Anderson. 1997. Simulation of multiple time-
pressured agents. InProc. of the 1997 Winter Simu-
lation Conference, Atlanta.

M.S. Atkin, D.L. Westbrook, and G.D. Cohen, P.R.
ad Jorstad. 1998. AFS and HAC domain-genera
agent simulation and control. InAAAI’98 Workshop
Software Tools for Developing Agents.

J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel, and
M. Strasser. 1997. Communication concepts for mobil
agent systems. InMobile Agents - MA’97 Proc. of the
1st. International Workshop. Springer.

J. Baumann, F. Hohl, K. Rothermel, and M. Strasser. 199
Mole-concepts of a mobile agent system.WWW Journal
- Special Issue on Applications and Techniques of We
Agents, 1(3):133–137.

J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogielski. 1999.
Towards realistic million node internet simulations. In
Proc. of the 1999 International Conference on Paralle
and Distributed Processing Techniques and Applica
tions (PDPTA’99), Las Vegas, Nevada.

S. Hanks, M. E. Pollack, and P. R. Cohen. 1993. Bench
marks, test beds, controlled experimentation and th
design of agent architectures.AAAI, (Winter):17–42.

Saphira software manual, Saphira version 6.1. ActivMedia
Robotics LLC, Peterborough, NH.

N. Itsuki. 1995. Soccer server: A simulator for robocCup
In JSAIAI-Symposium 95: Special Session on RoboCu.

B. Logan and G. Theodoropoulos. 2000. Dynamic intere
management in the distributed simulation of agent-base
systems. In H. Sarjoughian, Cellier F.e., M.M. Marefat
and J.W. Rozenblit, editors,2000 AI, Simulation and
Planning in High Autonomy Systems, pages 45–50.

T. A. Montgomery, J. Lee, D. J. Musliner, E. H. Durfee,
D. Damouth, Y. So, and the rest of the UM-DIAG. 1992.
MICE users guide. Dep. of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor,
MI.

M.E. Pollack. 1996. Planning in dynamic environments
The DIPART system. In A. Tate, editor,Advanced
Planning Technology. AAAI Press.

G. Theodoropoulos and B. Logan. 1999. A framework
for the distributed simulation of agent-based system
In H. Szczerbicka, editor,European Simulation Multi
Conference - ESM’99, pages 58–65. Ghent: SCS
Europe.
8



Uhrmacher and Kullick

s

)

-

e
-

-

-
s

A.M. Uhrmacher. 2000. A system theoretic approach
to constructing test beds for multi-agent systems. In
F. Cellier and H. Sarjoughian, editors,A Tapestry of
Systems and AI-based Modeling & Simulation Theorie
and Methodologies: A Tribute to the 60th Birthday of
Bernard P. Zeigler, Lecture Notes of Computer Science.
Springer.

A.M. Uhrmacher and K. Gugler. 2000. Distributed, parallel
simulation of multiple, deliberative agents. InParal-
lel and Distributed Simulation Conference PADS’2000,
Bologna, May. IEEE Computer Society Press.

A.M. Uhrmacher and B. Schattenberg. 1998. Agents in
discrete event simulation. InEuropean Simulation
Symposium - ESS’98, Nottingham, October. SCS.

A.M. Uhrmacher, P. Tyschler, and D. Tyschler. 2000. Mod-
eling and simulation of mobile agents.Future Gener-
ation Computer Systems.

M.J. Wooldridge and N.R. Jennings. 1998. Pitfalls of
agent-oriented development. InProc. 2nd Interna-
tion Conference on Autonomous Agents (Agents-98,
Minneapolis.

B.P. Zeigler, S.B. Hall, and H.S. Sarhoughian. 1999. Ex
ploiting HLA and DEVS to promote iteroperability and
reuse in Lockheeds corporate environment.Simulation,
73(4).

B.P. Zeigler, H. Praehofer, and Kim T.G. 2000.Theory of
Modeling and Simulation. Academic Press.

AUTHOR BIOGRAPHIES

ADELINDE M. UHRMACHER is an associate pro-
fessor in the Department of Computer Science at th
University Rostock. Her research interests are ar
tificial intelligence, modeling and simulation, particu-
larly the development of agent-oriented modeling and
simulation methods. Her e-mail and web-page ad
dresses are<lin@informatik.uni-rostock.de>
and<www.informatik.uni-rostock.de/˜ lin> .

BERND G. KULLICK is finishing his master’s degree
in the Faculty of Computer Science at the University
Ulm. His major research interests are mobile and intel
ligent agents and their evaluation. His e-mail address i
<bk1@informatik.uni-ulm.de>
1729


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

