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ABSTRACT

There is much interest in how to ensure that the res
obtained from a simulation model are accurate.  This pa
considers this from the perspective of three main source
inaccuracy: the modelling, the data and th
experimentation.  For each of these sources the cause
inaccuracy are discussed and some advice is given on 
to overcome them.  An illustrative model is used 
quantify some of the effects of inaccuracies in the data a
the experimentation.

1 INTRODUCTION

The validity of a simulation model is typically defined a
the model being ‘sufficiently accurate for the purpose 
hand’ (Carson 1986).  This suggests that the modeller 
the decision-maker have some clear objective 
developing and using the model, and that there is a leve
accuracy that is required from the model if it is to achie
this objective.  Because many simulation studies a
carried out to predict the performance of a real wor
system, the level of accuracy required is often relative
high, say 90% or more.  The level of accuracy may be l
stringent when the model is primarily used for improvin
the understanding of the real world system.

This raises the question of how simulation modelle
can assure the accuracy of their models.  Some h
attempted to answer this question by giving advice 
modellers on how to go about developing and usi
simulation models, for instance, Shannon (1975
Szymankiewicz et al. (1988), Sadowski (1989), Hoov
and Perry (1990), Law and Kelton (1991), Ulgen (1991
Dietz (1992), Musselman (1992), Nordgren (1995) a
Banks et al. (1996).  Gogg and Mott (1992) and Robins
(1994) give detailed descriptions of each stage in the li
cycle of a simulation study.  Others discuss the question
assuring accuracy by concentrating on the requirements
model verification and validation.  Among these are Ga
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(1983), Landry et al. (1983), Sargent (1992), Balci (199
and Robinson (1999).

Another approach is to consider the critical succe
factors in a simulation study.  Raju (1982), Bean et 
(1989), Law and McComas (1990) and Law (1993) 
discuss this issue, providing a list of critical succe
factors.  Although there are some variations in these li
many common factors arise, among them are: support f
senior management, the skills of the modeller, t
relationship between the modeller and the end-us
involving the end-user, correct formulation of the proble
the accuracy of the data, using the right simulati
software, the soundness/credibility of the mod
communication and timeliness of the work.  The pap
above all discuss the critical success factors from 
modeller’s perspective.  Robinson and Pidd (199
interview the customers of simulation studies in order
understand their opinions on the factors critical to t
success of a simulation study.

Meanwhile, others adopt the opposite approach, t
is, understanding the reasons why simulation studies 
Keller et al. (1991) argue that there are three main reas
why simulation projects fail: firstly, poor salesmansh
when introducing the idea to an organisation; second
lack of knowledge and skills particularly in statistic
experimental design, the system being modelled and 
ability to think logically; and thirdly, lack of time to
perform a study properly.  McHaney (1997) performs
survey of simulation users and concludes that failed stud
are characterised by high costs and problems with the 
and speed of the model.  Law and McComas (1989) ar
that too much emphasis is placed on simulation softw
selection and model coding in the belief that simulati
projects are merely a complex exercise in compu
programming.  In a similar way to above, three sets
authors provide lists of reasons for simulation failu
(Annino and Russell 1979; McLeod 1982; Law an
McComas 1989).  To all intents and purposes, these 
1
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are simply the inverse of the critical success factors list
above.

This paper adopts the last approach by describing th
sources of simulation inaccuracy.  Figure 1 provides
simple outline of the modelling process, showing three k
elements.  The process of modelling involves the modeller
in understanding the problem to be tackled, th
development of a conceptual (mental) model, and t
coding of a computer model.  Data are extracted from the
real world and are used in the model.  Experimentation is
then performed with the model to develop solutions to t
real world problem and/or to increase the decision make
understanding of the real world.  It is failures in these thr
processes that are discussed in this paper.  The discus
not only centres on the causes of failure but also provid
some advice on how to overcome them.  Before discuss
these failures an example model is described that is u
for illustrating their effect.

Real world
Simulation 

model

Modelling

Data

Experimentation

Figure 1: The Simulation Modelling Process (Simple
Outline)

2   EXAMPLE MODEL FOR ILLUSTRATIVE
PURPOSES

For illustrative purposes, the results from a simulatio
model and a queuing model of a simple bank queue 
compared.  Details of the model are shown in Figure 
The queuing model has the advantage that it is able to g
exact results on the performance of the system.  
introducing various errors into the simulation model an
comparing the results to those obtained from the queu
model, it is possible to quantify the effect of the errors o
the results for the bank example.  Such comparisons 
made in sections 4 and 5.  Obviously the effect of 
modelling error is very much dependent on the speci
model.  Consequently, the results presented in this pa
should be taken as illustrations and not as gene
statements about the size of errors caused by differ
modelling failures.
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Teller 1

Teller 2

Service time:
negative exponential distribution
mean = 2 minutes

Inter-arrival time:
negative exponential distribution
mean = 1/0.7 minutes

Queue

Figure 2: Simple Bank Queue Model

For an M/M/2 system, such as the one in Figure 2, queuin
models can be used to calculate performance measures
follows:

Probability that there are no customers in the system:
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Where:

point serviceeach for  rate service=

rate arrival

µ
λ =

For the bank example these performance measures a
as follows:

λ µ=

= = =

0 7 0 5

0 0 18 1 35 1 92

. ,

. , . , .

= .

P Lq Wq

The average waiting time (Wq) is used here for
comparing the simulation and queuing model results.  Afte
performing 100 replications with the simulation model, each
of 6 hours of simulated time, there is a close agreeme
between the two modelling approaches, the simulatio
giving an average waiting time result of 1.88 minutes.  Thi
represents an error of only -1.8% which is not unexpecte
since the simulation relies upon random sampling.  Detai
of these results can be found in section 5.1.
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3 SOURCE 1: MODELLING

One of the main skills of an expert simulationist is his/h
ability to understand the problem to be tackled an
correctly identify the model that is required.  It is also on
of the least understood skills (Willemain 1994; 1995
Three problems that arise at this stage are now discusse

First, if the problem situation is poorly understoo
then a model of the wrong problem is likely to b
developed.  Balci (1994) refers to this as a Type III erro
In order to avoid such an error the modeller needs to wo
closely with the client organisation to develop a goo
understanding of the problem situation.  Various proble
structuring methods could be employed, for instanc
cognitive mapping (Eden et al. 1992) or soft system
methodology (Checkland 1981).  Meanwhile, Balci  an
Nance (1985) describe a means for verifying th
formulated problem.

A second problem occurs when the wrong model 
developed for the problem situation.  This is a result of po
conceptual modelling.  The conceptual model is a softwa
independent description of the model that is to be construc
This may either be a mental model or a model that is explic
expressed possibly using a diagramming technique such a
activity cycle diagram (Pidd, 1998).  The development 
conceptual models is again poorly understood, albeit vital 
effective simulation modelling.  Validation of the conceptua
model acts as an aid to ensuring that the conceptual mod
adequate.  Such validation is discussed by Sargent (19
Balci (1994) and Robinson (1999).

Finally, having developed a conceptual model it is the
converted into a computer model by implementing it with
a simulation software package or coding it from scratc
Failures can occur in this process of conversion leading
errors in the model.  Model verification is the means b
which the modeller aims to ensure that the model has b
converted into a computer model satisfactorily.  Simulatio
verification is discussed by various authors, for instanc
Sargent (1992), Balci (1994) and Robinson (1999).

4 SOURCE 2: THE DATA

4.1 The Data as a Cause of Inaccuracy

There are two main ways in which the data for a simulati
study can lead to inaccuracies in the results obtained fr
a model.  The potential effects of failures in both the
areas are demonstrated with reference to the simple b
example.

4.1.1  Inaccurate Data

The data that have been collected may in themselves
inaccurate.  This could be a result of poor data collecti
methods leading to errors in the data.  It could also 
1703
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caused by an inadequate sample size meaning that it is 
possible to make accurate inferences about the f
population of the data.  Alternatively, the data may simp
not be available for collection because the real wor
system does not yet exist, or because there is insufficie
time or money to obtain a significantly large enoug
sample within the constraints of the project.  In these cas
the data are typically estimated, leading to uncertainti
concerning the accuracy of the estimates.

To illustrate the effect of inaccurate data the servic
time in the simple bank model is reduced and increased 
10%, giving values of µ = 0.556 and µ = 0.455
respectively.  The results from 100 replications are show
in Figures 3 and 4.  Figure 3(a) shows the estimated me
waiting time, calculated as a cumulative average across 
replications, when the service time is underestimated 
10%.  The high and low range of a 95% confidenc
interval is shown by the dashed line.  The expected val
of the mean, calculated from the queuing model wit
accurate data (i.e. µ = 0.5), is also shown.  What becomes
immediately apparent is that there is a significant error 
the results obtained from the simulation model, th
expected value of the mean not even falling within th
range of the confidence interval after the first few
replications.

Figure 3(b) shows the percentage error between t
results of the simulation model (cumulative mean queuin
time) and the expected value of the mean calculated fro
the queuing model.  This shows that for the simple ban
model a 10% underestimate in the service time data h
lead to an underestimate of more than 30% in the results
the model after 100 replications.

Figures 4(a) and 4(b) show similar information for a
10% overestimate in the service time.  Here the error 
even greater, giving an overestimate in the order of 60
after 100 replications.

4.1.2 Poor Data Analysis

Poor analysis of the data that have been collected is
second cause of modelling inaccuracies.  Apart fro
simple mathematical errors in the data analysis, a key a
of concern is whether the correct probability distribution
are used in the model.  The effect of using the wron
probability distributions is demonstrated by changing th
service time distributions to a gamma and norma
distribution while maintaining a mean service time of 2
minutes.  The gamma distribution represents a le
significant error than the normal distribution because it 
closer in shape to a negative exponential distribution, th
is, it is skewed to the left.  The results are shown in Figur
5 and 6 respectively.

Figure 5(b) shows that there is an error o
approximately 25% caused by the use of the gamm
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Figure 3: Effect of 10% Underestimate in Service Time
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Figure 4: Effect of 10% Overestimate in Service Time
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Figure 5: Effect of Wrong Service Time Distribution -
Gamma (2, 1)
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distribution, while the error from the use of the norma
distribution is in the region of 45% (Figure 6(b)).  In both
cases the simulation is underestimating the mean waiti
time, suggesting that the operation of the bank will b
better than it will in practice.  The reduction in mean
waiting time is a result of the selected gamma and norm
distributions reducing the variance in the service time ov
that obtained from the negative exponential distribution.

4.2 Overcoming Inaccuracies Caused
by the Data

The results presented above suggest that inaccuracies in
data can lead to serious errors in the model’s results.  It
vital, therefore, that every effort is made to ensure that t
data are accurate.

If data have already been collected and are given to t
modeller then it is important that the source of that data 
investigated with particular reference to the possibility o
errors entering the information.  The modeller shoul
ascertain who collected the data, how they were collect
and for what purpose.  It is useful to draw graphs of th
data, such as scatter charts and histograms, to look for a
unusual patterns or outliers.  The modeller must ensure t
the data are in the right format for the simulation and a
such needs to be aware of how the simulation softwa
interprets any data that are entered.

Where the data need to be collected carefu
consideration should be given to the data collectio
exercise.  Samples should be carefully selected and 
adequate sample size obtained.  Efforts should be made
ensure that errors in the data collected are avoided, or
least identified when they occur.  One possibility is to cros
check the data against a second source.  Again, the form
of the data required for the simulation software must b
taken into account.

For those data that cannot be collected one option is
estimate the data.  As the results above show, howev
small errors in these estimates can lead to larger errors
the results.  It is important, therefore, to perform 
sensitivity analysis by varying estimated data to ascertain
measure of their effect on the final results.  The results m
be insensitive to the accuracy of the estimates, in whi
case no further action need be taken.  Alternatively, the
may be highly sensitive, in which case efforts should b
made to obtain more accurate estimates, or the results
the sensitivity analysis should be reported so the decisi
maker can assess the risk involved in various courses
action.  Another approach is to regard these data 
experimental factors and ask the question: what values 
these data need to attain to achieve the desired result?  T
is appropriate where the decision maker has some cont
over the values of these data.  If neither of thes
approaches should suffice then it may be necessary 
reduce the scope of the simulation study such that the d
1705
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that are not available are no longer required for th
simulation model.

Ensuring that the correct statistical distributions are
employed in the model in part depends on the quality of th
data that are available.  Beyond that, various technique
exist which can help identify the best fitting distributions,
for instance, P-P plots, Q-Q plots and the chi-square tes
These are embodied in a number of simulation analys
packages, such as, ExpertFit (Averill M. Law and
associates) and Stat::Fit (Geer Mountain Software).  
there is some uncertainty over the correct distribution t
employ, then sensitivity analysis can prove a useful mean
for understanding the effect of using different statistica
distributions.

For more detailed discussions on data collection an
analysis, and distribution fitting, see Law and Kelton
(1991), Robinson (1994) and Banks et al. (1996).

5 SOURCE 3: THE EXPERIMENTATION

5.1 The Experimentation as a Cause of Inaccuracy

Four ways in which the experimentation can lead to
inaccuracies in the results and conclusions drawn from 
simulation model are identified here.

5.1.1  Ignoring the Initial Transient Period

Many simulation models pass through an initial transien
period before reaching steady-state (Law and Kelto
1991).  It should be noted that other behaviours do exis
particularly transient models that never reach a stead
state.  Where a model does reach a steady-state the anal
should ignore the transient period in order to avoid an
bias in the results.  The modeller has two options fo
achieving this.  One is to run the model for a warm-up
period before collecting any results.  The other is to plac
the model in a realistic starting condition at the beginnin
of the run, completely removing the transient period.

To illustrate the potential effects of ignoring the initial
transient period, the bank model has been run with 
starting condition of five customers in the queue.  Afte
100 replications the mean waiting time result is 1.97
minutes.  The result without the starting condition included
is 1.88 minutes (see section 2) representing an error of
4.57%.

5.1.2  Insufficient Run-Length or Replications

A second inaccuracy occurs in experimentation when th
run-length is too short or there are insufficient replications
When the author was involved in modelling an engine
assembly line the results indicated a significant shortfall i
throughput based on a simulation run of one week o
production.  It was not until the model was run for a much
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longer period that it was realised that the random samp
in the model was leading to particularly poor results for t
first week, and that the average throughput was mu
higher than indicated by the one week run.

Again the modeller is faced with two options fo
overcoming this problem.  The first is to run the model f
longer, the second is to perform multiple replications (r
running the model with different random number stream
In general multiple replications are preferred since the ru
are independent and so confidence intervals can be ea
calculated.  Long runs do have the key advanta
however, that the warm-up period need only be run on
for each experimental scenario, saving on experimentat
time.  Long runs also have an intuitive appeal in that t
operations that are being simulated work similarly on
rolling basis; a week cannot be replicated in practice!

Figure 7 illustrates the effect of performing differen
numbers of replications with the bank model.  Here the mo
parameters are set to the correct levels.  What this show
that if the modeller only performed one or two replicatio
then the results would be more than 30% inaccurate.  
expected, when the number of replications is increased, so
trend is a reduction in the inaccuracy.  After 100 replicatio
the simulation gives a mean waiting time result of 1.
minutes which represents an error of only -1.8%.
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Figure 7: Effect of the Number of Replications on th
Accuracy of the Results
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5.1.3  Insufficient Searching of the Solution Space

Simulation experimentation entails changing the levels 
the experimental factors in order to obtain a bett
understanding of the model’s behaviour and to seek 
target or optimum levels of performance.  If only a limite
number of experiments are performed then the quality
the findings will be limited.  In other words the modelle
will only gain a partial understanding of the model’
behaviour, and there is a risk of finding just local optim
or reaching the target performance, but without t
optimum combination of levels for the experimenta
factors.  By not searching the solution space sufficient
the conclusions drawn from the experimentation with t
model are likely to be erroneous, which in itself is a sour
of inaccuracy.

5.1.4  Not Testing the Sensitivity of the Results

The need to test the sensitivity of the results to data ab
which there are uncertainties is discussed in section 4
Beyond this, the robustness of the solution should also
tested.  This entails changing the data in the model a
determining at what points the proposed solution (t
levels of the experimental factors) is likely to alter.  It ma
be that the solution is very robust and is applicable acros
wide range of values for the data.  On the other hand, o
small perturbations in the data may lead to shifts in t
proposed solution.  Such analysis is necessary beca
there are always uncertainties in the real world.  As
result, any proposed course of action identified by 
simulation model should as far as possible be robust, o
least the potential effects of uncertainties should 
understood as much as possible.

5.2 Overcoming Inaccuracies Caused
by the Experimentation

The inaccuracies described above can largely be overco
by adopting sound experimental procedures.  Vario
methods exist for identifying the initial transient period
Welch’s method (Welch 1983; Law and Kelton 1991) is
popular one.

The run length of a model is in some cases determin
by a natural end point such as the end of the day in ser
systems or the end of the week when a weekly product
schedule is being tested.  Such simulations are referre
as ‘terminating’.  For the situation where no natural e
point exists (a ‘non-terminating’ simulation), Robinso
(1995) describes a method for determining a suitable r
length.

The number of replications required is normall
determined by continuing to perform replications until 
sufficiently narrow confidence interval is obtained.  La
and Kelton (1991) and Robinson (1994) discuss the use
6
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confidence intervals for selecting the number 
replications required.

A series of experimental design techniques exist th
aid in the efficient searching of the solution space.  Th
can also help in performing sensitivity analysis.  A use
introduction can be found in Law and Kelton (1991).  Th
aim is to select a limited number of scenarios from the to
set available, and to use these to learn about 
performance of the system.  Such methods may attemp
predict the outcome of those scenarios that have not b
run, or they may attempt to identify those combinations
the experimental factors that are likely to provide a go
result.  In recent years much attention has been given to
idea of simulation optimisation (Carson and Maria 1997
with many simulation software vendors offering a
‘optimiser’ with their packages.  These automate t
process of searching for an optimum or a target, althou
an optimum cannot be guaranteed.

Above all, allow time for thorough experimentation
Ultimately it is impossible to test every idea and analy
fully the sensitivity of the proposed solution.  But the mo
that can be done the better.  In designing and buildin
simulation model much effort should go into ensuring th
the model will run as quickly as possible, a doubling 
run-speed enabling twice the experimentation in the sa
time-frame.  Indeed, it might be that a simpler (le
accurate) model gives more accurate results because 
possible to perform more detailed experimentation.

6 CONCLUSION

The discussion above describes various sources 
inaccuracy in simulation modelling.  It also quantifies th
effect of some of these inaccuracies via an illustrati
model.  What this demonstrates is that these sources 
lead to some quite significant errors in the results obtain
from a simulation study.  Should a number of these sour
of inaccuracy occur in a single study then their cumulati
effect could render the results of little value and possib
lead to damaging conclusions.

What these results show is the need to make strenu
efforts to assure the validity of a simulation by reducing 
a minimum the sources of inaccuracy.  In so doing
should be possible to ensure that a model is sufficien
accurate for the purpose at hand.  Some comments 
guides on how to overcome these inaccuracies are inclu
in this paper with references for more detailed study.

Finally, it should be reiterated that the results obtain
from the simple bank model are purely illustrative and 
no way can be taken as general conclusions about 
effects of various inaccuracies.  Indeed, because there
only a small number of variables in this model it is like
that perturbations to their values will have a much grea
effect than in a model with many more variables.  Wha
does provide, however, is a warning to simulatio
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modellers and simulation consumers alike on the need
make every effort possible to minimise all potentia
sources of inaccuracy.
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