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ABSTRACT

It is widely accepted today that the Infinitesimal Perturba
tion Analysis (IPA) method for estimating sensitivities is the
preferred method, when it is applicable. The major proble
with IPA is handling certain kinds of discontinuities, such
as thresholds. The Smoothed Perturbation Analysis (SP
method was conceived applying a conditional expectatio
to a dynamic system, similar to the Filtered Monte Carl
Simulation. Conditioning smoothes out the discontinuitie
and then IPA can be applied to the conditional estimato
Since this alternative estimator has been partly integrat
through the conditioning, some knowledge about the unde
lying distribution is required. When this is not available
SPA estimators require additional estimation. Tradition
ally, this has been implemented via off-line simulations tha
produce independent replications of a difference proces
We propose here to bypass this operation by using paral
phantom systems: replicas of the original system that a
conditional to the critical events of interest yet use commo
random numbers instead of independent replications. W
show how the efficiency can dramatically improve from th
gain in correlation (variance reduction) as well as the gain
computational effort (random variables are generated on
and used for all parallel phantoms).

1 INTRODUCTION

When estimating derivatives of averages of discrete eve
driven systems, the preferred method is the Infinitesim
Perturbation Analysis (IPA) method. A simple inventory
model is considered to introduce the problem of estimatin
the derivative of a stationary average with respect to a thres
old parameter. As is typical in these cases, there are pa
discontinuities when the thresholds are modified infinites
mally. Therefore the stochastic derivative, which conside
the derivative of the pathwise cost function with respec
to the parameter (for a fixed realization of the trajectory
is biased: we cannot interchange derivative and expec
166
)

.
d
-

.
l

e

e

e

t
l

-
th

tion. IPA uses the stochastic derivative as an estimator
the derivative of the expectation. The Smoothed Pert
bation Analysis (SPA) method was conceived applying
conditional expectation to a dynamic system, similar to t
Filtered Monte Carlo Simulation. Conditioning smoothe
out the discontinuities and then IPA can be applied to t
conditional estimator.

The conditioning requires knowledge of the underlyin
distribution as well as simulations of the so-called differen
process. In most cases, as illustrated in the model exam
one has to estimate an average probability as well as
expectation of the difference process. These two ste
are usually performed separately, simulating the differen
process off-line.

We propose the Phantom SPA estimation that uses p
allel phantom systems in order to estimate the contributi
of the difference process using common random variab
with the nominal process. Phantom systems represent re
cas of the original system that are conditional to the critic
events of interest, yet use common random numbers inst
of independent replications. This method carries out t
two steps of the estimation simultaneously over one sin
path.

Section 2 introduces the model, taken from Bashy
and Fu (1991). Section 2 introduces SPA estimation, u
ing an approach which parallels the framework of Ra
Perturbation Analysis (RPA) for sensitivities with respe
to threshold parameters. Using this approach, the us
SPA estimators of Bashyan and Fu (1991) are inetrpre
in terms of the limits of one-sided finite differences. Th
two-sided version of the estimator is presented. Section
introduces the parallel computation for the difference pr
cesses, and Section 4 presents simulation results show
how the Phantom SPA method can outperform conventio
SPA with off-line simulations.
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2 THE INVENTORY MODEL

We consider here the standard periodic review invent
model of Bashyan and Fu (1991). The optimal policy
parametrized by two threshold parameters and is commo
known as(s, S) policy, described as follows. LetXn denote
the inventory level at the beginning of then-th period, during
which a total demandDn ≥ 0 occurs. IfXn −Dn ≥ s then
there is no reordering at the end of the period, otherw
an order is placed to fill up the inventory to levelS. That
is:

Xn+1 =
{

Xn − Dn if Xn − Dn ≥ s

S otherwise
(1)

where {Dn} is a sequence of consecutive i.i.d. deman
For discrete inventory models,Xn counts the number of
items in stock, andDn has a discrete distribution. The cas
considered in Bashyan and Fu (1991) is that of a continu
level of inventory, where consecutive demands are assu
to have a bounded densityg(·), on IR+. Let the underlying
probability space be denoted by(�, P ) and letFn be the
σ -algebra generated by{D1, . . . , Dn}. It is not difficult to
see that the inventory levelXn is measurable w.r.t.Fn and
that{Fn, n ≥ 0} is the natural filtration of the process{Xn}.

The inventory cost during periodn is calculated ash
dollars per unit of inventory at the end of the period,
this quantity is non-negative. Backlog is assumed, so t
inventory levels can become negative, modeling situatio
when the demand is fulfilled at a later time, but we assu
that in these cases a reduction in price has to be made.
penalty cost isp dollars per unit of unsatisfied demand
Therefore the cost is a function of the Markov process{Xn}
and satisfies:

Cn = h(Xn − Dn)1{Xn>Dn} − p(Xn − Dn)1{Xn≤Dn}
+K 1{Xn−Dn≤s}.

The process{Xn} above is a Markov chain in a bounde
interval(s, S) and it possesses an ergodic stationary meas
The average long term cost per period is defined by
stationary expected value ofCn, or:

C(s, S) = lim
N→∞

1

N

N∑
n=1

E(Cn).

Figure 1 shows a typical trajectory of the process (co
tinuously interpolated in time).

The actual optimal values ofs andS are not available
in closed form for general demand distributions. Findi
the optimal values of the thresholdss and S is harder for
the continuous than for the discrete model. Bashyan and
propose to implement a gradient search method to find
optimal values by simulation, which leads to the problem
1665
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Figure 1:  A trajectory of{Xn}.

estimating the derivatives of the cost function with respe
to s andS.

In order to estimate the cost and its derivatives, a fini
horizon simulation of lengthN is used, assuming thatN
is “large enough”, thus approximating

C(s, S) ≈ CN (s, S) = 1

N

N∑
n=1

Cn.

Alternatively, regeneration of the inventory level proces
at the ordering periods can be used to apply the Renew
Theorem (see Taylor and Karlin, 1994) and computeC(s, S).

It should be clear from the dynamics of the process th
estimating the derivative with respect toS yields indirectly
the derivative w.r.t.s. To see this, remark first that if we
translate our coordinate system by shifting the zero leve
this transformation does not alter at all the evolution of th
process, which will be identical path by path, except for th
relative location of what we call the zero level. Therefor
the process only depends on the relative differenceS − s.
However, the cost incurred does depend on the absol
location of the zero level. As explained in Bashyan an
Fu (1991), the pathwise derivatives contain a condition
term (Called the SPA term) that accounts for the effect
the iventory levels of an infinitesimal change inS − s, plus
a stochastic derivative of the cost function (called the IP
term) which contributes only to the derivative w.r.t.S. For
a more detailed description see Vázquez-Abad and Zubieta
(1999).

3 THE SPA DERIVATIVES

3.1 One-Sided SPA

We shall first briefly reproduce the SPA derivative of Bashya
and Fu (1991). Consider theperturbedinventory process
whenS is replaced byS + 1, 1 > 0. The same sequence
of demandsDn is used for bothnominal and perturbed
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paths, as shown in Figure 2. This is used to evaluate
right-sided finite difference:

D+
1(S) = 1

N

N∑
n=1

E

[
Cn(S + 1) − Cn(S)

1

]

Recall that{Fn, n ≥ 0} denotes the natural filtration of the
process{Xn} on the underlying probability space(�, F, P ).
The critical sets�+

i ∈ Fi are defined by:

�+
i = {ω : Di > Zi}, with Zn = Xn − s

whereZn ≥ 0 a.s., from the ordering policy.

s

S

t

Critical event

Figure 2:  Perturbed and nominal paths.

A difference in the ordering decision can take plac
for the first time at the end of periodi for the nominal
and perturbed paths only if an order is placed at the end
the nominal period but not at the end of the period in th
perturbed path. In other words, if�i denotes the event that
the first order change occurs at the end of periodi, then:

P [�i |�+
i ] = P [Di −Zi ≤ 1|�+

i ] = G(Zi + 1) − G(Zi)

1 − G(Zi)
(2)

while, if Di < Zi then with certainty, there will be no order
placed at the end of the period, both for the nominal an
the perturbed paths, which implies thatP [�i |(�+

i )c] = 0
and Ac denotes the complement of setA. Let �∗ ⊂ �

denote the set of paths where no ordering decisions cha
under the prescribed perturbation. SinceP [�i] = O(1),
thenP [�∗] = 1 − O(1), and:

D+
1(S) = E

[
(h1)N+ − (p1)N−

1 N
P [�∗]

]
+

N∑
n=1

1

N

N∑
i=n

E

[
Ci(S + 1) − Ci(S)

1

∣∣∣ �n

]
P [�n]

)
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where N+ denotes the number of periods where the en
level of inventoryXn − Dn is positive andN− = N − N+.
In the limit as1 → 0, Bashyan and Fu (1991) obtain:

∂

∂S
CN (s, S) = E[hN+ − pN−

N
]

+ lim
1→0

1

N

N∑
n=1

(
E[1C+

n | �n]
1

P [�n]
)

(3)

where1C+
n = ∑N

i=n[Ci(S +1)−Ci(S)]. The first term in
(3) is called the IPA term and it is the stochastic derivative
of the cost process. The second term is called the SPA te
and it is the one that considers the effects of sample pa
discontinuities.

Finally, in the SPA term above, the conditional expec
tation of the difference process{Ci(S +1)−Ci(S), i ≥ n}
is independent ofi, n and1: indeed, in the limit as1 → 0,
both processes coincide before timen, by definition of�n.
Next, at periodn the nominal process starts by ordering
(end level is withins + 1) while the perturbed process
starts at levels. Given this initial condition, which is obvi-
ously independent ofn, and using the fact that demands are
i.i.d., it follows that the difference process has a distribution
which is independent ofFn. Use now regeneration of the
difference process (see Bashyan and Fu, 1991) to obta
the limit expectation (asN → ∞):

E[1C+
n ] = E




φ(n)∑
i=n

[C+
i (S) − Ci(S)]


 (4)

with X+
n = S, Xn = s as the initial inventory levels. The

random indexφ(n) denotes the first time when both pro-
cesses reorder: from this time onwards the two evolve ide
tically and their difference vanishes. SinceE[1C+

n |�n] is
independent ofn andFn, we can drop the indexn and use
the notationE[1C+] to obtain the SPA term of (3):

(
∂C(s, S)

∂S

)+

SP A

= E[1C+] lim
1→0

1

N

N∑
n=1

P [�n]
1

. (5)

Using (2), the expression of Bashyan and Fu (1991
can be obtained:

(
∂C(s, S)

∂S

)+

SP A

= E[1C+] ×

E
1

N

N∑
n=1

g(Zn)

1 − G(Zn)
1{Dn>Zn}

)
.

6
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Analogously, their expression for the left-sided derivativ
can be obtained:

(
∂C(s, S)

∂S

)−

SP A

= E[1C−] ×

E

(
1

N

N∑
n=1

g(Zn)

G(Zn)
1{Dn<Zn}

)
,

where now�−
n = {ω : Dn < Zn} gives the conditioning

set for potential order changes. The difference process
this case would be{Ci(S) − Ci(S − 1), i ≥ n}, which is
now conditioned to�−

n . It is not hard to see that the initial
corresponding inventory levels are againXn = S, X−

n = s,
so thatE[1C+] = E[1C−].

Remark: The independence of the limit difference pro
cess and the historyFn allows us to separate the estimatio
of the SPA term in (3) as the product of two estimator
This follows from the fact that the difference processes on
differ in their initial states. Most problems where the contr
parameters are thresholds will present this property, mak
them suitable for our phantom SPA method, as explain
shortly.

3.2 Two-Sided SPA

Our formulation of the SPA estimation in (3) above follow
closely the RPA framework in V́azquez-Abad and Davis
(1995) that generalizes the original formulation of the Pha
tom RPA method of Bŕemaud and V́azquez-Abad (1992).
The difference between the Phantom SPA and the form
lation in Vázquez-Abad and Davis (1995) for threshol
parameters is that the decision of whether to order or n
depends on the stateXn of the process, while the usual RPA
framework assumes independence of the decision variab
with respect to the process{Xn}. RPA estimators can be
implemented using one-sided formulas as in Bashyan a
Fu (1991) or two-sided formulas.

Applying a two-sided formula to this problem, conside
now the finite difference:

D1(S) = 1

N

N∑
n=1

E

[
Cn(S + 1/2) − Cn(S − 1/2)

1

]
.

While (5) continues to hold true and the limit differenc
process is the same as before, now the potential chang
the ordering decision can happen at every period, rega
less of whetherDn is larger or smaller thanZn. It is no
longer necessary to condition on�±

i , which means that the
contribution ofP [�i] can be estimated by simply observin
ss
d,
d
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Xi at the beginning of the period, before generating t
demand. In this case we obtain:

P [�i] = P

[
Zi − 1

2
≤ Di < Zi + 1

2

]
= G(Zi + 1

2 ) − G(Zi − 1
2 ),

and in the limit, we have:

(
∂C(s, S)

∂S

)
SP A

= E[1C] E

(
1

N

N∑
n=1

g(Zn)

)
. (6)

The efficiency of an estimator is the inverse of the me
square error multiplied by the mean CPU time. The obvio
advantage of this estimator over either of the one-sided o
proposed by Bashyan and Fu (1991) is the improvemen
efficiency. This improvement results from three facts. Fir
the full utilization of all samples yields more observation
and thus more precision in the estimation.

Second, dividing by the random observations1−G(Zi)

and G(Zi) may introduce yet more variability in the esti
mation. Given the correlation between the numerator a
denominator in the one-sided formulas, it is possibea priori
that the variance may even be reduced, but our experime
confirm a variance reduction when using the two-sided e
timator.

Finally, the two-sided version avoids evaluating th
distribution function at every period. In many commo
models the evaluation of the distribution has to be don
numerically for each value ofZn, such as for gamma, beta
or normal densities, and it is typically much slower tha
evaluating the density. The two-sided version (6) can th
operate much faster in these situations.

4 PHANTOM SPA ESTIMATORS

4.1 Off-Line Estimation

As is common in SPA, off-line simulations are used to e
timateE[1C] given in (4). Notice that the limit difference
process is defined by starting two inventory processes
levelsS ands and using common random numbers for th
demands, until both processes reach levelS, thus complet-
ing a regenerative cycle. This limit process is therefo
independent of whether a right-sided (1 > 0), a left-sided
(1 < 0) or a two-sided formula is used.

As explained in Bashyan and Fu (1991), the usu
implementation of SPA for this example would require ge
erating the inventory process (1) forN periods to estimate,
say

∑
g(Zn) –if the two-sided version is used. Next, an off

line simulation is performed where the difference proce
is generated as follows. Two initial levels are prescribe
namelyX+

0 = S andX0 = s. Demands are generated an
7
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used in (1) to evaluate the ensuing “nominal” and “phanto
processes, until their levels coincide, which in the case
a continuous demand distribution, hapens only when th
both order and reach levelS. This constitutes a cycle and
naturally, may contain several periods. It is also possi
that the nominal system reaches levelS several times be-
fore the two processes reachS simultaneously. The off-line
simulation replicatesM such cycles to obtain an estimat
of the difference in cost.

4.2 On-Line Estimation via Parallel Phantoms

Consider the two-sided SPA formula (6) (parallel phanto
can also be implemented for the one-sided versions of SP
We propose here to implement parallel phantom syste
to simultaneously estimateE

(∑
g(Zn)

)
as well asE[1C]

using a single path. In accordance with our description
the previous subsection, the latter estimator requires star
two processes with initial levelsX+

0 = S, X0 = s.
First, suppose that we only simulate a single long pa

of lengthN . We start the nominal process at levelS and use
the path information to compute

∑
g(Zn). In addition, we

also define a phantom process that starts at levels and uses
the same sequence of demands. Their difference proce
obtained using the sequence of demands from the (uniq
trajectory of the process being simulated. Once a cy
of the difference process has finished, another cycle
be computed by resetting the initial conditions: the ne
time that the nominal process reaches levelS a phantom is
started in parallel at levels. At the end of the simulation,
the estimators ofE

(∑
g(Zn)

)
and ofE[1C] are obtained

from the observation of the system. Although the estimat
are correlated, they are both consistent and their produc
also consistent for the SPA derivative.
166
f

).
s

g

is
)

n

s

As mentioned before, however, the estimation ofE[1C]
uses cycles of the difference process. Within the first cycle
is possible that the nominal process reachesS. If this happens
before the end of the cycle, we create a second phant
system that starts ats and will contribute a second difference
process, using again the same demands as the nominal
the first phantom systems. Continuing in this manner, eve
time that the iventory level in the nominal system is fille
up toS we start a new parallel phantom system initiated
level s. By using common random numbers, we expect
keep the variance at reasonable levels, while increasing
number of observations of cycles of the difference proces

5 COMPUTER SIMULATIONS

Our simulations were performed on a PC using PASCAL. W
usedK = 10, h = 10, p = 50, s = 10, S = 20 to compare
our Phantom SPA estimtion with Fu’s SPA. The simulatio
horizon was set atN = 5000 and in the case of off-line
simulations,M = 5000cycles were used. Table 1 shows th
result of the estimation for an approximate 95% confiden
interval using the CLT. We compare the one and two side
versions of SPA (denoted SPA± and SPA* respectively),
using in all cases off-line simulations for estimatingE[1C].
The first two columns give Fu’s method, as explained
Bashyan and Fu (1991). Notice from this table that th
reduction in variance obtained with the two-sided versio
(6) is not very high and it seems to be problem depende
In any case, we believe these results indicate that this
the more consistent and robust estimator of the three.

In Table 2 we present the results of the estimation usi
the two-sided SPA estimator in (6), in one column we giv
the results using off-line simulations forE[1C] and in the
other, using on-line parallel phantoms.
Table 1:  Results with Off-Line Simulations
Distribution Theoretical SPA− SPA+ SPA∗
Exp(1/3) −4.531 −4.680± 0.26 −4.570± 0.10 −4.572± 0.08
Exp(1/5) −2.862 −2.779± 0.145 −2.843± 0.088 −2.837± 0.082
Exp(1/10) 1.516 1.586± 0.114 1.569± 0.094 1.576± 0.101

U(0, 6) – −5.185± 0.171 −5.225± 0.171 −5.261± 0.122
U(0, 12) – −5.359± 0.211 −5.312± 0.088 −5.259± 0.044
U(0, 20) – −2.181± 0.100 −2.212± 0.084 −2.200± 0.079

Table 2:  Results of Two-Sided SPA
Off-Line Parallel Phantoms

Distribution SPA∗ CPU (secs) SPA∗ CPU (secs)
Exp(1/3) −4.509± 0.081 25.54 −4.530± 0.027 11.91
Exp(1/5) −2.816± 0.097 14.99 −2.829± 0.056 8.40
Exp(1/10) −1.488± 0.088 10.5 −1.497± 0.078 6.75

U(0, 6) −5.180± 0.085 45.91 −5.281± 0.025 21.69
U(0, 12) −5.234± 0.036 11.31 −5.232± 0.018 7.30
U(0, 20) 2.242± 0.130 7.19 2.224± 0.084 5.32
8
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It should be clear from these results that the great
contribution to the improvement in efficiency of the Phanto
SPA comes from the parallel on-line phantom systems rat
than from the implementation of the two-sided version
SPA. The gain in precision is noticeable and the gain
speed is remarkable. We would like to point out th
this gain is even more dramatic when normal or gamm
distributions are used, where the distribution function
calculated numerically at each period for the one-sid
formula.

6 CONCLUDING REMARKS

We have presented a new approach to implement SPA, wh
often requires off-line simulations of a difference proces
We bypass this stage by evaluating parallel systems w
common random variables, called the phantom system
Our method uses one single path for the estimation a
improves considerably the efficiency of the estimation bo
in variance reduction as well as computational time. Besid
an improvement in the efficiency of the estimator, we belie
this technique is amenable to on-line optimization as we
since it performs the calculations in parallel and using on
the observations from the nominal system. We have cho
to focus on a simple example to introduce the mehtod, bu
is general for SPA estimators and can readily be implemen
for many situations. We are currenlty working on the gene
setting and applying the method to other problems in finan
and queueing. We are also developing a general appro
to study the statistical properties of the parallel phanto
estimators.
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