
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

THE EFFECT OF STATE-SAVING IN OPTIMISTIC SIMULATION ON A CACHE-COHERENT
NON-UNIFORM MEMORY ACCESS ARCHITECTURE

Christopher D. Carothers

Department of Computer Science
Rensselaer Polytechnic Institute

110 8th Street
Troy, NY 12180-3590, U.S.A.

Kalyan S. Perumalla
Richard M. Fujimoto

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280, U.S.A.

a
e
te
rs
e

y
ns
re

t
nc
A

ve
la
an
he
a

C
in

be
o
at
n

io

s
en

lit
liz

n.
k

-

o
sed
,
s
d

-
l
y
n

r
n
o

y
-
g

ly
as
.

r
-
ial
a

e

o
-

ABSTRACT

State-saving and reverse computation are two different
proaches by which rollback is realized in Time Warp-bas
parallel simulation systems. Of the two approaches, sta
saving is, in general, more memory-intensive than reve
computation. When executed on a state-of-the-art comm
cial CC-NUMA (Cache Coherent Non-Uniform Memor
Architecture) multiprocessor, our Time Warp system ru
almost 6 times slower if state-saving is used than if
verse computation is used. The focus of this paper is
understand why state-saving yields such poor performa
when compared to reverse computation on a CC-NUM
multiprocessor.

To address this question, we examined the low le
machine performance statistics, especially those that re
to memory system performance, such as caching, and tr
lation look-aside buffer (TLB) misses. The outcome of t
performance study suggests that TLB misses are the prim
culprit for state-saving’s performance degradation.

1 INTRODUCTION

Today, Cache-Coherent Non-Uniform Memory Access (C
NUMA) multiprocessors represent the state-of-the-art
shared memory architectures. These machines have
shown to deliver excellent performance on a variety
applications (Jiang and J. P. Singh 1998). However, to d
no study exists which considers the performance implicatio
of Time Warp simulation systems on this latest generat
of multiprocessors.

Time Warp is a synchronization protocol that allow
incorrect event computations in a parallel discrete-ev
simulation to occur, but undoes orrolls backsuch computa-
tions after detecting an error with respect to event causa
(Jefferson 1985). The most common technique for rea
ing rollback isstate-saving. Here, the original value of the
162
p-
d
-
e
r-

-
o
e

l
te
s-

ry

-

en
f
e,
s
n

t

y
-

state is saved before it is modified by the event computatio
Upon rolling back, the state is restored by copying bac
the stored value.

Of critical concern are the performance implications
of state-saving on CC-NUMA architectures. We have ob
served first hand that even on a highly optimized Time
Warp system, state-saving appears to result in little or n
increase in speedup as the number of processors is increa
for applications with a small event granularity (Carothers
Perumalla and Fujimoto 1999), even when the application
had very few rollbacks. This interesting phenomenon serve
as initial motivation for the work described here. As ad
ditional evidence, it was reported in Poplawski and Nico
(1998) that a conservative simulator resulted in significantl
faster performance than a Time Warp simulator when ru
on a CC-NUMA architecture for small event granularity
applications. By its very nature, a conservative simulato
does not save state. Thus, the culprit for this degradatio
in performance of the Time Warp system seems to point t
state-saving. However, the open question is “why”?

The focus of this paper is to answer that question b
quantifying and understanding the implications of state
saving in Time Warp systems as it relates to an underlyin
CC-NUMA architecture. In particular, we will examine
the low level machine performance statistics, especial
those that relate to memory system performance, such
caching, and translation look-aside buffer (TLB) misses
For this study, we will use the SGI Origin2000 to perform
all experiments. Our reason for choosing this particula
CC-NUMA machine is because of it popularity and tech
nical advancements, when compared to other commerc
CC-NUMA architectures, such as Convex Exemplar, Dat
General NUMALiiNE, Hal S1, and Sequent NUMAQ.

To serve as a basis for comparing results, we us
an idealized Time Warp simulator that incurs negligible
overhead in the forward computation to support the und
operation. This idealized Time Warp simulator avoids state
4

Carothers, Perumalla, and Fujimoto

l

e
e

on
a
a

in
le
th
nt
u

e
do

ys
y
M
-
e
c

l-
ha
t

to
n
h

ch
h

en
GI
o
e
in
y
a
fo

es,
h
ry
sily
ber

nd
e

rt
ize

nd

of
bile
e
s
e
le.
is

her

s

saving by using thereverse computationapproach in which
rollback is realized by performing the inverse of individua
operations that are executed in the event computation.

In the next section, we present an overview of th
Origin2000’s architecture. In Section 3 we describe th
personal communication services (PCS) network simulati
model that we use in our performance study. This model w
chosen because it is a real world application that has a sm
event granularity relative to state-saving overheads, mak
it difficult for Time Warp systems to achieve acceptab
levels of performance in practice. Section 4 describes
implementation of our Time Warp system. Section 5 prese
the results of our performance study and we describe o
final findings and conclusions in Section 6.

2 SGI ORIGIN2000 CCNUMA ARCHITECTURE

When SGI was re-designing the follow-on system to th
PowerChallenge, it had three goals, as described by Lau
and Lenoski (1996):

• the system must scale beyond 36 processors,
which was an inherent limitation of the bus-
based PowerChallenge architecture,

• must retain the cache-coherent shared memory
model of the PowerChallenge, and

• entry level systems and incremental cost of
the system should be low.

To achieve these goals, the next generation Origin s
tem uses distributed shared memory (DSM) with a director
based, cache-coherent protocol. It was viewed that a DS
style architecture would allow for scalability, ease of pro
gramming and low cost, while the directory-based cach
coherent protocol would remove the performance bottlene
that occurs in snoopy bus-based protocols.

The core component of this architecture is a dua
processor node. Connected to this node is a hub chip t
mediates local and remote memory accesses between
local main memory, which contains a directory used
maintain memory consistency, and the scalable interco
nect network which routes remote memory accesses. T
interconnect network is made of SPIDER routers. Ea
two-processor node is connected to a SPIDER router. T
routers are then connected to form what SGI calls abristled
fat hypercube.

Because of the hypercube routing, the ratio betwe
local to remote memory access times is kept low. S
reports local memory references costing 310 ns (Laud
and Lenoski 1996). However, in practice memory referenc
average around 470 ns, as reported by Jiang and J. P. S
(1998). A typical personal computer will have local memor
access times of around 120 ns, assuming 60 ns SIMMs
used. Consequently, applications pay a heavy price
162
s
ll
g

e
s
r

n

-
-

-
k

t
he

-
e

e

n
s
gh

re
r

accessing local memory. To avoid these long access tim
the Origin relies heavily on a large level-2 cache, whic
can be up to 8 MB per processor. However, for memo
intensive Time Warp systems, this amount of cache is ea
exhausted, and, as we show later, results in a large num
of data cache misses per processed event.

Other features of the Origin2000 include hardware a
software for effective page migration, high-performanc
synchronization primitives, such as fetch-and-8 and load-
linked/store-conditional (LL/SC) instructions, and suppo
for large page sizes (up to 16 MB). The default page s
of the machine is 16 KB.

3 PCS MODEL

For this experimental study, we use theportable-initiated
PCS model. This simulation model is organized arou
two object types:Cell andPortable. The Cell represents a
cellular receiver/transmitter that has some fixed number
channels allocated to it. The Portable represents a mo
phone unit that resides within the Cell for a period of tim
and then moves to one of the four neighboring Cells. A
shown in Figure 1, when a new call arrives at a Cell, th
Cell first determines the status of the destination Portab
If the destination Portable is busy with another call, th
call is counted as abusy line. A busy lineoccurs when a
Portable is currently connected in a phone call and anot
phone call arrives for that portable.

Assign Channel
Call Arrived?

Yes

No

Call Complete?

On Going Call

Yes
Release Channel

No

Yes

No

Yes

Channel
Available?

No

Portable
Busy?

Call Blocked

Busy Line

Yes

Move
Portable?

No

Yes

Move
Portable?

No

Move To
Neighboring Cell

Release Channel

Yes

Portable Arrival

No

Handoff?

Figure 1: Portable-Initiated Model: Flowchart for Call Pro-
cessing within a Single Cell. A “Portable Arrival” Denote
a Portable Entering a Cell’s Area.
5

The Effect of State-Saving in Optimistic Simulation

ls
g t
ing
ion
e-
eli
nd
s,
ag
e
n
al
he
ine
the
n

s a
l L
ly,
ng
ab
ed

rs

of

ly
n,
m
u-

ty
m
in,
ng

rk
ed
val
e
ill

or
d
he
is

igh
n

ote

d
es

’s
ll
er

or

er-

el
LP
ely
as
do
h
is
y

”
h
sed
gn
me
to
re
as
cal
to
or
er

the
ns
k

es
ro-
olds
tory
a

is
les
3.1 Implementation

We realized Cells as logical processes (LPs), and Cal
Portables as time-stamped messages that travel amon
Cell LPs; this avoids state sharing between LPs. Mapp
Cells to LPs is a standard technique used in other applicat
(Wieland et al. 1989). Mapping Call and Portables to tim
stamped messages is a reasonable approach from a mod
perspective when viewed from the model flowchart fou
in Figure 1. In this model when a call (portable) arrive
channel availability must be determined. Since the mess
denoting the call arrival is sent to the Cell LP in which th
call will be processed, the channel availability informatio
is accessible by the Call/Portable contained within the c
arrival message. Moreover, Portable availability (is t
Portable engaged in a phone call?) must also be determ
by the Cell. Since the call arrival message carries
Portable’s state information, Portable availability is know
to the Cell. Using this mapping, a hand-off is realized a
message sent between two Cell LPs. The destination Cel
views the hand-off as a call/portable arrival. According
during all phases of call processing, this logical mappi
guarantees that the necessary state information is avail
without the additional overhead of exchanging time-stamp
messages.

3.2 Model Parameters

This PCS model has the following application paramete
(i) Call/Portable mobility, (ii) call inter-arrival time, (iii)
number of Cells, and (iv) number of Portables. Each
these parameters is discussed below.

Mobility of Calls/Portables determines how frequent
Calls/Portables move to a different Cell. This, in tur
determines how frequently LPs communicate. Recall fro
the previous discussion that the only time Cell LPs comm
nicate is in the hand-off of a Portable/Call. Here, mobili
was set low to reduce any perturbing effects of remote co
munications on the parallel simulation performance. Aga
the goal of this study is to look at the effects of state-savi
Frequent remote messages would perturb our results.

The call interarrival time determines the amount of wo
available to the simulator over a given period of simulat
time. For modest size PCS networks, the call interarri
time has a significant impact on the “rate” at which th
simulation progresses through simulated time, which w
determine how likely a simulation will roll back for a fixed
amount of lookahead. The faster the progress, the m
likely the simulation will roll back. Lookahead is define
as the amount of simulated time an LP can “see” into t
future and will be discussed in more detail later. For th
experimental study, we configured the call rate to be h
to induce a large amount of work per unit of simulatio
time. This was done to further reduce the rate of rem
162
/
he

s

ng

e

l

d

P

le

:

-

.

e

communications. When the low mobility rate is combine
with the high call rate, the total number of remote messag
is less than total events processed.

The number of Cells determines the number of LP
in the Time Warp simulation. 14400 LPs were used for a
experiments presented in this study. We choose this numb
since it provided an even mapping among all process
configurations tested.

Finally, the number of Portables in theportable-initiated
model determines the number of pending events. For exp
iments presented in this study,N , the number of Portables
per Cell, is fixed atN = 25. Accordingly, the total number
of pending events in the simulation is360000.

In terms of state and computation overheads, this mod
requires 40 bytes for message data and 104 bytes for
state data. Because the state size of an LP is relativ
small, using incremental state saving techniques, such
those discussed in Steinman (1993) and Gomes (1996)
not offer any performance benefit when compared wit
full copy state-saving after each event. Consequently, th
study only considers the performance implications of cop
state-saving.

4 IMPLEMENTATION OF TIME WARP

We now shift attention to the implementation of the Time
Warp executive, calledGeorgia Tech Time Warp (GTW). In
the following, certain data structures are said to be “owned
or “residing” on a specific processor. In principle, no suc
specification is required because all memory can be acces
by any processor in the system. However, the GTW desi
assumes each data structure has a unique “owner” (in so
cases, the owner may change during execution) in order
ensure that synchronization (e.g., locking) is not used whe
it is not needed, and memory references are localized
much as possible. Because synchronization and non-lo
memory references are usually very expensive relative
local memory references on most existing multiprocess
platforms, considerations such as this are important in ord
to achieve acceptable performance. For instance, on
KSR-2, hundreds or even thousands of machine instructio
can be executed in the time required for a single loc
operation.

4.1 The Main Scheduler Loop

Time Warp, as originally proposed by Jefferson (1985), us
three distinct data structures: the input queue that holds p
cessed and unprocessed events, the output queue that h
anti-messages, and the state queue that holds state his
information (e.g., snapshots of the LP’s state). GTW uses
single data structure, called theevent queue, that combines
the functions of these three queues. Direct cancellation
used, meaning whenever an event computation schedu
6

Carothers, Perumalla, and Fujimoto

in
9)
th
ta
e
r

as
C

in
e
a

rs

is
t, a
he
ing,
the
nt

.,
r

ssil

the
ro-
een
).
if-
y of
o-
ses
ors.
(sends) a new event, a pointer to the new event is left beh
in the sending event’s data structure (Fujimoto, July 198
This eliminates the need for explicit anti-messages and
output queue. Each event also contains a pointer to s
vector information, i.e., a snapshot of the portion of th
LP’s state that is automatically checkpointed, and pointe
used by the incremental checkpointing mechanism. Ple
recall, that incremental state-saving is not used in the P
simulation model.

In addition to an event queue, each processor mainta
two additional queues to hold incoming messages from oth
processors. Thus, each processor owns three distinct d
structures:

• The message queue (MsgQ)holds incoming
positive messages that are sent to an LP resid-
ing on this processor. Messages are placed into
this queue by theTWSendprimitive, which is
called during event processing (i.e.,Proc pro-
cedure) to schedule future events to other LPs.
The queue is implemented as a linear, linked
list. Access to this queue is synchronized with
locks.

• The message cancellation queue (CanQ)is
similar to theMsgQexcept it holds messages
that have been cancelled. When a processor
wishes to cancel a message, it enqueues the
message being cancelled into theCanQof the
processor to which the message was originally
sent. Logically, each message enqueued in
the CanQcan be viewed as an anti-message,
however, it is the message itself rather than an
explicit anti-message that is enqueued. This
queue is also implemented as a linear, linked
list. Access to this queue is synchronized with
locks.

• The event queue (EvQ)holds processed and
unprocessed events for LPs mapped to this pro-
cessor. As noted above, each processed event
contains pointers to messages scheduled by
the computation associated with this event, and
pointers to state vector information to allow the
event computation to be rolled back. The data
structures used to implement the event queue
will be discussed later. TheEvQ may only
be directly accessed by the processor owning
the queue, so no locks are required to access
it. In the current implementation of GTW, a
number of priority queue algorithms are sup-
ported to realize theEvQ including Calendar
Queue (Brown 1988), Skew Heap (Ronngren
and Ayani 1997) and In-place Heap. For a
complete survey of current priority queue al-
ill

162
d
.
e
te

s
e

S

s
r
ta

gorithms for parallel and sequential simulation,
see Ronngren and Ayani (1997).

After the simulator is initialized, each processor ente
a loop that repeatedly performs the following steps:

1. All incoming messages are removed from the
MsgQ data structure, and the messages are
filed, one at a time, into theEvQdata structure.
If a message has a timestamp smaller than the
last event processed by the LP, the LP is rolled
back. Messages sent by rolled back events
are enqueued into theCanQof the processor
holding the event.

2. All incoming cancelled messages are removed
from the CanQ data structure, and are pro-
cessed one at a time. Storage used by can-
celled messages is returned to the free memory
pool. Rollbacks may also occur here, and are
handled in essentially the same manner as roll-
backs caused by straggler positive messages,
as described above.

3. A single unprocessed event is selected from the
EvQ, and processed by calling the LP’s event
handler (Proc procedure). Asmallest times-
tamp first scheduling algorithm is used, i.e.,
the unprocessed event containing the smallest
timestamp is selected as the next one to be
processed.

4.2 Buffer Management

The principal atomic unit of memory in the GTW executive
abuffer. Each buffer contains the storage for a single even
copy of the automatically checkpointed state, pointers for t
direct cancellation mechanism and incremental state-sav
and miscellaneous status flags and other information. In
current implementation, each buffer utilizes a fixed amou
of storage.

Each processor maintains a list of free buffers, i.e
memory buffers that are not in use. A memory buffe
is allocated by theTWGetMsg routine, and storage for
buffers is reclaimed during message cancellation and fo
collection.

In cache-coherent multiprocessor systems, such as
Origin2000, the act of scheduling messages between p
cessors using shared memory can result in what has b
called thepage missproblem (Fujimoto and Panesar 1995
Here, a single memory buffer is migrated among the d
ferent processors. Each of these processors has a cop
the buffer in its local cache. Consequently, when a pr
cessor writes into a shared event memory buffer, it cau
the other copies to be invalidated on the other process
These invalidations are in a sense “false”, since GTW w
7

The Effect of State-Saving in Optimistic Simulation

t
-
c

on
,
nd

d
er
ch

e
e

of
r
g

a

ce
is

ee
in
ds
l
d

n

-
n-
s.
d

e
e
es
l’s
e
s

py

-
n

e-
es
pi-
d
e.

ds
ts

of
ion
rs,

W
her
S

s
00
n
of

the
e
15

re,
ts.
only allow a single processor to be writing into an even
memory buffer. This results in “false sharing” of mem
ory pages among processors, thus degrading performan
This performance degradation was particularly noticed
the KSR-I, which employed an ALL-CACHE architecture
which treated all memory as cache-memory (Fujimoto a
Panesar 1995).

To overcome this performance bottleneck, theparti-
tioned buffer poolscheme was developed (Fujimoto an
Panesar 1995). Here, each processor’s free pool of buff
is divided into subpools, one for each processor to whi
it sends messages. LetBi,j refer to the buffer pool on
processori that is used to send messages to processorj .
Processori mustallocate its buffer fromBi,j whenever it
wishes to send a message toj . The buffer will subsequently
be returned to processori either whenj sends a message to
i that reuses this buffer, or if the buffer is returned via th
buffer redistribution mechanism. The primary advantag
with this scheme is that a buffer may only reside in one
two pools throughout the lifetime of the simulation: eithe
Bi,j or Bj,i . This approach ultimately reduces the workin
set of buffers for processori to Bi,j for all j . The page
miss problem will be avoided so long as these pages c
all reside in the processor’s local memory/cache.

An event buffer may be reused for future events on
it has been determined that the virtual time of the event
less thanglobal virtual time (GVT). Jefferson (1985) defines
GV T (T) as the “minimum of (1) all virtual times in all
virtual clocks at timeT , and (2) of the virtual send times
of all messages that have been sent but have not yet b
processed ...”. Extreme care must be taken when comput
GVT so as to not introduce any additional system overhea
GTW makes use of a highly efficient GVT (Global Virtua
Time) algorithm that relies on the performance of share
memory. The details of this algorithm can be found i
Fujimoto and Hybinette (1997).

In addition to the GVT algorithm, GTW also employs
on-the-fly fossil collectionthat enables efficient storage recla
mation for simulations containing large numbers, e.g., hu
dreds of thousand or even millions, of simulator object
The details of this algorithm can be found in Fujimoto an
Hybinette (1997).

4.3 Realization on Origin2000

In porting GTW to the Origin2000, GTW uses the following
systems primitives:

• usinit to create a shared arena from which
synchronization structures are allocated.

• usnewlock to allocate a new lock from the
shared arena.

• ussetlock to acquire a spin lock. These
spin locks are use in the GVT algorithm as
162
e.

s

n

n
g
.

well as to provide exclusive access toMsgQ
andCanQ for each operating system process
running GTW.

• usunsetlock to release a spin lock.
• m fork to create the process that run GTW’s

kernel on each processor. These processes
are arranged such that they shared a common
address space in addition to the shared arena. It
should be noted that all locks must be allocated
through the shared arena to function correctly.

• barrier used to synchronize GTW’s start-up
procedure across all processors.

4.4 Reverse Computation

In contrast to state-saving,reverse computationis a different
technique in which rollback is realized by performing th
inverse of individual operations that are executed in th
event computation. This approach to rollback guarante
that the inverse operations recreate the simulation mode
state as it was just prior to the event computation. Th
primary advantage of this approach is that it only require
a small amount of control information (i.e., bits) to be
saved as opposed to 10s or 100s of bytes in regular co
state-saving.

We use the reverse computation technique to com
pare the performance of state-saving for Time Warp o
the CC-NUMA architecture. Reverse computation is us
ful to compare with state-saving since the two techniqu
possess contrasting properties. Reverse computation ty
cally requires much less memory for rollback support, an
pushes a lot of the rollback overheads to the rollback stag
This in contrast to state-saving in which rollback overhea
manifest themselves both in terms of memory copying cos
during the forward event computation, as well as in terms
memory size requirements. For a more thorough discuss
of reverse computation we refer the reader to Carothe
Perumalla and Fujimoto (1999).

5 PERFORMANCE RESULTS

For this performance study, we used two versions of GT
– one configured to use state-saving (SS) and the ot
using reverse computation (RC), for rollback support. PC
is the driving application, configured with 120x120 cell
and 25 portables per cell, yielding 14400 LPs and 3600
initial events. This particular PCS configuration was chose
because it allowed an even mapping across a wide range
processor configurations. Because of the large size of
simulation model, 64-bit compilation was required. Th
experiments were run on 1, 2, 3, 4, 5, 6, 8, 10, 12 and
processors.

For each data point, a single long run was made. He
a run of the PCS model processes 450 million even
8

Carothers, Perumalla, and Fujimoto

h

s

u

i

fo
t
r

s

s
o

9

.
3

k

n

,
r
u

o

ors.

-
rs
er
r-
ry

ffer
nt
e
-

ss
n
nt
g.
ed

be
of
ly

o
ne

ns
e
n
se.
el
ent
r,
Because dedicated computing time was obtained, less t
1% variation in execution time was observed, making
single run statistically acceptable. We used theperfex
monitoring tool to obtain machine performance statistic
Our reason for the long runs is becauseperfex multiplexes
the hardware counters over different low level statistics. O
observation is that with long runs,perfex estimations are
very accurate as each hardware counter is only respons
for two different low level statistics.

In terms of memory use, the amount of memory wa
held constant across all processors at 360 MB total
events and 360 MB for state saving. RC did not alloca
any memory for state-saving, but instead stored cont
information that is required to invert an event computatio
directly into the event buffer. A single word of storage wa
reserved for this purpose.

5.1 Performance Data

In terms of absolute performance, RC yields 730K event
sec, while SS at 115K events / sec when run on 15 process
as shown in Figure 2. This is a much bigger differenc
than reported in Carothers, Perumalla and Fujimoto (199
Apparently, 64-bit object code speeds up RC but slow
SS down due to an increase in state-saving overheads
terms of overall speedup, RC achieves a speedup of 1
on 15 processors. Calculation of speedup is based on
optimized sequential simulator. The number of rollbac
was extremely small as simulator efficiency was above 99.6
for both RC and SS across all processor configuratio
indicating there is ample amount of available parallelism

One interesting point to be made here is that ourideal
Time Warp simulator, RC,did not achieve linear speedup
but does come very close. One would expect an ideal pa
lel simulator to achieve linear or even super-linear speed

Number of Processors

E
ve

nt
 R

at
e

2 4 6 8 10 12 14

0
20

00
00

40
00

00
60

00
00

80
00

00

RC
SS

Figure 2: Event rate as a function of the number of pr
cessors.
16
an
a

.

r

ble

s
r

e
ol
n

/
rs,

e
).
s
In
.8
an
s
%
s,
.

al-
p

-

Number of Processors

S
pe

ed
up

2 4 6 8 10 12 14

0
5

10
15

RC
SS

Figure 3: Speedup as a Function of the Number of Process

given high simulator efficiency and a increase in the to
tal amount of cache memory as the number of processo
increase. While this increase in cache memory does off
some benefit to Time Warp simulators, it does not ove
come the overheads incurred due to FIFO event memo
reuse. Recall, that since a processed event memory bu
is not available for reuse until GVT sweeps past, eve
memory buffers must be consumed in FIFO order. Th
consequence of FIFO order is that there is no or little lo
cality of reference, which results in higher data cache mi
rates. All memory buffers are being accessed uniformly. O
the other hand, a sequential simulator can commit an eve
and reuse its memory buffer immediately after processin
Thus, sequential simulators allow memory to be consum
in LIFO order, which affords the simulator greater locality
of reference and better use of cache memory. It should
noted that FIFO buffer consumption is a consequence
any optimistic synchronization mechanism and not sole
an artifact of RC.

Now, the primary question we are addressing is why d
we see the performance disparity between SS and RC. O
would expect that the numerous performance optimizatio
made to GTW for the shared memory machine would b
sufficient to yield acceptable levels of performance eve
with state-saving. However, this appears not to be the ca

To address this question, we examined the low-lev
machine statistics. The idea here is to analyze the per-ev
overheads from the machine’s point of view. In particula
we computed the following statistics:

• total number of issued instructions per event
committed (PEC)

• total number of issued loads PEC
• total number of issued stores PEC
• total number of TLB misses PEC
29

The Effect of State-Saving in Optimistic Simulation

d

-
fo
e

c
F

th

e
7
n
e

b
u
o
n
o
b

e

e
a
s

h
e

n
d

h

h
e
5
w
S
s
c
o

ion

a

f

• total number of primary data cache misses
PEC

• total number of secondary data cache misses
PEC

• total number of secondary instruction cache
misses PEC

• total number of primary instruction cache miss-
es PEC

The instruction, cache and TLB statistics were collecte
using theperfex monitoring tool as previously discussed.

We observe in Figures 4, 5, and 6 that primary / sec
ondary data cache misses and TLB misses respectively
RC remain relatively constant or decrease slightly as th
number of processors increases. However, for SS, the ca
misses increase as the number of processors increases.
TLB misses, there is a decrease but rises sharply as
number processors increases beyond 8.

To explain this behavior, we have to consider the numb
of instructions per committed event, as shown in Figure
Here, we observe that the number of instructions per eve
for RC decreases as the number of processors are add
This reduction is due to a decrease in the aggregate num
of GVT calculations. We also observe that SS has abo
20% more instructions per event than RC and almost 30%
higher when the processor count is 10 or greater. This tre
of SS issuing more instructions per event than RC is n
only due to more stores as a consequence of state-saving
also due to issuing many more loads per event, as shown
Figures 8 and 9 respectively. Like RC, the initial decreas
in instructions per event is attributed to a decrease in th
total number of GVT computations. However, when th
processor count raises to 10 and above, it increases ag
We attribute this increase to a sharp increase in TLB misse

5.2 TLB Behavior

The SGI Origin2000 uses the MIPS R10K processor, whic
has software managed TLBs (R10000 Microprocessor Us
Manual 1996). The implications of this is that when a TLB
miss does occur, it traps to a handler internal to the operati
system. The operating system then executes handler co
to locate the page table in memory and update the TLB. T
processing of the TLB handler code can cause additional da
cache misses due to referencing the page table hierarc
thus explaining the sharp increase in data cache miss
both primary and secondary, as shown in Figures 4 and
Primary and secondary instruction caches exhibited fe
misses per event across all processors for both RC and
and do not factor into the overall performance picture a
data cache and TLB misses do. For detailed performan
studies on TLBs and the virtual memory hierarchy, refer t
Jacob and Mudge (1998), and Uhlig et al. (1994).
163
r

he
or
e

r
.
t
d.

er
t
r
d
t
ut

in

e

in.
.

r

g
e

e
ta
y,
s,
.

S

e

Number of Processors

P
rim

ar
y

D
at

a
C

ac
he

 M
is

se
s

P
er

 C
om

m
itt

ed
 E

ve
nt

2 4 6 8 10 12 14

0
50

10
0

15
0

RC
SS

Figure 4: Primary Data Cache Misses per Event as a Funct
of the Number of Processors.

Number of Processors

S
ec

on
da

ry
 D

at
a

C
ac

he
 M

is
se

s
P

er
 C

om
m

itt
ed

 E
ve

nt

2 4 6 8 10 12 14

0
10

20
30

40 RC
SS

Figure 5: Secondary Data Cache Misses per Event as
Function of the Number of Processors.

Number of Processors

T
LB

 M
is

se
s

P
er

 C
om

m
itt

ed
 E

ve
nt

2 4 6 8 10 12 14

0
10

20
30

40
50 RC

SS

Figure 6: TLB Misses as a Function of the Number o
Processors.
0

Carothers, Perumalla, and Fujimoto

r

as

as

d
f
In
-

lt
r
e

es
s.
rs
is

ge
d
r

ity

e
in

rp
s
e

n

s,
be
t
he
in
s
ts

his
n
is

p

g
”

el
to
r-
ry
Number of Processors

Is
su

ed
 In

st
ru

ct
io

ns
 P

er
 C

om
m

itt
ed

 E
ve

nt

2 4 6 8 10 12 14

0
50

0
10

00
15

00
20

00
25

00

RC
SS

Figure 7: Number of Instructions (all kinds) Issued pe
Event as a Function of the Number of Processors.

Number of Processors

Is
su

ed
 S

to
re

s
P

er
 C

om
m

itt
ed

 E
ve

nt

2 4 6 8 10 12 14

0
50

10
0

15
0

20
0

RC
SS

Figure 8: Number of Store Instructions Issued per Event
a Function of the Number of Processors.

Number of Processors

Is
su

ed
 L

oa
ds

 P
er

 C
om

m
itt

ed
 E

ve
nt

2 4 6 8 10 12 14

0
20

0
40

0
60

0

RC
SS

Figure 9: Number of Load Instructions Issued per Event
a function of the number of processors.
163
To summarize the performance data, the cause an
effect relationship appears to be as follows. The act o
state-saving to memory causes more store instructions.
GTW, recall that the store instructions (as part of state
saving) are writing to a page of memory that is different
than the event buffer. Consequently, store instructions resu
in a TLB miss, which causes an increase in the numbe
of load instructions incurred due to accesses to the pag
table hierarchy. The combined increase in loads and stor
results in more primary and secondary data cache misse
Also, another factor here is that as the number of processo
increase, so does the number of remote messages, which
not that high, but every remote message is on a different pa
of memory that is likely to be unmapped. These unmappe
pages of memory only exacerbates the TLB miss problem fo
SS. For RC, because there is no state-saving, TLB capac
is not exhausted and this phenomenon is not observed.

5.3 Unexplained Phenomenon

A missing piece of the performance puzzle concerns th
knee of the speedup curve for SS at 8 processors when
fact there is plenty available parallelism. If we look at the
number of TLB misses, as shown in Figure 6, we see a sha
rise in TLB misses per event for processor configuration
above 8. Because the simulation is slowing down and th
number of TLB misses per event is rising, the TLB miss
rate is rising very sharply.

Of interest is exactly how the page table hierarchy is
stored and manipulated on the Origin2000. What is unknow
at this time is the Origin’s ability to handle TLB misses in
parallel. Our conjecture is that under certain circumstance
TLB misses occurring on separate processors cannot
serviced in parallel. This conjecture is based on the fac
that the virtual memory page tables can be shared among t
GTW processes. Because of this sharing, a coarse-gra
locking mechanism may be used to synchronize update
to the page tables. Also, the page table read reques
themselves may become serialized. The consequence of t
serialization is that it results in a performance degradatio
as the number of processors increases. We attribute th
serialization of TLB misses to SS’s knee of the speedu
curve.

6 CONCLUSIONS

The focus of this paper is to understand why state-savin
yields poor performance in comparison to an “idealized
Time Warp system as observed on a CC-NUMA multipro-
cessor. To address this question, we examined the low lev
machine performance statistics, especially those related
the memory system performance. The outcome of this pe
formance study suggests that TLB misses are the prima
culprit for SS’s performance degradation.
1

The Effect of State-Saving in Optimistic Simulation

on
t

e

s
be
nd
le

e
u
rs
in
c
th
a
u

g
a
th
th

hi
ar

he
ld
lly
im

u

e
el

9
e
n

ry
-

ry
-
9,

nt

l

d
e,

ry
e

d

n

nd

-

-

,

n-

l-
.
s.

ES
-

l-
t

So, given these performance results, what can be d
to improve state-saving performance? First, we plan
experiment with the Origin’s ability to support very larg
page sizes. Currently, GTW assumes the page size is
KB. With 4, 8 or even a 16 MB page size, TLB misse
should drastically decrease, which will reduce the num
of load and store instructions, leading to lower primary a
secondary data cache misses rates, and can ultimately
to improved performance.

Moreover, we plan to experiment with allocating th
event memory buffer and state memory buffer in a contiguo
block of memory. Currently in GTW, state and event buffe
are partitioned into separate pools of memory. By allocat
buffers as a contiguous block, state and event data is
located on the same page of memory, thus reducing
number of pages a TLB must support per unit of virtu
time. This assumes however, that the combined amo
of memory to hold state and event data is less than
page. Given that the Origin2000 can support very lar
page sizes (upto 16 MB), we believe this will not be
problem. However, the performance consequences of
solution on remote messages is unclear, as it results in
flow of additional state memory between processors. T
additional memory may increase primary and second
data cache misses.

Other potential improvements include making use of t
Origin2000’s prefetching capabilities. However, it shou
be noted that more experimentation is required to fu
understand the tradeoffs associated with each of these
provements.

REFERENCES

Brown, R. 1988. Calendar queues: A fast 0(1) priority que
implementation for the simulation event set problem
Communications of the ACM, volume 31, number 10,
pages 1220–1227, October.

Carothers, C. D., R. M. Fujimoto, and Y-B. Lin 1995. A
Case Study in Simulating PCS Networks Using Tim
Warp. InProceedings of the 9th Workshop on Parall
and Distributed Simulation, pages 87–94, June.

Carothers, C. D., K. S. Perumalla, and R. M. Fujimoto 199
Efficient Optimistic Parallel Simulations Using Revers
Computation. InProceedings of the 13th Workshop o
Parallel and Distributed Simulation, pages 126–135,
May.

Fujimoto, R. M. 1989. Time Warp on a shared memo
multiprocessor. InProceedings of the 1989 Interna
tional Conference on Parallel Processing, volume 3,
pages 242–249, August.

Fujimoto, R. M. 1989. Time Warp on a shared memo
multiprocessor.Transactions of the Society for Com
puter Simulation, volume 6, number 3, pages 211–23
July.
163
e
o

16

r

ad

s

g
o-
e

l
nt
a
e

is
e

s
y

-

e
.

.

Fujimoto, R. M., and K. Panesar 1995. Buffer manageme
in shared memory time warp systems. InProceed-
ings of the 9th Workshop on Parallel and Distributed
Simulation, pages 149–156, June.

Fujimoto, R. M., and M. Hybinette 1997. Computing globa
virtual time in shared memory multiprocessors.ACM
Transactions on Modeling and Computer Simulation,
volume 7, number 4, pages 425–446, October.

Gomes, F. 1996. Optimizing Incremental State-Saving an
Restoration. Ph.D. thesis, Dept. of Computer Scienc
University of Calgary.

Jacob, B., and T. Mudge 1998. A look at several memo
management units, TLB-refill mechanisms, and pag
table organizations. InProceedings of 8th Int. Conf.
Architectural Support for Programming Languages an
Operating Systems (ASPLOS-VIII), pages 295–306, Oc-
tober.

Jefferson, D. R. Virtual time 1985.ACM Transactions
on Programming Languages and Systems, volume 7,
number 3, pages 404–425, July.

Jiang, D., and J. P. Singh 1998. A Methodology and a
Evaluation of the SGI Origin2000. InProceedings of
1998 SIGMETRICS Conference on Measurement a
Modeling of Computer Systems, pages 171–181, June.

Laudon, J, and D. Lenoski 1997. The SGI Origin: a cc
NUMA highly scalable server InProceedings of the
24th International Symposium on Computer Architec
ture, pages 241–251, June.

MIPS R10000 Microprocessor User Manual Version 2.0
1996.

Poplawski, A., and D. M. Nicol 1998. Nops: A Conservative
Parallel Simulation Engine for TeDIn Proceedings of the
12th Workshop on Parallel and Distributed Simulation,
volume 23, pages 180–187, May.

Ronngren, R., and R. Ayani 1997. Parallel and seque
tial priority queue algorithms.ACM Transactions on
Modeling and Simulation, volume 7, number 2, pages
157–209, April.

Samadi, B 1985. Distributed Simulatio in, Algorithms and
Performance Analysis. PhD. Thesis, University of Ca
ifornia, Los Angeles, Computer Science Department

Sleator, D. D., and R. E. Tarjan 1986. Self-adjusting heap
SIAM Journal on Computing, volume 15, number 1,
pages 52–59, February.

Steinman, J. S. 1993. Incremental state-saving in SPEED
using C++. In Proceedings of the 1993 Winter Simu
lation Conference, pages 687–696, December.

Uhlig, R., D. Nagle, T. Stanley, T. Mudge 1994. Design
Tradeoffs for Software-Managed TLBs.ACM Trans-
actions on Computer Systems, volume 12, number 3,
pages 175–205, August.

Wieland, F., L. Hawley, A. Feinberg, M. DiLorento,
L. Blume, P. Reiher, B. Beckman, P. Hontalas, S. Be
lenot, and D. R. Jefferson 1989. Distributed comba
2

Carothers, Perumalla, and Fujimoto

r-
e

t
e
-

laer
S.
6
as
gy.
re
of
as
.

His
s,

e.

f
ee
in
y,
m

e
-
re
de
d

e
of
e

ni-
r
tive

-
ce
ral
g
ro-
nd

in
gh
r
n.
the
)

for
simulation and Time Warp: The model and its pe
formance. InProceedings of the SCS Multiconferenc
on Distributed Simulation, volume 21, pages 14–20,
March.

ACKNOWLEDGEMENT

This work was supported in part by U.S. Army Contrac
DASG60-95-C-0103 funded by the Ballistic Missile Defens
Organization, and in part by DARPA Contract N66001-96
C-8530.

AUTHOR BIOGRAPHIES

CHRISTOPHER D. CAROTHERS is an assistant pro-
fessor in the Computer Science Department at Rensse
Polytechnic Institute. He received the Ph.D., M.S. and B.
degrees from Georgia Institute of Technology in 1997, 199
and 1991 respectively. Prior to joining Rensselaer, he w
a Research Scientist at the Georgia Institute of Technolo
As a Ph.D. student, he interned twice with Bellcore whe
he worked on wireless network models. In the Summer
1996, he interned at the MITRE Corporation, where he w
part of the DoD High Level Architecture development team
He also serves as a PADS Program Committee Member.
research interests include parallel and distributed system
simulation, wireless networks, and computer architectur

KALYAN S. PERUMALLA is a Research Scientist since
1997 at the College of Computing, Georgia Institute o
Technology, where he is also finishing his doctoral degr
in Computer Science. He received the B.E. degree
Mechanical Engineering in 1991 from Osmania Universit
India, and the M.S. degree in Computer Science in 1993 fro
the University of Central Florida, Orlando. Previously, h
worked at the Institute for Simulation and Training in 1992
93, and interned at Schlumberger in 1994 and at Bellco
in 1995 and 1996. His current research interests inclu
parallel and distributed simulation, network modeling, an
parallel combinatorial optimization.

RICHARD M. FUJIMOTO is a professor in the College
of Computing at the Georgia Institute of Technology. H
received the Ph.D. and M.S. degrees from the University
California (Berkeley) in 1980 and 1983 (Computer Scienc
and Electrical Engineering) and B.S. degrees from the U
versity of Illinois (Urbana) in 1977 and 1978 (Compute
Science and Computer Engineering). He has been an ac
researcher in the parallel and distributed simulation com
munity since 1985 and has published over 100 conferen
and journal papers on this subject. He has given seve
tutorials on parallel and distributed simulation at leadin
conferences. He has co-authored a book on parallel p
cessing and recently completed a second on parallel a
163
distributed simulation. He served as the technical lead
defining the time management services for the DoD Hi
Level Architecture (HLA). Fujimoto is an area editor fo
ACM Transactions on Modeling and Computer Simulatio
He also served as chair of the steering committee for
Workshop on Parallel and Distributed Simulation, (PADS
from 1990 to 1998 as well as the conference committee
the Simulation Interoperability workshop (1996-97).
3

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

