
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

OPTIMISTIC PARALLEL SIMULATION OVER A NETWORK OF WORKSTATIONS

Reuben Pasquini
Vernon Rego

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907-1398, U.S.A.

e

s
c
n
m

s
in

h

a
o

f
A

d

is
f

r
n

h

th

g

-
is
m-
r-

nce

p
es

er

ay

’s
ts

p

s
er.
of

ity
ABSTRACT

The low cost and scalability of a PC and ethernet-based n
work of workstations (NOW) makes the NOW an attractive
platform for parallel discrete event simulation (PDES). Thi
paper discusses the demands a parallel simulation pla
upon a network that connects distributed workstations, a
presents two approaches to managing inter-processor co
munication in PDES on a NOW.

1 INTRODUCTION

A discrete event simulation (DES) uses a computer to te
a model of a system whose state changes at discrete po
in time. A simulation operates on a model’sstatevariables
during each of a sequence of time-orderedevents. A parallel
discrete event simulation (PDES) attempts to speed up t
execution of a DES by distributing the simulation’s workload
between multiple processors. Parallel simulation holds gre
promise for meeting the simulation needs of developers
increasingly complex systems.

A network of workstations is an inexpensive and widely
available platform for PDES. A NOW usually consists o
several workstations or PC’s connected by an ethernet.
NOW has advantages and disadvantages when compare
a multiprocessor (MP) like the IBM SP2 or SGI Origin.
A NOW, based on commodity hardware and software,
inexpensive and easy to upgrade. Today, each node o
NOW (workstation) is just as computationally powerful as
a node of an MP since most MP systems use the same p
cessor found in workstations. However, the interconnectio
network in a multiprocessor supports communication wit
higher bandwidth, lower latency, and stronger reliability
guarantees than the typical ethernet that interconnects
nodes in a NOW.

Experiments with theParaSol PDES system indicate
that a parallel simulation with tight interprocessor couplin
must regulate its rate of interprocessor communication to ru
well on a NOW.ParaSol is an experimental process- and
161
t-

es
d

-

t
ts

e

t
f

to

a

o-

e

n

object-oriented parallel simulation library for distributed
memory multiprocessors and workstation clusters. Th
paper explores techniques for regulating interprocessor co
munication (IPC) between processors participating in a pa
allel simulation on a network of workstations.

1.1 PDES Concepts

A discrete event simulation executes a time-ordered seque
of simulationevents. Each event object has atime-stamp
and ahandler. The simulation uses an event’s time-stam
to schedule the event’s execution. A simulation execut
events in nondecreasing time–stamp order so thatvirtual
time (the time–stamp on the last executed event) nev
decreases. The simulation calls an event’shandlermethod
to execute the event. During its execution, an event m
access simulation objects and schedule future events.

Parallel simulation attempts to speedup a simulation
execution by distributing the simulation’s events and objec
across multiple processors. GivenN processors andM
events, each processor would ideally handleM/N events,
suggesting an ideal speedup ofN . Unfortunately, distributed
events may not access simulation objects in time–stam
order. For example, processorP1 may execute an eventEa

with time–stampTEa = 16 after processorP2 executes an
eventEb with time–stampTEb

= 36. If Ea generates an
eventEc with time–stampTEc = 21 that P2 must execute
(since Ec accesses a simulation objectOP2 located on
processorP2), thenEc accessesOP2 after Eb even though
TEc < TEb

.
A PDES must execute events in acausally consistent

way. A simulation is causally consistent if events acces
each simulation object in nondecreasing time–stamp ord
The time warp algorithm (Jefferson 1985) is an example
an optimisticalgorithm for PDES. Time warp is optimistic
in the sense that each processorP0 executes events in time–
stamp order under the optimistic assumption that causal
is not being violated. At any point, however,P0 may
receive astragglereventEs (from another processor) that
0

Pasquini and Rego

en

th

S

al

-

in

ec

in-

hm
re

ity
de
”
.

od
ors
hre
t

or,

e

-
s.
er
-
rs
s-

lso
n
r.
s
d
le
c-
ly

a-

e

n,
e

t
the
e

y
s
le

o

ce
ill

-

-
n the
ers.
n–
should have been executed before the last several ev
already executed byP0 (see Figure 1). WhenP0 receives
the stragglerEs , P0 rolls back to a check-pointed system
state that corresponds to a time–stamp which is less than
straggler’s time–stamp. ProcessorP0 resumes its execution
from this point, andP0 processes the stragglerEs in the
right time–stamp order. A successful optimistic PDE
minimizes the runtime costs ofstate-savingsystem state
(for potential rollback),rollback (to recover state when a
straggler arrives),global virtual time(gvt) computation (to
determine a global minimum on the simulation’s virtu
time), andinterprocessor communication(IPC).

virtual time = 100

real time = 1:00

Processor 0

Processor 1

real time = 1:00

virtual time = 120

ProcessorP1 generates an event for processorP0 at virtual
time 100, but P0 has already reached v.t.120. Processor
P0 will roll back whenP0 receives the straggler event.

Figure 1: Causality Error in an Optimistic Parallel Simu
lation

Several parallel simulation systems are in use today
experimental and applied settings. TheGTW system is an
optimistic event-based system developed at Georgia T
(Penesar and Fujimoto 1997).ParSecis a conservative sys-
tem developed at UCLA (Bagrodia et al. 1998).Warpedis
an optimistic system developed at the University of Cinc
nati (Chetlur et al. 1997).APOSTLEis a process-based
simulator that uses the breathing time-buckets algorit
(Booth and Bruce 1997). The results in this paper a
based on experiments carried out withParaSol, an opti-
mistic simulator under development at Purdue Univers
(Mascarenhas, Knop, and Rego 1997). For the remain
of this paper the terms “parallel simulation” and “PDES
both refer to optimistic parallel discrete event simulation

1.2 Communication and PDES

Fast, timely communication is necessary to achieve go
performance in parallel simulation. Distributed process
executing a PDES exchange messages in at least t
situations. First, when a processorP0 schedules an even
161
ts

e

h

r

e

Ea on a remote processorP1, P0 sendsP1 a message. If
P0 later receives a straggler event from a remote process
then P0 sends an anti-message toP1 to cancel eventEa .
Finally, each processor periodically exchanges virtual tim
information with every other processor to compute a new
global virtual time (gvt). The gvt is a lower bound on the
PDES virtual time.

Many PDES systems avoid problems with interproces
sor communication by running on shared memory platform
A shared memory architecture has important advantages ov
a distributed memory architecture for PDES. Shared mem
ory allows processors to exchange data by passing pointe
between each other rather than packing the data into a me
sage to be sent over a network. A shared memory space a
allows a user to view his model as a single unit rather tha
a collection of subunits that communicate with each othe

Distributed memory platforms have two advantage
over shared memory platforms for PDES. First, a distribute
memory system can exploit idle processors already availab
on a network of workstations to speedup a simulation. Se
ond, a distributed memory multiprocessor can scale cheap
to a large number of processors to support parallel simul
tions with sufficient parallelism.

Distributed memory PDES systems rely upon a messag
passing library to provide high performance and platform
independent management of interprocessor communicatio
synchronization, flow control, and buffer management. Th
PVM(Suderam et al. 1994) andMPI (1995) message passing
libraries are two popular communication systems. Mos
message passing middleware is designed to address
needs of structured parallel applications which synchroniz
via blockingsend andreceive operations, but message
passing systems which use multithreading to efficientl
overlap communication and computation in asynchronou
and soft realtime applications have recently become availab
(Gomez, Rego, and Sunderam 1997).

Optimistic parallel simulations exhibit unpredictable
asynchronous communication patterns not well suited t
the traditional synchronoussend and receive commu-
nication paradigm. InParaSol, a processorP0 may send a
message to a destination processorP1 at unexpected times.
Rather than synchronizeP0 and P1 with blocking send
and receive , ParaSol requiresP0 to send its message
M with a nonblockingi send . ProcessorP1 eventually
receivesM sinceP1 periodically polls the network for arriv-
ing messages. This scheme has two drawbacks. First, sin
the simulation cannot anticipate when a new message w
arrive, the simulation must regularly poll the network for
arriving messages within the simulation driver’s event ex
ecution loop. Second, non-blockingi send bypasses the
communication system’s flow control mechanisms. There
fore, a message sender can generate messages faster tha
message passing system can deliver messages to receiv
In this way pending messages sent asynchronously (no
1

Optimistic Parallel Simulation over a Network of Workstations

n

m
b

fit

e
e
c
r
t

r

y

ow
o
t

h
f

o-
a

av
te

xt
es
of

n
h

er
ges

le
rks

to

he
h-

r
r-

he

a
ll

a

ni-
s),
nt
s
ly

a-
iver
ges
n-
k.
blocking) can accumulate in the sender’s memory space a
eventually overwhelm the simulation.

Several approaches to improving interprocessor co
munication performance in PDES have been proposed
researchers. Chetlur et al. (1997) explore the bene
of batching messages in theWarpedPDES system. This
work explores the trade-off in message batching betwe
the benefit of decreasing per-message communication ov
head and the cost of increased message delivery laten
This trade-off is complicated in PDES by the potential fo
destructive interdependencies between messages in a ba
For example, suppose that processorP0 has local virtual
timeTP0 = 9 whenP0 generates a messageMEa that sched-
ules an eventEa with time-stampTEa = 10 on processor
P1. ProcessorP0 does not sendMEa immediately, since
P0 wants to batchMEa with another message. Processo
P0 goes on to execute an eventEb scheduled by a message
MEb

sent fromP1 at virtual timeTP1 = 11. ProcessorP0
should not executeEb sinceP1 should have executedEa

(the event thatMEa will schedule) before sendingMEb
.

However, if P0 does not notice this conflict, thenP0 may
go on to generate a messageMEc . Finally, P0 batchesMEc

with MEa without realizing that a destructive dependenc
exists between the two messages in the batch (see Figure

Penesar and Fujimoto (1997) describe an adaptive fl
control mechanism for regulating the rate at which each pr
cessor generates events for other processors. Their adap
algorithm computes a virtual time window that limits eac
processor’s optimism so that no processor advances too
beyond the system gvt. In this way, the adaptive alg
rithm attempts to prevent a processor from generating
event that will later be canceled by an anti-message. Sim
larly, Ferscha (1995), Mascarenhas (1997), and others h
explored adaptive synchronization algorithms that regula

Processor 0

Processor 1

 Ea Ec

 Eb

ProcessorP0 batches messages for eventsEa andEc together
even thoughEc depends on an eventEb from P1, andEb

will be rolled back whenEa arrives atP1.

Figure 2: Message Batching in PDES
161
d

-
y
s

n
r-
y.

ch.

2).

-
ive

ar

n
i-
e

“optimism” in PDES. Adaptive synchronization allows each
processor in a PDES to decide whether to execute its ne
event or wait to receive a message. A processor bas
its decision on probabilistic assumptions about the rate
interprocessor communication.

Finally, Damani, Wang, and Garg (1997) describe a
algorithm that avoids cascading rollbacks by requiring eac
processorP to stamp each messageM that P sends with
two Lamport clocks (Lamport 1978). IfP rolls back,
thenP broadcasts a rollback-message with which the oth
processors can determine which of their received messa
are valid and which are invalid. A shortcoming of this work
is that it assumes the availability of an efficient and reliab
broadcast mechanism even though most local area netwo
do not directly provide such support.

2 COMMUNICATION PROTOCOLS FOR PDES

The torus is an often used benchmark for measuringPara-
Sol’s performance. The torus model consists ofN × N

servers arranged in a mesh that wraps around at its ends
form a doughnut. The experiment evenly distributesN2/2
simulation processes over the mesh and then allows t
processes (customers) to move randomly between neig
boring serversN2 times. A customer that arrives at a serve
requests to be serviced for an exponentially distributed se
vice time. If the server is busy, then the server places t
customer in a FIFO queue.

Experiments testingParaSol’s performance simulat-
ing other models revealed thatParaSol could not even
complete a simulation of a baseball queueing model on
network of workstations (NOW). Like the torus, the baseba
model consists of anN × N mesh of servers. Unlike the
torus, the baseball connects the ends of the mesh to form
ball (rather than a doughnut), and the baseball allocatesN2

customers (rather thanN2/2 customers). The ball shape
means that each processor simulating a baseball commu
cates with up to three neighbors (rather than two neighbor
and doubling the number of customers doubles the amou
of interprocessor communication. Figure 3 shows diagram
of 4×4 torus and baseball models whose objects are even
distributed between four processors (P0, P1, P2, P3).

An investigation into the reason forParaSol’s diffi-
culty simulating the baseball model reveals that the simul
tion generates messages faster than the network can del
messages. Since a parallel simulation generates messa
at random points in time, a message sender may not sy
chronize with a message receiver without risking deadloc
For example, suppose processorP0 sends a messageM0 to
processorP1 with MPI’s normal blockingsend routine.
ProcessorP0 may block on thesend until P1 receives
M0, depending on MPI’s flow-control algorithm. Ideally,
P1 eventually uses MPI’s non-blockingi receive or
probe routines to receiveM0. However, if P1 sends a
2

Pasquini and Rego

e

g

en

g
ag
al

ca
’s

e

pro-

or

ng

e
ir-
a

or

cast
e
een

s-

im
-
h

of

rt
ts
t

a

-

 P0 P1 P2 P3

 P0

 P0

 P0

 P1

 P1

 P1

P2

P2

P2

P3

P3

P3

(a) Torus

 P0 P1 P2 P3

 P0

 P0

 P0

 P1

 P1

 P1

P2

P2

P2

P3

P3

P3

(b) Baseball

Figure 3: Torus and Baseball Models

messageM1 to P0 before receivingM0, thenP1 may block
on send . The PDES is deadlocked in this situation sinc
P0 andP1 are both blocked insend operations. To avoid
this kind of deadlock,ParaSol allows a processor to com-
municate with another processor only with non-blockin
i send and i receive operations.ParaSol bypasses
the communication system’s flow control mechanisms wh
ParaSol uses non-blockingi send . Therefore, a sender
can generate messages faster than the message passin
tem can deliver the messages to receivers. These mess
accumulate in the sender’s memory space, and eventu
overwhelm the simulation.

This paper compares two approaches to communi
tion in PDES that impose flow control on the simulation
message traffic. Theflow-controlled time-warp protocol
(FTWP) does not allow message senders to generate m
161
sys-
es

ly

-

s-

sages faster than receivers process messages. When a
cessorP0 sends a messageM with MPI’s non-blocking
i send routine, i send returns a handleHM that P0
can test to determine when MPI has safely deliveredM to
M ’s destination. ProcessorP0 places each handleHM in a
send-list. ProcessorP0 periodically tests each handle in the
send-list, and discards every handleHM whose messageM
has been delivered. The FTWP simply requires a process
P0 to stop simulating new events whenP0’s send-list grows
beyond a fixed size (five handles inParaSol’s implementa-
tion of FTWP). ProcessorP0 can resume simulating events
as soon as the network delivers enough of the outstandi
messages in the send-list.

Thewarp-token protocol(WTP) imposes order on PDES
interprocessor communication on a NOW by requiring th
processors to take turns sending messages. The WTP c
culates a token between the processors participating in
parallel simulation. A processorP0 can send a message only
whenP0 holds thetoken. Therefore, each messageM that
P0 generates is stored in a send-queue untilP0 receives the
token. WhenP0 receives the token,P0 bundles every mes-
sage in its send-queue into the payload of atoken-message
K. ProcessorP0 then broadcastsK to the other processors.
The number of messages inK ’s payload (the batch size)
is therefore a function of the rate at whichP generates
messages and the token circulation time. When process
Pr receivesK, Pr unpacks each component messagesM

in K ’s payload. If Pr is the destination forM, then Pr

executesM ’s handler routine. Only the token holder can
send a token message, and every token message is broad
to every processor. The token holder can send only on
token message per possession, and the token moves betw
processors in a predefined order.

2.1 GVT

A parallel simulation’s global virtual time (gvt) is the min-
imum of the local virtual time (lvt) on each processor and
the time-stamp on every message in transit between proce
sors. An optimistic parallel simulation must periodically
compute gvt so that each participating processor can recla
the memory allocated to checkpoint buffers. Since a pro
cessor cannot rollback to a virtual time preceding gvt, eac
checkpoint buffer saving state with virtual time smaller than
gvt can be safely reclaimed by a processor. The process
reclaiming old checkpoint buffers is calledfossil collection.

Most gvt algorithms require each processor to repo
its lvt to a leader who computes the new gvt and broadcas
the result. A PDES that employs such an algorithm mus
balance the communication cost of gvt calculation with
the memory cost of delayed fossil collection to select
frequency for gvt calculation.

The WTP has the benefit of making gvt computation
simple, frequent, and inexpensive. The warp token proto
3

Optimistic Parallel Simulation over a Network of Workstations

or
h

r

urn
arp
the

g

r

f
e

age

-

ver

t

t

ies
s

the
es-
ory
P

n-
ly

ly to

te
nly
ken
lder
e to-
ince
ach
he
e

for

nd
t at
sed
ffer
rk
col’s gvt algorithm Requires each processorP0 to maintain
a Lamport clockGP0 that tracks the lvt on each process
in the simulation. A Lamport clock is simply an array wit
an entry for each processor. WhenP0 receives a token
messageK, P0 looks at the time-stamp onK to determine
the lvt Ts at the processorPs that sentK, and P0 sets
GP0[s] = Ts . Next, P0 looks at the time-stampTr on
each messageMr from Ps to processorPr packed inK ’s
payload. IfTr < GP0[r], thenP0 setsGP0[r] = Tr . After
processing every messageMr in K ’s payload,P0 knows
the gvt isgvt = min(GP0[r]), the smallest virtual time in
GP0.

2.2 Message Cancellation

When a processorP0 in a PDES rolls back,P0 sends anti-
messages to cancel messages thatP0 sent during the period
being rolled back. If an anti-messageAi sent to processo
P1 by P0 to cancel messageMi does not arrive until after
P1 has processed events triggered byMi , thenP1 is forced
to rollback its computation. WhenP1 rolls back,P1 may
be forced to send its own anti-messages which may in t
cause more rollbacks. This phenomenon, called time-w
thrashing or cascading rollbacks, can significantly slow
parallel simulation.

The WTP avoids time-warp thrashing by eliminatin
the need for anti-messages. Each processorP0 keeps a
Lamport clockCP0 to track P0’s dependencies on othe
processors. For example, ifP0 receives a message from
P1 that schedules an eventE33 at virtual time33, thenP0
updatesCP0 so thatCP0[1] = 33 just before executingE33.
When P0 generates a messageM, P0 attaches a copy o
CP0 to M before placingM in the send-queue (to later b
bundled into a tokenK). If P0 rolls back, P0 must roll
CP0 ’s state back. Therefore,CP0 is a state-saved object.

WhenP0 receives a token messageK, P0 handles each
messageM0 in K ’s payload whose destination isP0, andP0
placesM0 onto a list for received messages. This mess
is fossil collected when the gvt advances pastM0’s time-
stamp. Events triggered by messageM0 may causeP0 to
rollback. During this process,P0 may generate an anti
messageA1 to cancel some messageM1 whose destination
is processorP1. If M1 is still in P0’s send-list, thenP0
removesM1 from the send list and discardsM1 and A1.
Otherwise,P0 just discardsA1.

ProcessorP0 does not need to sendA1 to P1 to cancel
M1, becauseP1 automatically cancelsM1 whenP1 processes
M0. Recall that each token message is broadcast to e
processor. Therefore, whenP1 receivesK, P1 unpacks
messageM0 and notices thatM0’s destination isP0. Before
discardingM0 however,P1 scans through its receive-lis
to check if any of the messagesP1 received depend on
a state thatM0 violates. For example, ifP0 sent M1 to
P1 at virtual time 45, then M1 depends on the state a
161
y

P0 at virtual time (vt) 45 and CP1[0] = 45. Message
M0’s destination isP0 (destination(M0) = 0), and M0
schedules an event onP0 at virtual timeTM0 = 43. Since
TM0 < CP1[destination(M0)], processorP1 cancels events
scheduled byM1 and removesM1 from P1’s receive-list.

Using Lamport clocks to track message dependenc
in WTP allows a processorP0 to avoid sending message
that should not be sent. For example, suppose thatP0
generates an eventEa to be executed at processorP1 at
virtual time TEa = 23. ProcessorP0 packs eventEa with
a dependency clockCEa into a messageMEa , andP0 adds
MEa to P0’s send queue. Next,P0 executes an event
Eb scheduled by a message sent fromP1 at virtual time
TEb

= 34. Before executingEb, processorP0 updates its
dependency Lamport clock so thatCP1[1] = 34. If the next
eventEc generates a messageMEc beforeP0 receives the
token, then whenP0 placesMEc onto its send list,P0 sees
that CEc [destination(MEa)] > TEa . In other words,MEc

depends on a state at processorP1 that will be undone by
messageMEa , so P0 discardsMEc (see Figure 2).

2.3 Summary of FTWP and WTP

A parallel simulation may generate messages faster than
network can deliver messages. When this happens, m
sages waiting to be sent accumulate in the sender’s mem
space, and eventually overwhelm the simulation. The FTW
and WTP protocols offer two approaches to regulating i
terprocessor communication in PDES. The FTWP simp
forces a processor that generates messages too quick
wait for the network to deliver the messages.

The WTP only allows processors to communica
through messages placed in the payload of a token. O
the token holder can send a token message, and every to
message is broadcast to every processor. The token ho
can send only one token message per possession, and th
ken moves between processors in a predefined order. S
every token message is broadcast to every processor, e
processor can collect enough information to compute t
system gvt by maintaining a Lamport clock that tracks th
lvt at each processor. Finally, WTP eliminates the need
anti-message by stamping each payload messageM with a
Lamport clockCM that tracksM ’s dependency on the state
at different processors. A processorP cancels a message
M if P sees that some state on whichM depends has been
made invalid.

2.4 Reliable Broadcast over UDP/IP Multicast

The WTP is designed to function well over ethernets a
other local area networks that support reliable broadcas
the physical layer. On these networks, messages pas
between processors can only be lost as the result of bu
overflow at a receiving processor or a connecting netwo
4

Pasquini and Rego
switch. However, sinceWTPisbasedonthecyclicexchange
of a token, each processor can compute an upper bound on
the size of its UDP receive buffer by simply placing a limit
on the size of a message that a processor can send. In other
words, if each processor P limits its maximum message
size to B bytes, then P can allocate areceive buffer of size
N ∗ B bytes to avoid buffer overflow in an N processor
simulation. This simple flow control mechanism allows
WTP to broadcast messages over an unloaded switched
ethernet with UDP multicast without message loss.

If a network switch or processor endpoint is heavily
loaded, then it may sometimes lose amessage despite the
WTP flow control mechanism. In these environments, a
processor Pr that drops a message M can send a negative
acknowledgment (NACK) messageto request that thesource
processor Ps resend M. Processor Pr learns that M is
missing when Pr receivesa token messagefrom aprocessor
that is not the token-holder, or when a timer expires.

3 SIMUL ATIO N PERFORMANCE

A series of simple experiments were set up to compare
the performance of WTP with FTWP. Several experiments
compared ParaSol’s run-times using WTP and FTWP to
simulate a simple baseball queueing model. The baseball
consistsof amesh of N ×N servers that wrapsaround at its
ends to form a sphere. The experiment evenly distributes
N2 customersover themesh of servers, and then allowseach
customer to move randomly between neighboring servers
N2 times. A customer that arrives at a server requests to
be serviced for an exponentially distributed service time. If
the server is busy, then the server places the customer in a
FIFO queue.

Figure 4 compares ParaSol’s run-times simulating
the baseball benchmark with FTWP, WTP, and sequentially
(on one processor) for several values of N . The baseball
simulation runs roughly 1.75 longer with WTP than with
FTWP. The measurements in Figure 5 imply that most of
the difference in run time between WTP and FTWP can
be attributed to the fact that each processor executes 50%
more events with WTP than with FTWP to complete the
same simulation. The WTP executes more events because
the average rollback size of a baseball simulation is larger
with WTP than with FTWP, and the average number of
events between rollbacks is smaller with WTP than with
FTWP.

The performance of WTP should improve if WTP’s
average rollback size decreases. The average rollback size
would decrease if less timepassed between the timewhen a
processor executesthefirst incorrect event (that wil l berolled
back) and the timewhen theprocessor receives thestraggler
message that causes the rollback. One way to decrease this
time is to decrease the straggler message’s delivery latency.
A message’sdelivery latency is theamount of timebetween
161
0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500

ru
n

ti
m

e
 i
n

 s
e

c
o

n
d

s

mesh size (N^2)

Runtime - 4 processors

"wtp"
"sqntl"
"ftwp"

(a) 4 Processors

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500

ru
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

mesh size (N^2)

Runtime - 6 processors

"wtp"
"sqntl"
"ftwp"

(b) 6 Processors

Figure 4: Baseball Runtimes with WTP and FTWP

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 500 1000 1500 2000 2500

a
v
e
.
n
u
m

.
e
v
e
n
ts

mesh size (N^2)

Total Events Per Processor (4 processors)

"wtp"
"ftwp"

Figure 5: Total Events
5

Optimistic Parallel Simulation over a Network of Workstations
when the sending processor generates the message and the
receiving processor receives the message. Since the WTP
requires a processor to acquire the token before sending
a message, the average message delivery latency may be
larger with WTP than with FTWP.

Table 1 presents average run-times for a four proces-
sor ping-pong benchmark that support the hypothesis that
ParaSol’s message latency is larger with WTP than with
FTWP. Theping-pong benchmark beginswith asingleevent
EP0 on processor P0 that schedules an event Er on a re-
mote processor PEr selected randomly (from P1, P2, or
P3). When Pr executes event EPr , EPr schedules another
event EP0 on P0, and the cycle repeats 1000 times. The
ping-pong test is interesting because the test does not have
any parallelism (only one processor is simulating an event
at any give time) and the test does not involve rollbacks.
The runtimeof theping-pong test completely depends upon
ParaSol’s ability to quickly pass events from one proces-
sor to another. The measurements in Table 1 show that
ParaSol runs the ping-pong benchmark roughly 4 times
faster with FTWP than with WTP.

Table 1: Ping-pong with WTP and FTWP

Protocol Pong Runtime in Seconds
WTP 7.92
FTWP 1.80

4 CONCLUSIONS

The low cost and scalability of a PC and ethernet-based
NOW makes it an attractive platform for PDES. Since a
parallel simulation generates messages at random points in
time, amessagesender may not synchronizewith amessage
receiver without risking deadlock. Therefore, ParaSol al-
lows a processor to communicate with another processor
only with non-blocking i sen d and i receiv e opera-
tions. Using non-blocking i sen d bypasses the commu-
nication system’s flow control mechanisms, so a sender can
generate messages faster than the message passing system
can deliver the messages to receivers. These messages
accumulate in the sender’s memory space, and eventually
overwhelm the simulation.

TheFTWPand WTPprotocolsimplement two different
approaches to controlling the flow of messages between
processors in PDES. TheFTWPsimply requires aprocessor
P0 to stop simulating new events when P0’s send-list grows
beyond a fixed size. The WTP circulates a token between
the processors participating in a parallel simulation, and a
processor P0 can send a message only when P0 holds the
token. The measurements in Section 3 show that ParaSol
simulates a simple queueing benchmark in less time with
FTWP than with WTP. Message delivery latency is smaller
with FTWP than with WTP, so ParaSol has a shorter
161
average rollback distance with FTWP. Since each rollback
undoes fewer events, ParaSol completes a simulation in
fewer total events with FTWP than with WTP.

Although FTWP has a clear advantage over WTP for
the simple models presented earlier, WTP has advantages
over FTWP for other models. First, WTP does not useanti-
messages, so WTPshould havebenefits for simulations that
suffer fromcascadingrollbacks. Modelswhich requiremore
than one processor to share the same simulation variables
may also benefit from WTP since WTP reliably broadcasts
every message to every processor. A processor can cheaply
broadcast changes to a shared variable so other processors
can update their cached copy of the variable. A similar
mechanism may allow some models to cheaply implement
distributed locksand semaphores. Exploring and expanding
therangeof applicationswherePDEScan benefit simulation
developers provides an unending source of future work.

REFERENCES

Bagrodia, R. L., R. Meyer, M. Takai, Y. Chen, X. Zeng,
J. Martin, and H. Y. Song. 1998. Parsec: a parallel
simulation environment for complex systems. IEEE
Computer, 31:10:77-85.

Booth, C. J. M., and D. I. Bruce. 1997. Stack-free process-
oriented simulation. Proceedings of the 11th Workshop
on Parallel and Distributed Simulation, 182-185.

Chetlur, M., N. Abu-Ghazeleh, R. Radhakrishnan, and P. A.
Wilsey. 1997. Optimizing communication in time-
warp simulators. Proceedings of the 12th Workshop on
Parallel and Distributed Simulation – Banff, Alberta,
Canada, 64-71.

Damani, O. P., Y. M. Wang, and V. K. Garg. 1997. Opti-
mistic distributed simulation based on transitive depen-
dency tracking. Proceedings of the 11th Workshop on
Parallel and Distributed Simulation (PADS’97), 90-97.

Ferscha, A. 1995. Probabilistic adaptive direct optimism
control in time warp. Proceedings of the 9th Workshop
on Parallel and Distributed Simulation, 120-129.

Gomez, J. C., V. Rego, and V. S. Sunderam. 1997. Efficient
multithreaded user-spacetransport for network comput-
ing: Design and test of the TRAP protocol. Journal
of Parallel and Distributed Computing, 40:1:103-117.

Jefferson, D. R. 1985. Virtual Time. ACM Transactions on
Programming Languages and System, 7:3:404-425.

Lamport, L. 1978. Time, clocks, and the ordering of events
in distributed systems. Communications of the ACM,
21:558-565.

Mascarenhas, E., F. Knop, and V. Rego. 1997. Mini-
mum cost adaptive synchronization: Experiments with
the ParaSol system. Proceedings of the 1997 Winter
Simulation Conference, 389-396.

Message Passing Interface Forum. 1995. MPI: a message-
passing interface standard.
6

Pasquini and Rego

k.
-

ts

t
-
.
t
n

or

g

Penesar, K. S., and R. M. Fujimoto. 1997. Adaptive flow
control in time warp.Proceedings of the 11th Workshop
on Parallel and Distributed Simulation (PADS’97), 108-
115.

Sunderam, V., G. Geist, J. Dongarra, and R. Manche
1994. The PVM concurrent computing system: evo
lution, experiences and trends.Journal of Parallel &
Distributed Computing, 20:4:531-546.

AUTHOR BIOGRAPHIES

REUBEN PASQUINI received his Ph.D. in Computer Sci-
ences from Purdue University in 1999. His research interes
include parallel simulation and distributed systems.

VERNON REGO is a Professor of Computer Sciences a
Purdue University. He received his M.Sc.(Hons) in Mathe
matics from B.I.T.S (Pilani, India), and an M.S. and Ph.D
in Computer Science from Michigan State University (Eas
Lansing) in 1985. He was awarded the 1992 IEEE/Gordo
Bell Prize in parallel processing research, and is an Edit
of IEEE Transactions on Computers. His research interests
include parallel simulation, parallel processing, modelin
and software engineering.
1617

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

