Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

SCALING, HIERARCHICAL MODELING, AND REUSE IN AN
OBJECT-ORIENTED MODELING AND SIMULATION SYSTEM

Thorsten Daum
Robert G. Sargent

Simulation Research Group
Department of Electrical Engineering and Computer Science
Syracuse University
Syracuse, NY 13244, U.S.A.

ABSTRACT sub-parts, at arbitrary levels of detail. Also discussed is
the ability to move among the different levels of a model
Three useful modeling techniques for specifying discrete hierarchy.
event simulation models are discussed. Hierarchical model Section 3 discusses the scaling of MEs. We define
specification provides for model specification at different scaling as the combination of (single) MEs into arrays. ME
levels of abstraction. Scaling of model elements provides for arrays can be static, i.e., of a fixed size, or dynamic, i.e.
the combination of similarly structured and parallel operating the array size can be changed at runtime. Scaling also has
model elements into arrays of both fixed and dynamic sizes. to address how ME arrays can be connected to maintain
Reuse of model elements allows for the repeated use of ME inter-operability.

model elements specifications. The Hierarchical Control Section 4 discusses the reuse of MEs. The ability
Flow Graph Model paradigm is used to demonstrate the to reuse MEs is crucial for effectively building non-trivial
techniques discussed. models. Reuse includes the reuse of newly created MEs as

well as pre-built MEs contained in ME libraries.
1 INTRODUCTION

2 HIERARCHICAL MODEL SPECIFICATION
This paper discusses several modeling techniques that are
desirable for specifying Discrete Event Simulation (DES) In this section, the HCFG Model paradigm is briefly de-
models. In modeling complex systems one needs hierar- scribed. The concept of hierarchical modeling is introduced
chical modeling and scaling to model complex systems. and different hierarchical modeling techniques are briefly
Reuse of model elements (MEs) is needed to effectively discussed.
model systems. A simulation system should provide for
both specifying new MEs and have a library of MEs that 2.1 The HCFG Model Paradigm
can be reused.

We will use the Hierarchical Control Flow Graph HCFG Models define a modeling paradigm for DES mod-
(HCFG) Model paradigm (Fritz and Sargent 1995, Sargent eling. Conceptually, HCFG Models consist of a set of in-
1997) to demonstrate how the discussed techniques can bedependent, encapsulated, concurrently operating (Atomic)
used. The HCFG Model paradigm is a hierarchical model Components where each (Atomic) Component has its own
paradigm for DES that includes scaling and reuse of MEs. thread of control and the Components interact with each
HCFG Models use two complimentary types of hierarchical other solely via message passing. Two primary objectives
model specification structures, one to specify components for HCFG Models are: (i) to facilitate model development
and their interconnections and the other to specify atomic by making it easier to develop, maintain, and reuse mod-
component behavior. Subsection 2.1 gives a brief overview els and MEs and (ii) to support the flexible and efficient
of the HCFG Model paradigm. execution of models.

Subsection 2.2 discusses hierarchical model specifica- In an HCFG Model, the model Components and their
tion. Hierarchical modeling provides for the specification of interconnections (i.e., the Channels) are specified via a
large models with reasonable effort by allowing a modeler to Hierarchical Interconnection Graph (HIG.) A HIG is a hier-
break up a complex problem into smaller more manageable archical structure which allows a modeler to specify model

1470

Daum and Sargent

Components hierarchically by supporting the concept of determined by which control state the AC'’s point of control
“coupling” together existing model Components to form is currently located at. An AC changes its state when the
new model Components. Each model has exactly one HIG. AC’s point of control moves from its current control state
The basic building block in the HIG is the model over anedge in the AC's HCFG to an adjacent control state.
Component. Model Components are encapsulated entities Note that all instances of the same AC type have the same
which have an external view and an internal view. From HCFG specification.
the external view, all model Components have the following Each HCFG Model has a model tree. A model tree
attributes: a name (instance name), a type (type name), aconsists of a HIG tree and a HCFG tree for each AC.
set of input ports, and a set of output ports. (Internal views The HIG tree contains the hierarchical relationships of the
are covered below.) The distinction between “instance” components where the leaf nodes are ACs, the internal nodes
and “type” is significant. If multiple model Components are the CCSs of the CCs, and the root node is the CCS of
are “instances” of the same type of Component, then those the top CC which encloses the entire HCFG Model. An
Components all share the same type definition. HCFG tree contains the specification structures of the MCSs
HCFG Models use two different classes of model Com- in an AC's HCFG as its nodes and its root MCS encloses
ponents: Atomic and Coupled. An Atomic Component the entire behavior specification of that AC. In the model
(AC) is an independent, encapsulated, concurrently operat- tree, each leaf node of the HIG tree has that AC's HCFG
ing entity whose behavior is specified via a corresponding tree. Thus a model tree shows the two-tiered hierarchical
Component behavior specification, which gives the AC's structure of an entire HCFG Model.
internal view. MEs in the HCFG Model paradigm include CCs, ACs,
Coupled Components (CCs) are encapsulated model MCSs, edge conditions, and events. These MEs have type—
Components formed by coupling together other Components instance relationships and share importance characateristics
(atomic and/or coupled) to form new Components. CCs such as reuseability.
do not have behavior specifications. The internal view of A prototype simulation system that implements the
a CC is the view from inside the Component but outside HCFG model paradigm has been developed called HIMASS-
all enclosed subcomponents. The internal view of a CC is j, which stands for_Hérarchical_Mbdeling aad Smulation
specified via a “Coupled Component Specification (CCS)”. System—ava. It is an object-oriented software system writ-
A CCS specifies (i) a set of subcomponents which are ten entirely in Java (Eckel 1998). HIMASS-j provides Visual
coupled together to form a new CC type and (ii) how Interactive Modeling (VIM) capabilities to build, modify,
those subcomponents are interconnected. Note that a CCSand execute HCFG models. It was used to develop the
defines a Component type and all instances of that type of examples in this paper. An introduction to HIMASS-j can
Component in a model share the single type definition. be found in Daum and Sargent (1997) and an in depth
Each AC is encapsulated and has an HCFG, a set of discussion of the system is given in Daum (1998).
(local) variables including a (local) simulation clock, and
a point of control. The behavior of each type of AC is 2.2 Hierarchical Modeling
specified by an HCFG, which is state based. An HCFG is a
hierarchical structure which allows a modeler to specify an As modelers build more complex models, hierarchical mod-
AC'’s behavior by recursive decomposition of its state space eling becomes an important issue. Hierarchical modeling
into a disjoint set of encapsulated partial behaviors called provides the ability to partition a model specification into
Macro Control States (MCSs) (pronounced “max” as in components which in turn can be recursively partitioned
“maximum”). A MCS is specified via a MCS specification into (sub)components, resulting in a hierarchical specifica-
structure, which is an augmented directed graph where the tion structure of the model.
nodes are (other) MCSs and/or control states. A control Partitioning models into hierarchical subcomponents
state is a formalization of the “process reactivation point” can be crucial for the manageability of complex models.
(Cota and Sargent 1992). Edges leaving MCSs in the Without hierarchical specification structures, it can be a
augmented graphs have no attributes while edges leaving challenge for VIM systems to present large models, which
control states have three attributes: a condition, a priority, may contains hundreds of Components, on a limited screen
and an event. The condition specifies when an edge can space. Hierarchical modeling allows for the specification
become a candidate for traversal by the point of control, of the model at different levels of abstraction, which can
the priority is used to break ties when more then one edge help in the verification and validation of a model.
is a candidate for traversal at the same simulation time, The HCFG Model paradigm provides two complimen-
and the event is executed whenever that edge is traversedtary hierarchical specification structures: a HIG that contains
via the point of control during simulation execution. An CCs and ACs and a set of HCFGs that contain MCSs.
HCFG consists of a set of MCS specification structures To maintain manageability of models that may have
that are organized in a hierarchical way. An AC's state is hundreds of model elements (MES) itis necessary to combine

1471

Scaling, Hierarchical Modeling, and Reuse in Object-Oriented Modeling

MEs into groups at various levels. Coupled MEs should be
arranged hierarchically so the modeler can specify the model
at different levels of complexity, implementation detail can

2.2.2 Modeling “Bottom-Up”

Another approach to building the HIG of a model is to start

be hidden, and the model can be shown at arbitrary levels with the ACs used in the model. After specifying ACs, a

of detail or coarseness.

When building a model, a modeler should be able
to easily move between the different levels. It should
be possible to use different strategies to specify models,
i.e., “top-down”, “bottom-up”, or mixed approa-ches, as is
appropriate for a particular model.

modeler could encapsulate several ACs into CCs once the
model has grown beyond a size that can be easily accom-
modated without encapsulation or to demonstrate special
relationships among some ACs.

Specifying a HIG bottom-up can be useful when (i) the
model is not overly complex, (ii) the model is composed of

According to the HCFG Model paradigm, an HCFG well known pre-built ACs, (iii) a part of the model is to be

Model consists of a set of independent and encapsulated
Components. HCFG Models use two complementary types
of hierarchical model specification structures. This “layered
approach” to modeling (Henriksen 1996) allows for the
management of complex models and provides a wide range
of support for reuse. The layered approach allows a modeler
to specify models at different levels. A modeler can use
MEs from a library or build MEs from scratch. One can
always see what is in adjacent levels by moving up and
down the model hierarchy. Users of a model can view the
model at different levels, providing for different levels of
abstraction.

2.2.1 Modeling “Top-Down”

To specify models starting with the top level CC often
seems to be the most straightforward approach: the model
is broken up into a few very general CCs, which in turn can
be specified with increasing detail. The number of levels
in the HIG and the extend of detail of the CCs at any given
level can be chosen freely be the modeler. It is often useful,
however, to partition the HIG in ways that correspond to
the real world system. A model of a factory, e.g., might
have a factory CC as the top level component, on the next
level CCs specifying different departments, which could be
partitioned into CCs for productions lines, all the way to
ACs for conveyors, etc.

MCSs are the hierarchical building blocks of HCFGs.
A modeler builds an HCFG by specifying the top level MCS
of an AC and its sub-MCSs (if any). HCFGs typically do
not have deep hierarchies. Having the ability to specify
AC behavior hierarchically is still useful, however, because
sub-MCS can be used to (i) partition complex ACs for better
manageability and understanding, (ii) separate general from
specific behavior, providing a greater potential for reuse
behavior, and (iii) hide partial behavior that is trivial or not
essential for the understanding of the AC.

Top-down modeling can be a powerful technique to
develop models of complex systems, implementing a “divide
and conquer” strategy by breaking a large problem up into
a number of smaller, more manageable problems. This
can be especially useful when the details of lower level
Components are not yet clear.

1472

studied before being integrated into a larger model, or (iv)
the purpose of the simulation is to study the behavior and
interactions of basic Components (as opposed the general
behavior of a given real-world system).

Specifying models bottom-up has traditionally been the
default strategy by simulation systems that rely primarily on
pre-built basic elements that can be combined using limited
“macro” capabilities.

2.2.3 Mixed Approach

Limited research has shown that for modeling non-trivial
real-world problems, a mixed or heterogeneous approach
can often be the best way. A modeler could start specifying
the HIG from the top down to break the problem up into
smaller parts, specify the details of one subcomponent, and if
the design works, reuse the specified low-level Components
to specify, where appropriate, the remainder of the HIG.
The mixed approach was used to specify a non-trivial model
of a traffic intersection that is described in Daum (1997).

2.3 Moving Between the Layers

It is important to tightly integrate the modeling layers to
avoid the problems of modeling layers that are “too far
apart” (Henriksen 1996.) In the HCFG model paradigm,
CCs and ACs have the same interface specifications, i.e.,
the external views have identical properties. (In terms of
the object-oriented implementation of ACs and CCs, both
derive from a common base class.) This makes it possible
to substitute ACs for CCs and vice versa, using the dynamic
type feature of experimental frames (Zeigler 1984.)

A modeler could, e.g., have specified several conveyor
Components using an AC Type, before realizing that the
complexity of the conveyor would have been specified more
effectively in a CC. By creating a CC conveyor Type with
the same interface, i.e. the same Ports and parameters, as
the conveyor AC and changing the type of the conveyor
Instances to the new CC Type, a modeler could change
the specification of conveyor without having to change any
of the (parent) CCs where conveyor Instances are used.
Likewise, a modeler could specify conveyor Instances with
the Type to be specified in the experimental frame (EF). In

Daum and Sargent

the EF, any Type, AC or CC, from a local model library or Arrays of Components or MCSs consist of a number
from across a network, could be specified, as long as the of Component or MCS Instances that have the same Type
interface is compatible. and are part of the same parent ME specification.
Component arrays are created similarly to single Com-
3 SCALING ponents, except that in addition, the modeler must specify

the size of the array. To create a static array of Components
In this section, the scaling of MEs is examined. As modelers a modeler would specify a positive integer number.
build more complex models, scaling becomes an important Component arrays that have the same size can be con-
issue. Scaling is the combination of similar MEs into an nected by Channels in the same way single Components
ME array. ME arrays provide a powerful mechanism to are connected. Figure 1 shows two Component arrays,
implement parallelism. For example, a model might contain both of size three, which are connected by one bundle
several parallel servers that share similar characteristics. of Channels. The visual representation only shows one
Specifying these servers as an array of servers simplifies representative Channel between one representative pair of
the structure of the model, since common properties of the connected Ports, but the specification will contain three
server elements can be managed in one place, and increasemdividual Channels, one for each pair of connected Ports,
flexibility, since the array size can be changed. connecting Ports with the same Component index. Table 1

Scaling can be used to create arrays of low level as well shows how the Ports are connected.

as high level MEs. Scaling also includes the connections
between MEs, since arrays must be connected differently Table 1: Direct Channel Connections Between Component
from single MEs. Because ME arrays are composed of Arrays
several ME Instances of the same Type, scaling implies ME

reuse | Output Ports connected to Input Ports |
High level MEs that can be scaled in the HCFG model src[0].out => serv[0].in

paradigm are Components and MCSs. Channels and Edges src[1].out => serv[l].!n

can also be scaled to provide ME array interconnectivity. src[2].out => serv[2].in

Scaling can be static or dynamic. Static arrays have a fixed) o o
size, i.e., the array is specified when the array is created Static arrays of MCSs are specified in a way similar to
and does not change. The size of dynamic arrays can be arrays of Components. Arrays of MCSs that have the same

specified at runtime and can therefore be changed betweenSize can be connected similarly as well, except that MCSs
simulation runs without recompiling the model. have Pins instead of Ports and that MCSs are connected by

Edges instead of Channels.
3.1 Static Arrays

3.1.1 MultiChannels and MultiEdges
The HCFG model paradigm allows for the specification of
ME arrays, MultiChannels, and MultiEdges, providing ad- In addition to connecting arrays of Components or MCSs
ditional functionality in building non-trivial models. There ~ With bundles of individual Channels or Edges, the HCFG
are two types of arrays: arrays of Components or MCSs model paradigm provides the possibility to connect single
and arrays of Channels or Edges, which are also called Components with MultiChannels, i.e., arrays of Channels,
MultiChannels and MultiEdges, respectively. The default @nd single MCSs with MultiEdges, i.e., arrays of Edges.
form of arrays is static, i.e., the number of array elements The distinction between individual Channels that connect

is fixed when the array is created and the number does not rays of Components and MultiChannels that connect sin-

change between simulation runs. gle Components is an aspect of the layered approach to
File Show Options Help
l:l Component |
! = :
t Chanmnel
srcfd] i m"‘ sery[d] | / ot :
| = > pn |
Co iqn Box

Figure 1: Channel Connection Between Same Size Component Arrays

1473

Scaling, Hierarchical Modeling, and Reuse in Object-Oriented Modeling

modeling (see Section 2), where the former property repre- to a Connection Box, regardless of array sizes. Clicking ona
sent parallelism on the Component level, whereas the latter Connection Box displays a new window that initially shows
represent parallelism of message traffic. a list with the unconnected Output Ports, another list with

A modeler can also specify MultiChannels between the unconnected Input Ports and a third list for connected
Component arrays, effectively resulting in two-dimen-sional pairs of Ports, which is initially empty. Connecting and
Channel arrays. The properties of bundled Channels and disconnecting Ports can be achieved by simple point-and-
MultiChannels apply. MultiEdges are specified similarly to click operations. Figure 2 shows an example of a CC Type
(single) Edges, with the added property of array size, which specification, which uses a Connection Box to connect
is specified in the same way the size of MultiChannel is various Channels and MultiChannels, as well as the opened
specified. Connection Box window, with all but two pairs of Ports

already connected.
3.1.2 Connection Boxes

3.2 Dynamic Arrays
One can easily see that the method mentioned above does not
work when Component or MCS arrays of different sizes
are to be connected or when arrays are to be connected
to single MEs. After investigating several options, it was
determined that the complex possibilities bf- ro — n,
n—to—1, andm—ro—n connections could not be represented
graphically in a way that was simple, concise, and easy to
model and understand. This becomes especially clear when
one considers very large arrays and the possibilities for
connecting them, which are even more numerous.

To solve these problems, modelers can @senection
Boxes Connection Boxes are helper elements, i.e., they are
not part of a Type specification, but rather serve as a utility to
simplify the modeling process and also make a specification
easier to read. A modeler can specify Connection Boxes,
which are diamond shaped and each have an auto generated'5-2-1 MEs
number, using th€onnection Boxool, which is available in
both the CC and the MCS specification window. A modeler Dynamic arrays of Components or MCSs are specified sim-
can connect any number of Channels and/or MultiChannels ilarly to static arrays of these MEs (see Figure 3), except

Limited research has shown that having the ability to change
the size of arrays in the EF would (i) significantly increase
the potential for ME reuse and (ii) simplify the changing of
model conditions between simulation experiments. A model
might contain, e.g., an array of parallel servers. Increasing
or decreasing the number of servers by changing the size
of the array in the EF could yield important data desired in
the experiment, all without having to recompile the model.
The HCFG model paradigm provides for the possibility to
change the sizes of arrays through dynamic arrays. See
Daum 1998 for a an implementation of EFs for HCFG
models.

=] Root [-]

File Show Options Help

il

= I:l Component

[Pl nheare?
out =] ConnBox Editor "1" = |12
srefd] > senvd] Fille Show Hel I
in O p
From Parts To Ports -
_ = Connect
outfe] I | distrib.in[2) _ i
¥ serv[zlout] || T Update
ay
1 il
|
) _ Connected Ports —————————— BIEEEE |
i) hiy ¥l serv[0).out[d] == distrib.in[d] S
[out] serv[0].out]1] == distrib.in[1]
distrib - [:1—] sink serv[1].out]0] == distrib.in[3]
in serv[2].out[1] == sink.hi
O [2].ouf1]
Paramerers |

4 | LI—I Delete

Figure 2: Channel Connections through a Connection Box

1474

Daum and Sargent

~Instance ~Type

MName Marne

|59W |§erver
Priarity I AC Load Type |
I [~ get from EF & cC
Afray Size Unspecified
|3 [~ scalable [~ setin EF
Okay | Cancel |

Figure 3: Component Array Dialog Box

that a modeler would mark thecalablecheckbox in the
dialog box. Modelers have three options for specifying a
value in theArray Sizefield, they can:

1. Enter the name of an integer variable from the
parent Type. This would cause the creation
of an array with the size of the value of this
variable at runtime. In the ME Graphical
User Interface (GUI) window, the Instance
name prefix will be shown with the name of
the variable, enclosed in square brackets, e.g.,
serv[k] to denote an array oferv Instances
with the size ofk at runtime. The value
could be set in the EF, or initialized with
a parameter, which can be especially useful
when several Instances of the parent Type exist
and Instance specific parameters are passed
down the Component hierarchy.

Leave the size filed blank. This will create an
integer variable with an identifier that com-

bines the name of the instance with the suffix
_size and add an entry to théariablesection

of the EF in the form

parentTypeNameanstanceNamssize

the value of which will be used to determine
the size of the array at runtime. In the ME
GUI window, the Instance name prefix will
be shown with square brackets, e.gerv(],

to indicate that the size of the array has not
yet been specified.

Enter a positive integer number. This will
create a variable and EF entry as in 2., but also
setadefaultarray size. Inthe ME GUIwindow,
the Instance name prefix will be shown with
the default size of the array and asymbol,
enclosed in square brackets, egprv[3'], to
indicate that the default size can be changed
in the EF. At runtime, the array will be created

1475

with a size specified in the EF or, if no value is
found, with the default value that was specified.

Since the size of a dynamic array is not known before it is
specified in the EF, values for all parameters of the array
elements have to be specified in the EF as well. The EF
specification GUI contains a secti@ynamic Parameters
When this section is selected, tMariable section of the

EF is searched and if a value for an array size is found the
corresponding number of parameter entries is generated. If
no value has been found, a warning is message is displayed.

3.2.2 MultiChannels and MultiEdges

MultiChannels and MultiEdges can be specified as dynamic
arrays by marking thecalablecheckbox in the dialog box
used to specify them. The options for the value entered
in the Array Sizefield, if any, are essentially the same as
for dynamic ME arrays. An auto-generated variable would
have the form

parentTypeNamenstanceName
. outputPortOrPinNamssize .

Note that changing the size of a MultiChannel changes
the size of its Port arrays. Since Ports are part of the Com-
ponent interface, i.e., they are visible both from the outside
and the inside of the Component, dynamic MultiChannels
effectively make the Type specifications of all connected
Components dynamic as well. This capability provides a
powerful mechanism for model customization and reuse.

Dynamic bundles of Channels and Edges, MultiChan-
nels, and MultiEdges can only be connected to dynamic
Connection Boxes, which look like static Connection Boxes,
except that their connections can only be specified in the
EF. The EF contains a secti@ynamic Connectionsvhich
contains the entries for all of the dynamic Connection Boxes.
When a Connection Box is selected, the software will search
the Variable section for the needed values and, if they are
found, display the correct number of Ports or Pins to be con-
nected, including the static Ports and Pins that are connected
to the Connection Box, if any.

4 MODEL ELEMENT REUSE

In this section, an argument for ME reuse is made. Dif-
ferent kinds of reuse are introduced and the type—instance
relationship as a form of reuse is discussed.

4.1 Kinds of Reuse

One of the most important properties of a modern modeling

and simulation system is the ability to reuse parts of the
model specification. Reuse can be realized at different levels.

Scaling, Hierarchical Modeling, and Reuse in Object-Oriented Modeling

Low levelreuse is the reuse of the most basic model building An Instance is a specific representation of ME Type,
blocks of a simulation system such the statements of a text- specifying the location of the ME in the model, a name so
based simulation language or the low level elements of a that the instances can be uniquely identified in the model,
GUI-based simulation systeniigh levelreuse is achieved and provides access to the interface of the ME for the
by systems that provide some mechanism for combining interaction of the ME with the outside world. An Instance
several basic model building elements that are often used specifies what can be called tleternal viewof a ME.
in the same context into higher level elements that can be Following the principle of object encapsulation, other MEs
reused. can access the Type of a ME Instance only through the ME
When investigating reuse, one has to consider the origin interface. Creating several Instances of a Type is the basic
of reusable model building elements. ReuseEdefined form of reuse in the HCFG Model paradigm.
elementsis provided by most simulation systems. Many MEs that can be reused by creating multiple Instances
systems use a set of predefined building blocks as the core from Types include Components, i.e., CCs and ACs, MCSs,
of the modeling capability. Reuse ofistom built elements Conditions, i.e., Time Delay Conditions and Boolean Con-
is provided only by some simulation systems, as not all ditions, and Events. ME Arrays can be similarly reused.
systems support the specification of building blocks by the Creating ME Instances from scratch and optionally
modeler. reusing the Types that are automatically generated in the
Another important distinction has to be made as to process is a feasible approach when specifying noncomplex
the scope of the reuse. Reuseiadividual elementds models or when modelingpp-down i.e., starting with high-
the reuse of building blocks independent from each other, level components that can be subsequently broken down into
i.e., identifiers, parameters, and interactions with the rest of subcomponents to specify more detailed behavior.
the model have to be specified separately. Reusaray Another way of modeling i®ottom-up where a mod-
elementds the reuse of building blocks as array elements eler first builds specific components that specify a certain
of the same type. ldentifiers, parameters, and interactions behavior that is known to be needed in the model and then
with the rest of the model can be specified incorporating incrementally combines these components into higher level
array indices. Reuswithin the same modesrovides for components. In such a case, it is possible to specify ME
the reuse of frequently used atomic building blocks as well Types that do not yet have any Instances in the model. Once
as larger parts of the model (if high level components are a modeler has specified the basic Types needed in the model,
supported) in the same model. It may be necessary to they can start creating Instances of these Types, combine
assign unigue identifiers to distinguish several instances of Instances into higher level components, thus building the
the same building block. Reuscross different models ~ model tree.
requires a mechanism such as a component library for pre-
serving custom built element specifications independently 5 SUMMARY
from model specifications.
A brief overview of the HCFG model paradigm was pre-
4.2 Instances and Types sented. The paradigm tightly integrates hierarchical mod-
eling, ME scaling, and ME reuse. Hierarchical modeling
The HCFG Model paradigm distinguishes between “Types” greatly increases the manageability of large models. Com-
of MEs, which represent the specifications of MEs, and plex problems can be broken down into smaller problems
“Instances” of MEs which represent concrete representations which can be addressed separately. Different levels of ab-
of ME Types in a model. This model strongly corresponds straction can provide for a more natural way of modeling
to the object-oriented paradigm (Eckel 1998) of objects and and help to focus on different degrees of detail when using
classes, with Types essentially being classes and Instancesa model.
being objects. Scaling of MEs provides for combining single MEs
A Type specifies the contents or behavior of a ME. CC into ME arrays. ME arrays provide a straightforward and
types and MCS types, e.g., can contain child Components flexible way to model parallelism. The connection of arrays
and child MCSs, respectively, thus providing for hierarchy, of different sizes has proven to be not trivial. Connection
among other ME attributes. A model would typically contain boxes are used to connect different size arrays in an intuitive
only one ME Type for any desired part of behavior that way. Dynamic arrays provide for easy scalability of model
could be reused in different instances throughout the model. parts between simulation runs.
A Type specifies what can be called timernal viewof a Reuse of MEs allows for the repeated use of ME
ME, which can be accessed only through the interface of specifications by creating several instances from a single
the ME. An interface contains the parameter list of the ME ME type. Both MEs built from scratch by the modeler and
and can also contain other ME attributes, e.g., Ports. pre-built MEs from a library can be reused in the same,

1476

Daum and Sargent

straightforward way. ME reuse can significantly reduce
model specification time and effort.

The HCFG model paradigm and HiIMASS-j exploit the
potential of hierarchical modeling, scaling, and reuse, which
are tightly integrated into the system. We found that the
inter-operability between these techniques is particularly
interesting. For example, hierarchical modeling allows for
the reuse not only of the most basic MEs, but also very
high level Components of arbitrary complexity. The scaling
of a hierarchical component scales all its subcomponents,
which in turn can be arrays, as well. Scaled MEs can be
reused with a different size, providing powerful capabilities
for modeling parallelism.

REFERENCES

Cota, B. and R. Sargent. 1992. A modification of the
process interaction world viewACM Trans. Model.
Comput. Simu).2, 2, 109-129.

Daum, T. 1998. An Investigation into Specifying HCFG
Models using Visual Interactive ModelingGraduate
Thesis. Otto von Guericke University in Magdeburg.

Daum, T. and R. Sargent. 1997. A Java Based System for
Specifying Hierarchical Control Flow Graph Models.
In: S. Andratdottir, K.J. Healy, D.H. Withers, and
B.L. Nelson, eds.Proc. of the 1997 Winter Simulation
Conference150-157.

Daum, T. 1997. An HCFG Model of a traffic intersec-
tion specified using HIMASS-j. In: S. Andratdottir,
K. Healy, D. Withers, and B. Nelson, ed®roc. of
the 1997 Winter Simulation Conferend®b8-165.

Eckel, B. 1998. Thinking in Java Upper Saddle River,
New Jersey: Prentice-Hall.

Fritz, D. and R. Sargent. 1995. An overview of hierarchi-
cal control flow graph models. In: C. Alexopoulos,
K. Kang, W. Lilegdon, and D. Goldsman, edBroc.
of the 1995 Winter Simulation Conferend®47-1355.

Henriksen, J. 1996. An Introductionto SLX. In: J. M. Char-
nes, D. J. Morrice, D. T. Brunner, and J. J. Swain, eds.,
Proc. of the 1996 Winter Simulation Conferend68—
475.

Sargent, R. 1997. Modeling queueing systems using hier-
archical control flow graph modeldviathematics and
Computers in Simulatigrd4, 3, 233-249.

Zeigler, B. 1984. Multifacetted Modelling and Discrete
Event Simulation London: Academic Press.

AUTHOR BIOGRAPHIES

THORSTEN DAUM is a senior software engineer with
ObjectGuild Inc. in San Jose, California. He holds a grad-
uate degree in computer science with a focus on simulation
from Otto von Guericke University in Magdeburg. His inter-
ests include the development of visual interactive modeling

1477

systems for simulation and Java software. He has been a
visiting researcher with the Simulation Research Group and
CASE Center at Syracuse University.

ROBERT G. SARGENT is a Research Professor/Professor
Emeritus in the L. C. Smith College of Engineering and
Computer Science at Syracuse University. He received
his education at the University of Michigan. Dr. Sargent
has served his profession in nhumerous ways and has been
awarded the TIMS (how INFORMS) College on Simulation
Distinguished Service Award for long-standing exceptional
service to the simulation community. His research interests
include the methodology areas of modeling and discrete
event simulation, model validation, and performance evalu-
ation. Professor Sargent is listedWwho’s Who in America

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

