
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

SCALING, HIERARCHICAL MODELING, AND REUSE IN AN
OBJECT-ORIENTED MODELING AND SIMULATION SYSTEM

Thorsten Daum
Robert G. Sargent

Simulation Research Group
Department of Electrical Engineering and Computer Science

Syracuse University
Syracuse, NY 13244, U.S.A.

te
de
nt
for
ng
es

o
rol
the

ar
S)
rar
s.

ely
for
at

h
ent
n b
del
Es.
al
nts
ic

iew

ca
of
to
ble

is
el

ne
E
.e.
has
ain

ity
l

as

-
ed
fly

d-
-
ic)

wn
ch
es
t
d-

nt

ir
a

-
el
ABSTRACT

Three useful modeling techniques for specifying discre
event simulation models are discussed. Hierarchical mo
specification provides for model specification at differe
levels of abstraction. Scaling of model elements provides
the combination of similarly structured and parallel operati
model elements into arrays of both fixed and dynamic siz
Reuse of model elements allows for the repeated use
model elements specifications. The Hierarchical Cont
Flow Graph Model paradigm is used to demonstrate
techniques discussed.

1 INTRODUCTION

This paper discusses several modeling techniques that
desirable for specifying Discrete Event Simulation (DE
models. In modeling complex systems one needs hie
chical modeling and scaling to model complex system
Reuse of model elements (MEs) is needed to effectiv
model systems. A simulation system should provide
both specifying new MEs and have a library of MEs th
can be reused.

We will use the Hierarchical Control Flow Grap
(HCFG) Model paradigm (Fritz and Sargent 1995, Sarg
1997) to demonstrate how the discussed techniques ca
used. The HCFG Model paradigm is a hierarchical mo
paradigm for DES that includes scaling and reuse of M
HCFG Models use two complimentary types of hierarchic
model specification structures, one to specify compone
and their interconnections and the other to specify atom
component behavior. Subsection 2.1 gives a brief overv
of the HCFG Model paradigm.

Subsection 2.2 discusses hierarchical model specifi
tion. Hierarchical modeling provides for the specification
large models with reasonable effort by allowing a modeler
break up a complex problem into smaller more managea
1470
l

.
f

e

-

e

-

sub-parts, at arbitrary levels of detail. Also discussed
the ability to move among the different levels of a mod
hierarchy.

Section 3 discusses the scaling of MEs. We defi
scaling as the combination of (single) MEs into arrays. M
arrays can be static, i.e., of a fixed size, or dynamic, i
the array size can be changed at runtime. Scaling also
to address how ME arrays can be connected to maint
ME inter-operability.

Section 4 discusses the reuse of MEs. The abil
to reuse MEs is crucial for effectively building non-trivia
models. Reuse includes the reuse of newly created MEs
well as pre-built MEs contained in ME libraries.

2 HIERARCHICAL MODEL SPECIFICATION

In this section, the HCFG Model paradigm is briefly de
scribed. The concept of hierarchical modeling is introduc
and different hierarchical modeling techniques are brie
discussed.

2.1 The HCFG Model Paradigm

HCFG Models define a modeling paradigm for DES mo
eling. Conceptually, HCFG Models consist of a set of in
dependent, encapsulated, concurrently operating (Atom
Components where each (Atomic) Component has its o
thread of control and the Components interact with ea
other solely via message passing. Two primary objectiv
for HCFG Models are: (i) to facilitate model developmen
by making it easier to develop, maintain, and reuse mo
els and MEs and (ii) to support the flexible and efficie
execution of models.

In an HCFG Model, the model Components and the
interconnections (i.e., the Channels) are specified via
Hierarchical Interconnection Graph (HIG.) A HIG is a hier
archical structure which allows a modeler to specify mod



Daum and Sargent

of

IG
l
tie
m
g

),
s

e”
s
se

-
t

rat
ng
’s

de
nts
s

of
e
is

)”.
re
w
C
o

o
d
s

a
n

ce
ed
in

the
rol
t”
he
in

ity,
can
ol,
ge
e,
se

es
is

ol
he
e
te.
me

e
C.
he
des
of

n
Ss
es
el
G
cal

,
pe–
tics

e
S-

it-
l

the
n
th

d-
ng
o
d
a-

ts
ls.
a

ch
en
n
n

-
ins

e
ine
Components hierarchically by supporting the concept
“coupling” together existing model Components to form
new model Components. Each model has exactly one H

The basic building block in the HIG is the mode
Component. Model Components are encapsulated enti
which have an external view and an internal view. Fro
the external view, all model Components have the followin
attributes: a name (instance name), a type (type name
set of input ports, and a set of output ports. (Internal view
are covered below.) The distinction between “instanc
and “type” is significant. If multiple model Component
are “instances” of the same type of Component, then tho
Components all share the same type definition.

HCFG Models use two different classes of model Com
ponents: Atomic and Coupled. An Atomic Componen
(AC) is an independent, encapsulated, concurrently ope
ing entity whose behavior is specified via a correspondi
Component behavior specification, which gives the AC
internal view.

Coupled Components (CCs) are encapsulated mo
Components formed by coupling together other Compone
(atomic and/or coupled) to form new Components. CC
do not have behavior specifications. The internal view
a CC is the view from inside the Component but outsid
all enclosed subcomponents. The internal view of a CC
specified via a “Coupled Component Specification (CCS
A CCS specifies (i) a set of subcomponents which a
coupled together to form a new CC type and (ii) ho
those subcomponents are interconnected. Note that a C
defines a Component type and all instances of that type
Component in a model share the single type definition.

Each AC is encapsulated and has an HCFG, a set
(local) variables including a (local) simulation clock, an
a point of control. The behavior of each type of AC i
specified by an HCFG, which is state based. An HCFG is
hierarchical structure which allows a modeler to specify a
AC’s behavior by recursive decomposition of its state spa
into a disjoint set of encapsulated partial behaviors call
Macro Control States (MCSs) (pronounced “max” as
“maximum”). A MCS is specified via a MCS specification
structure, which is an augmented directed graph where
nodes are (other) MCSs and/or control states. A cont
state is a formalization of the “process reactivation poin
(Cota and Sargent 1992). Edges leaving MCSs in t
augmented graphs have no attributes while edges leav
control states have three attributes: a condition, a prior
and an event. The condition specifies when an edge
become a candidate for traversal by the point of contr
the priority is used to break ties when more then one ed
is a candidate for traversal at the same simulation tim
and the event is executed whenever that edge is traver
via the point of control during simulation execution. An
HCFG consists of a set of MCS specification structur
that are organized in a hierarchical way. An AC’s state
1471
.

s

a

-

l

S
f

f

g

d

determined by which control state the AC’s point of contr
is currently located at. An AC changes its state when t
AC’s point of control moves from its current control stat
over an edge in the AC’s HCFG to an adjacent control sta
Note that all instances of the same AC type have the sa
HCFG specification.

Each HCFG Model has a model tree. A model tre
consists of a HIG tree and a HCFG tree for each A
The HIG tree contains the hierarchical relationships of t
components where the leaf nodes are ACs, the internal no
are the CCSs of the CCs, and the root node is the CCS
the top CC which encloses the entire HCFG Model. A
HCFG tree contains the specification structures of the MC
in an AC’s HCFG as its nodes and its root MCS enclos
the entire behavior specification of that AC. In the mod
tree, each leaf node of the HIG tree has that AC’s HCF
tree. Thus a model tree shows the two-tiered hierarchi
structure of an entire HCFG Model.

MEs in the HCFG Model paradigm include CCs, ACs
MCSs, edge conditions, and events. These MEs have ty
instance relationships and share importance characateris
such as reuseability.

A prototype simulation system that implements th
HCFG model paradigm has been developed called HiMAS
j, which stands for Hierarchical Modeling and Simulation
System–Java. It is an object-oriented software system wr
ten entirely in Java (Eckel 1998). HiMASS-j provides Visua
Interactive Modeling (VIM) capabilities to build, modify,
and execute HCFG models. It was used to develop
examples in this paper. An introduction to HiMASS-j ca
be found in Daum and Sargent (1997) and an in dep
discussion of the system is given in Daum (1998).

2.2 Hierarchical Modeling

As modelers build more complex models, hierarchical mo
eling becomes an important issue. Hierarchical modeli
provides the ability to partition a model specification int
components which in turn can be recursively partitione
into (sub)components, resulting in a hierarchical specific
tion structure of the model.

Partitioning models into hierarchical subcomponen
can be crucial for the manageability of complex mode
Without hierarchical specification structures, it can be
challenge for VIM systems to present large models, whi
may contains hundreds of Components, on a limited scre
space. Hierarchical modeling allows for the specificatio
of the model at different levels of abstraction, which ca
help in the verification and validation of a model.

The HCFG Model paradigm provides two complimen
tary hierarchical specification structures: a HIG that conta
CCs and ACs and a set of HCFGs that contain MCSs.

To maintain manageability of models that may hav
hundreds of model elements (MEs) it is necessary to comb



Scaling, Hierarchical Modeling, and Reuse in Object-Oriented Modeling

e
de
n
el

le
ld
ls
s

te
e
d
e
g
le
e

nd
e

f

n
de
n
ls
n
ul
o
t
x
e

o

.
S

fy
e

er
om
e

t

o
e
to

his
el

t

he
-

ial

f

)
d
ral

e

d

l
ch
g

if
ts
.

el

r
,
e.,
f
h
le
ic

r
e
e

, as
r
e

y
d.

h
n

MEs into groups at various levels. Coupled MEs should b
arranged hierarchically so the modeler can specify the mo
at different levels of complexity, implementation detail ca
be hidden, and the model can be shown at arbitrary lev
of detail or coarseness.

When building a model, a modeler should be ab
to easily move between the different levels. It shou
be possible to use different strategies to specify mode
i.e., “top-down”, “bottom-up”, or mixed approa-ches, as i
appropriate for a particular model.

According to the HCFG Model paradigm, an HCFG
Model consists of a set of independent and encapsula
Components. HCFG Models use two complementary typ
of hierarchical model specification structures. This “layere
approach” to modeling (Henriksen 1996) allows for th
management of complex models and provides a wide ran
of support for reuse. The layered approach allows a mode
to specify models at different levels. A modeler can us
MEs from a library or build MEs from scratch. One can
always see what is in adjacent levels by moving up a
down the model hierarchy. Users of a model can view th
model at different levels, providing for different levels o
abstraction.

2.2.1 Modeling “Top-Down”

To specify models starting with the top level CC ofte
seems to be the most straightforward approach: the mo
is broken up into a few very general CCs, which in turn ca
be specified with increasing detail. The number of leve
in the HIG and the extend of detail of the CCs at any give
level can be chosen freely be the modeler. It is often usef
however, to partition the HIG in ways that correspond t
the real world system. A model of a factory, e.g., migh
have a factory CC as the top level component, on the ne
level CCs specifying different departments, which could b
partitioned into CCs for productions lines, all the way t
ACs for conveyors, etc.

MCSs are the hierarchical building blocks of HCFGs
A modeler builds an HCFG by specifying the top level MC
of an AC and its sub-MCSs (if any). HCFGs typically do
not have deep hierarchies. Having the ability to speci
AC behavior hierarchically is still useful, however, becaus
sub-MCS can be used to (i) partition complex ACs for bett
manageability and understanding, (ii) separate general fr
specific behavior, providing a greater potential for reus
behavior, and (iii) hide partial behavior that is trivial or no
essential for the understanding of the AC.

Top-down modeling can be a powerful technique t
develop models of complex systems, implementing a “divid
and conquer” strategy by breaking a large problem up in
a number of smaller, more manageable problems. T
can be especially useful when the details of lower lev
Components are not yet clear.
147
l

s

,

d
s

e
r

l

,

t

2.2.2 Modeling “Bottom-Up”

Another approach to building the HIG of a model is to star
with the ACs used in the model. After specifying ACs, a
modeler could encapsulate several ACs into CCs once t
model has grown beyond a size that can be easily accom
modated without encapsulation or to demonstrate spec
relationships among some ACs.

Specifying a HIG bottom-up can be useful when (i) the
model is not overly complex, (ii) the model is composed o
well known pre-built ACs, (iii) a part of the model is to be
studied before being integrated into a larger model, or (iv
the purpose of the simulation is to study the behavior an
interactions of basic Components (as opposed the gene
behavior of a given real-world system).

Specifying models bottom-up has traditionally been th
default strategy by simulation systems that rely primarily on
pre-built basic elements that can be combined using limite
“macro” capabilities.

2.2.3 Mixed Approach

Limited research has shown that for modeling non-trivia
real-world problems, a mixed or heterogeneous approa
can often be the best way. A modeler could start specifyin
the HIG from the top down to break the problem up into
smaller parts, specify the details of one subcomponent, and
the design works, reuse the specified low-level Componen
to specify, where appropriate, the remainder of the HIG
The mixed approach was used to specify a non-trivial mod
of a traffic intersection that is described in Daum (1997).

2.3 Moving Between the Layers

It is important to tightly integrate the modeling layers to
avoid the problems of modeling layers that are “too fa
apart” (Henriksen 1996.) In the HCFG model paradigm
CCs and ACs have the same interface specifications, i.
the external views have identical properties. (In terms o
the object-oriented implementation of ACs and CCs, bot
derive from a common base class.) This makes it possib
to substitute ACs for CCs and vice versa, using the dynam
type feature of experimental frames (Zeigler 1984.)

A modeler could, e.g., have specified several conveyo
Components using an AC Type, before realizing that th
complexity of the conveyor would have been specified mor
effectively in a CC. By creating a CC conveyor Type with
the same interface, i.e. the same Ports and parameters
the conveyor AC and changing the type of the conveyo
Instances to the new CC Type, a modeler could chang
the specification of conveyor without having to change an
of the (parent) CCs where conveyor Instances are use
Likewise, a modeler could specify conveyor Instances wit
the Type to be specified in the experimental frame (EF). I
2



Daum and Sargent

r
the

ers
ant
n
to
in

tics
fies
the
as

ell
ns

ntly
of

ME

el
ge

ity.
xed
ted
be

ee

of
d-

Ss
lled
ult
nts
no

er
pe

m-
ify
nts

on-
nts
ys,
dle
ne
ir of
ee
ts,

e 1

ent

to
me
Ss
by

s
G
le
ls,
s.
ct
in-
to
the EF, any Type, AC or CC, from a local model library o
from across a network, could be specified, as long as
interface is compatible.

3 SCALING

In this section, the scaling of MEs is examined. As model
build more complex models, scaling becomes an import
issue. Scaling is the combination of similar MEs into a
ME array. ME arrays provide a powerful mechanism
implement parallelism. For example, a model might conta
several parallel servers that share similar characteris
Specifying these servers as an array of servers simpli
the structure of the model, since common properties of
server elements can be managed in one place, and incre
flexibility, since the array size can be changed.

Scaling can be used to create arrays of low level as w
as high level MEs. Scaling also includes the connectio
between MEs, since arrays must be connected differe
from single MEs. Because ME arrays are composed
several ME Instances of the same Type, scaling implies
reuse.

High level MEs that can be scaled in the HCFG mod
paradigm are Components and MCSs. Channels and Ed
can also be scaled to provide ME array interconnectiv
Scaling can be static or dynamic. Static arrays have a fi
size, i.e., the array is specified when the array is crea
and does not change. The size of dynamic arrays can
specified at runtime and can therefore be changed betw
simulation runs without recompiling the model.

3.1 Static Arrays

The HCFG model paradigm allows for the specification
ME arrays, MultiChannels, and MultiEdges, providing a
ditional functionality in building non-trivial models. There
are two types of arrays: arrays of Components or MC
and arrays of Channels or Edges, which are also ca
MultiChannels and MultiEdges, respectively. The defa
form of arrays is static, i.e., the number of array eleme
is fixed when the array is created and the number does
change between simulation runs.
1473
.

es

s

n

t

Arrays of Components or MCSs consist of a numb
of Component or MCS Instances that have the same Ty
and are part of the same parent ME specification.

Component arrays are created similarly to single Co
ponents, except that in addition, the modeler must spec
the size of the array. To create a static array of Compone
a modeler would specify a positive integer number.

Component arrays that have the same size can be c
nected by Channels in the same way single Compone
are connected. Figure 1 shows two Component arra
both of size three, which are connected by one bun
of Channels. The visual representation only shows o
representative Channel between one representative pa
connected Ports, but the specification will contain thr
individual Channels, one for each pair of connected Por
connecting Ports with the same Component index. Tabl
shows how the Ports are connected.

Table 1: Direct Channel Connections Between Compon
Arrays

Output Ports connected to Input Ports
src[0].out => serv[0].in
src[1].out => serv[1].in
src[2].out => serv[2].in

Static arrays of MCSs are specified in a way similar
arrays of Components. Arrays of MCSs that have the sa
size can be connected similarly as well, except that MC
have Pins instead of Ports and that MCSs are connected
Edges instead of Channels.

3.1.1 MultiChannels and MultiEdges

In addition to connecting arrays of Components or MCS
with bundles of individual Channels or Edges, the HCF
model paradigm provides the possibility to connect sing
Components with MultiChannels, i.e., arrays of Channe
and single MCSs with MultiEdges, i.e., arrays of Edge
The distinction between individual Channels that conne
arrays of Components and MultiChannels that connect s
gle Components is an aspect of the layered approach
Figure 1: Channel Connection Between Same Size Component Arrays



Scaling, Hierarchical Modeling, and Reuse in Object-Oriented Modeling

re-
tter

en
al
and
to
ich
is

s no
es
cted
s

d
to

hen
for

are
to

ion
es,
rate

ler
els

n a
s

ith
ed
d
nd-
pe
ct

ned
s

ge
e
f
el

ing
ize
in
l.

to
ee

G

m-
pt
modeling (see Section 2), where the former property rep
sent parallelism on the Component level, whereas the la
represent parallelism of message traffic.

A modeler can also specify MultiChannels betwe
Component arrays, effectively resulting in two-dimen-sion
Channel arrays. The properties of bundled Channels
MultiChannels apply. MultiEdges are specified similarly
(single) Edges, with the added property of array size, wh
is specified in the same way the size of MultiChannel
specified.

3.1.2 Connection Boxes

One can easily see that the method mentioned above doe
work when Component or MCS arrays of different siz
are to be connected or when arrays are to be conne
to single MEs. After investigating several options, it wa
determined that the complex possibilities of1 − to − n,
n−to−1, andm−to−n connections could not be represente
graphically in a way that was simple, concise, and easy
model and understand. This becomes especially clear w
one considers very large arrays and the possibilities
connecting them, which are even more numerous.

To solve these problems, modelers can useConnection
Boxes. Connection Boxes are helper elements, i.e., they
not part of a Type specification, but rather serve as a utility
simplify the modeling process and also make a specificat
easier to read. A modeler can specify Connection Box
which are diamond shaped and each have an auto gene
number, using theConnection Boxtool, which is available in
both the CC and the MCS specification window. A mode
can connect any number of Channels and/or MultiChann
1474
t

d

to a Connection Box, regardless of array sizes. Clicking o
Connection Box displays a new window that initially show
a list with the unconnected Output Ports, another list w
the unconnected Input Ports and a third list for connect
pairs of Ports, which is initially empty. Connecting an
disconnecting Ports can be achieved by simple point-a
click operations. Figure 2 shows an example of a CC Ty
specification, which uses a Connection Box to conne
various Channels and MultiChannels, as well as the ope
Connection Box window, with all but two pairs of Port
already connected.

3.2 Dynamic Arrays

Limited research has shown that having the ability to chan
the size of arrays in the EF would (i) significantly increas
the potential for ME reuse and (ii) simplify the changing o
model conditions between simulation experiments. A mod
might contain, e.g., an array of parallel servers. Increas
or decreasing the number of servers by changing the s
of the array in the EF could yield important data desired
the experiment, all without having to recompile the mode
The HCFG model paradigm provides for the possibility
change the sizes of arrays through dynamic arrays. S
Daum 1998 for a an implementation of EFs for HCF
models.

3.2.1 MEs

Dynamic arrays of Components or MCSs are specified si
ilarly to static arrays of these MEs (see Figure 3), exce
Figure 2: Channel Connections through a Connection Box



Daum and Sargent

a

s
y
F

e
If
d.

ic

d

d

s
-

e
s
d
a

-
ic
,
e

s.
h

e
-
ed

-
ce

g
e
ls.
Figure 3: Component Array Dialog Box

that a modeler would mark thescalablecheckbox in the
dialog box. Modelers have three options for specifying
value in theArray Sizefield, they can:

1. Enter the name of an integer variable from the
parent Type. This would cause the creation
of an array with the size of the value of this
variable at runtime. In the ME Graphical
User Interface (GUI) window, the Instance
name prefix will be shown with the name of
the variable, enclosed in square brackets, e.g.,
serv[k] to denote an array ofserv Instances
with the size of k at runtime. The value
could be set in the EF, or initialized with
a parameter, which can be especially useful
when several Instances of the parent Type exist
and Instance specific parameters are passed
down the Component hierarchy.

2. Leave the size filed blank. This will create an
integer variable with an identifier that com-
bines the name of the instance with the suffix
size and add an entry to theVariablesection

of the EF in the form

parentTypeName. instanceNamesize ,

the value of which will be used to determine
the size of the array at runtime. In the ME
GUI window, the Instance name prefix will
be shown with square brackets, e.g.,serv[],
to indicate that the size of the array has not
yet been specified.

3. Enter a positive integer number. This will
create a variable and EF entry as in 2., but also
set a default array size. In the ME GUI window,
the Instance name prefix will be shown with
the default size of the array and a˜ symbol,
enclosed in square brackets, e.g.,serv[3̃ ] , to
indicate that the default size can be changed
in the EF. At runtime, the array will be created
1475
with a size specified in the EF or, if no value is
found, with the default value that was specified.

Since the size of a dynamic array is not known before it i
specified in the EF, values for all parameters of the arra
elements have to be specified in the EF as well. The E
specification GUI contains a sectionDynamic Parameters.
When this section is selected, theVariable section of the
EF is searched and if a value for an array size is found th
corresponding number of parameter entries is generated.
no value has been found, a warning is message is displaye

3.2.2 MultiChannels and MultiEdges

MultiChannels and MultiEdges can be specified as dynam
arrays by marking thescalablecheckbox in the dialog box
used to specify them. The options for the value entere
in the Array Sizefield, if any, are essentially the same as
for dynamic ME arrays. An auto-generated variable woul
have the form

parentTypeName. instanceName
. outputPortOrPinNamesize .

Note that changing the size of a MultiChannel change
the size of its Port arrays. Since Ports are part of the Com
ponent interface, i.e., they are visible both from the outsid
and the inside of the Component, dynamic MultiChannel
effectively make the Type specifications of all connecte
Components dynamic as well. This capability provides
powerful mechanism for model customization and reuse.

Dynamic bundles of Channels and Edges, MultiChan
nels, and MultiEdges can only be connected to dynam
Connection Boxes, which look like static Connection Boxes
except that their connections can only be specified in th
EF. The EF contains a sectionDynamic Connections, which
contains the entries for all of the dynamic Connection Boxe
When a Connection Box is selected, the software will searc
the Variable section for the needed values and, if they ar
found, display the correct number of Ports or Pins to be con
nected, including the static Ports and Pins that are connect
to the Connection Box, if any.

4 MODEL ELEMENT REUSE

In this section, an argument for ME reuse is made. Dif
ferent kinds of reuse are introduced and the type–instan
relationship as a form of reuse is discussed.

4.1 Kinds of Reuse

One of the most important properties of a modern modelin
and simulation system is the ability to reuse parts of th
model specification. Reuse can be realized at different leve



Scaling, Hierarchical Modeling, and Reuse in Object-Oriented Modeling

g
x

f a

ng
e
b

i

y
o

l
e

to

er
o

ts
n
g

el
re
t
o

re
tly

s”
d
n
s

nd
c

C
nt
y,
n
t
e

o
E

e,
so
el,

the
e

s
ME
asic

ces
Ss,
n-
.
lly
the

plex

into

ain
hen
vel

ME
nce
odel,
bine
the

e-
od-
g
m-

ms
ab-
ng
ing

s
nd
ys
on
tive
el

E
gle
d
e,
Low levelreuse is the reuse of the most basic model buildin
blocks of a simulation system such the statements of a te
based simulation language or the low level elements o
GUI-based simulation system.High levelreuse is achieved
by systems that provide some mechanism for combini
several basic model building elements that are often us
in the same context into higher level elements that can
reused.

When investigating reuse, one has to consider the orig
of reusable model building elements. Reuse ofpredefined
elementsis provided by most simulation systems. Man
systems use a set of predefined building blocks as the c
of the modeling capability. Reuse ofcustom built elements
is provided only by some simulation systems, as not a
systems support the specification of building blocks by th
modeler.

Another important distinction has to be made as
the scope of the reuse. Reuse asindividual elementsis
the reuse of building blocks independent from each oth
i.e., identifiers, parameters, and interactions with the rest
the model have to be specified separately. Reuse asarray
elementsis the reuse of building blocks as array elemen
of the same type. Identifiers, parameters, and interactio
with the rest of the model can be specified incorporatin
array indices. Reusewithin the same modelprovides for
the reuse of frequently used atomic building blocks as w
as larger parts of the model (if high level components a
supported) in the same model. It may be necessary
assign unique identifiers to distinguish several instances
the same building block. Reuseacross different models
requires a mechanism such as a component library for p
serving custom built element specifications independen
from model specifications.

4.2 Instances and Types

The HCFG Model paradigm distinguishes between “Type
of MEs, which represent the specifications of MEs, an
“Instances” of MEs which represent concrete representatio
of ME Types in a model. This model strongly correspond
to the object-oriented paradigm (Eckel 1998) of objects a
classes, with Types essentially being classes and Instan
being objects.

A Type specifies the contents or behavior of a ME. C
types and MCS types, e.g., can contain child Compone
and child MCSs, respectively, thus providing for hierarch
among other ME attributes. A model would typically contai
only one ME Type for any desired part of behavior tha
could be reused in different instances throughout the mod
A Type specifies what can be called theinternal viewof a
ME, which can be accessed only through the interface
the ME. An interface contains the parameter list of the M
and can also contain other ME attributes, e.g., Ports.
147
t-

d
e

n

re

l

,
f

s

l

o
f

-

s

es

s

l.

f

An Instance is a specific representation of ME Typ
specifying the location of the ME in the model, a name
that the instances can be uniquely identified in the mod
and provides access to the interface of the ME for
interaction of the ME with the outside world. An Instanc
specifies what can be called theexternal viewof a ME.
Following the principle of object encapsulation, other ME
can access the Type of a ME Instance only through the
interface. Creating several Instances of a Type is the b
form of reuse in the HCFG Model paradigm.

MEs that can be reused by creating multiple Instan
from Types include Components, i.e., CCs and ACs, MC
Conditions, i.e., Time Delay Conditions and Boolean Co
ditions, and Events. ME Arrays can be similarly reused

Creating ME Instances from scratch and optiona
reusing the Types that are automatically generated in
process is a feasible approach when specifying noncom
models or when modelingtop-down, i.e., starting with high-
level components that can be subsequently broken down
subcomponents to specify more detailed behavior.

Another way of modeling isbottom-up, where a mod-
eler first builds specific components that specify a cert
behavior that is known to be needed in the model and t
incrementally combines these components into higher le
components. In such a case, it is possible to specify
Types that do not yet have any Instances in the model. O
a modeler has specified the basic Types needed in the m
they can start creating Instances of these Types, com
Instances into higher level components, thus building
model tree.

5 SUMMARY

A brief overview of the HCFG model paradigm was pr
sented. The paradigm tightly integrates hierarchical m
eling, ME scaling, and ME reuse. Hierarchical modelin
greatly increases the manageability of large models. Co
plex problems can be broken down into smaller proble
which can be addressed separately. Different levels of
straction can provide for a more natural way of modeli
and help to focus on different degrees of detail when us
a model.

Scaling of MEs provides for combining single ME
into ME arrays. ME arrays provide a straightforward a
flexible way to model parallelism. The connection of arra
of different sizes has proven to be not trivial. Connecti
boxes are used to connect different size arrays in an intui
way. Dynamic arrays provide for easy scalability of mod
parts between simulation runs.

Reuse of MEs allows for the repeated use of M
specifications by creating several instances from a sin
ME type. Both MEs built from scratch by the modeler an
pre-built MEs from a library can be reused in the sam
6



Daum and Sargent

e

ch
e

rly
r

ry
g
ts

be
s

e

for
.

-

i-
,

-
s.,

er-

d-
ion
-
ng

n a
nd

r
d
ed
t
een
n
al
ts
te
u-
straightforward way. ME reuse can significantly reduc
model specification time and effort.

The HCFG model paradigm and HiMASS-j exploit the
potential of hierarchical modeling, scaling, and reuse, whi
are tightly integrated into the system. We found that th
inter-operability between these techniques is particula
interesting. For example, hierarchical modeling allows fo
the reuse not only of the most basic MEs, but also ve
high level Components of arbitrary complexity. The scalin
of a hierarchical component scales all its subcomponen
which in turn can be arrays, as well. Scaled MEs can
reused with a different size, providing powerful capabilitie
for modeling parallelism.

REFERENCES

Cota, B. and R. Sargent. 1992. A modification of th
process interaction world view.ACM Trans. Model.
Comput. Simul., 2, 2, 109–129.

Daum, T. 1998. An Investigation into Specifying HCFG
Models using Visual Interactive Modeling. Graduate
Thesis. Otto von Guericke University in Magdeburg.

Daum, T. and R. Sargent. 1997. A Java Based System
Specifying Hierarchical Control Flow Graph Models
In: S. Andratdottir, K.J. Healy, D.H. Withers, and
B.L. Nelson, eds.,Proc. of the 1997 Winter Simulation
Conference, 150–157.

Daum, T. 1997. An HCFG Model of a traffic intersec
tion specified using HiMASS-j. In: S. Andratdottir,
K. Healy, D. Withers, and B. Nelson, eds.,Proc. of
the 1997 Winter Simulation Conference, 158–165.

Eckel, B. 1998. Thinking in Java. Upper Saddle River,
New Jersey: Prentice-Hall.

Fritz, D. and R. Sargent. 1995. An overview of hierarch
cal control flow graph models. In: C. Alexopoulos
K. Kang, W. Lilegdon, and D. Goldsman, eds.,Proc.
of the 1995 Winter Simulation Conference, 1347–1355.

Henriksen, J. 1996. An Introduction to SLX. In: J. M. Char
nes, D. J. Morrice, D. T. Brunner, and J. J. Swain, ed
Proc. of the 1996 Winter Simulation Conference, 468–
475.

Sargent, R. 1997. Modeling queueing systems using hi
archical control flow graph models.Mathematics and
Computers in Simulation, 44, 3, 233–249.

Zeigler, B. 1984. Multifacetted Modelling and Discrete
Event Simulation. London: Academic Press.

AUTHOR BIOGRAPHIES

THORSTEN DAUM is a senior software engineer with
ObjectGuild Inc. in San Jose, California. He holds a gra
uate degree in computer science with a focus on simulat
from Otto von Guericke University in Magdeburg. His inter
ests include the development of visual interactive modeli
1477
,

systems for simulation and Java software. He has bee
visiting researcher with the Simulation Research Group a
CASE Center at Syracuse University.

ROBERT G. SARGENT is a Research Professor/Professo
Emeritus in the L. C. Smith College of Engineering an
Computer Science at Syracuse University. He receiv
his education at the University of Michigan. Dr. Sargen
has served his profession in numerous ways and has b
awarded the TIMS (now INFORMS) College on Simulatio
Distinguished Service Award for long-standing exception
service to the simulation community. His research interes
include the methodology areas of modeling and discre
event simulation, model validation, and performance eval
ation. Professor Sargent is listed inWho’s Who in America.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------------
	Search CD-ROM
	Search Results
	Print

