
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

VRML FOR URBAN VISUALIZATION

Lee A. Belfore, II

Department of Electrical and Computer Engineering
Virginia Modeling, Analysis and Simulation Center

Old Dominion University
Norfolk, VA 23529, U.S.A.

Rajesh Vennam

Digital Fusion, Inc.
11705 Potomac Crossing Way #21

Fairfax, VA 22030, U.S.A.

-
cia
g
ns
its
-
d

di-
ed
le
io

w
al
h
rld
L
he
o
th

o
d-
n
n
nd
o

u
on
or
n
g
f

e
d

on
e
).
t
he
t

er-
hat
he
nd
ng

ine

n-
sed
to
s.

l

e
n
e

ral

e
-
th
e.
ABSTRACT

A virtual reality modeling language (VRML) based applica
tion has been developed as a marketing tool for a commer
park. VRML is a new web based technology for specifyin
and delivering three-dimensional interactive visualizatio
over the internet through a web browser. As a part of
definition, VRML includes primitives that specify geome
tries, sense different conditions in in the visualization, an
allow custom definition of methods. Geometries and con
tions may be linked so that the geometries can be modifi
or added interactively. The visualization features simp
operation, an extensive menu structure, dynamic creat
of objects, and an arbitration scheme.

1 INTRODUCTION

The Virtual reality modeling language (VRML) (The VRML
Consortium 1997; IEEE Computer Society 1999) is a ne
technology giving users the ability to view three-dimension
interactive visualizations through a web browser. Web tec
nology enables the visualization to be disseminated wo
wide. This paper summarizes the development of a VRM
visualization of an urban landscape. The purpose of t
visualization is to serve as a planning and marketing to
for the Department of Economic Development, Portsmou
Virginia.

VRML includes modeling primitives that are used t
create three-dimensional solid models. VRML includes a
ditional primitives for programming user interactions withi
the visualization and update the properties of constitue
objects. This is done by integrating of sensor events a
developer defined methods. By creating representations
objects and defining behaviors in the scripts, complex sim
lations are possible. It is even possible for the visualizati
to be implemented in such a way that objects and behavi
are dynamically created and inserted into the visualizatio

This paper is organized into five sections includin
an introduction, a brief VRML tutorial, a description o
145
l

n

-

l
,

t

f
-

s
.

the operation of the visualization, a presentation of th
mechanisms for managing objects in the visualization, an
a summary.

2 VRML BASICS

Many books are available describing the use and applicati
of VRML, with the language standard presented in th
standard reference manual (The VRML Consortium 1997
A VRML program may have three components. The firs
component defines representations of the objects within t
visualization, constructed from a collection of nodes tha
describe the geometry along with sensors that define int
actions. The second component consists of script nodes t
implement user defined methods. The third component is t
routing of events to communicate updates of node state a
parameters between scripts and objects. Interactions amo
objects are processed by an event driven simulation eng
that is an integral part of the VRML browser plug-in. As the
user moves through and interacts with the visualization, i
cident objects and scripts generate events that are proces
by the simulation engine and then communicated back
nodes in 1the visualization as defined by declared route

VRML provides a rich collection of primitives, termed
nodes, for creating worlds. A brief summary of severa
nodes are described here. Grouping nodes such asGroup
andTransform nodes allow the definition of a collection
of objects that may be manipulated as one. Fields in th
Transform node set the scale, position, and orientatio
of its constituent objects. Primitive shape nodes include th
Box, Sphere , andCylinder nodes. Fields in the nodes
define the dimensions of each. More complex and gene
shape nodes such as theIndexedFaceSet , Extrusion ,
and ElevationGrid define more intricate shapes. The
IndexedFaceSet defines the object directly by defining
the surface of the object as a collection of facets. Th
Extrusion node works by the analogy that one is ex
truding a material through a changing cross section, wi
spine of the extrusion defined by a series of points in spac
4



Belfore and Vennam

n
se

isu

as
ee

ro

-
he
is

ed

t,
nd
pts
es
o
en-
to

ses
as

ne
t a
ent
ent

-in
ts,

es

t

ed
rip

a
or

file
de

ily
ing

d
lt
-
le
d to
t
ay
k-
d
,
es
he
the
n
ath
the
n
n
he
g
to
on
s.

-
,

ent
ent
be

er
n
u
e
a
s
ns
t
is
,
.

is
ect
he
y,
e

y
en
The ElevationGrid defines a surface as the elevatio
of individual points on a regular grid. Sensor nodes sen
interactions between the user and elements of the v
alization. The sensor nodes include theTouchSensor ,
PlaneSensor , CylinderSensor , SphereSensor ,
ProximitySensor , and TimeSensor . The Touch-
Sensor detects the existence of mouse events such
whether the mouse is over an object or if the mouse has b
clicked while over the object. ThePlaneSensor tracks
the mouse position along a plane that is used in drag and d
planar translations of objects. TheCylinderSensor
and SphereSensor are used for drag and drop rota
tions of the object either along an axis or in space. T
ProximitySensor detects whether the user avatar
within a particular region. TheTimeSensor generates
timing events used in animations and other programm
delays.

Custom methods appear in theScript node. Scripts
nodes may havefield s that hold the state of the scrip
eventIn s that receive events from other nodes, a
eventOut s that send events to other nodes. The scri
are implemented using either ECMA scripts or Java class
All script nodes in the visualization use ECMA scripts s
we focus our attention to these. ECMA scripts are desc
dent from Javascript used to add dynamic capabilities
ordinary web pages. In ECMA scripts, the script proces
an input event by defining a function with the same name
a declaredeventIn field having. with an argument, the
input event. The function is called by the simulation engi
when the event occurs, passing the value of the even
the argument to the function. A second optional argum
is the absolute time when the event occurred. An ev
is generated when a value is assigned to theeventOut
variable. Furthermore, ECMA scripts have several built
methods to control the browser, to dynamically add objec
and to dynamically add routes.

The paths defining the flow of events among nod
are defined byROUTEdeclarations. AROUTEdeclaration
names the node andeventOut field that generates the even
and links this to the incident node andeventIn field. The
types must match exactly, otherwise an error is report
Routes may also be dynamically added and deleted in sc
nodes using theaddRoute anddeleteRoute methods.

User defined nodes are defined with thePROTOdecla-
ration. ThePROTOconsists of an interface definition and
collection of nodes that are part of the VRML standard
that have been previously defined.EXTERNPROTOdecla-
rations allow the prototype to be defined in a separate
and allows straight forward reuse of a custom defined no

3 OPERATION OF THE VISUALIZATION

The visualization is designed to be interactive and eas
usable by personnel without significant technical comput
1455
-

n

p

.

s

.
t

.

expertise. To meet this goal, the visualization is designe
to operate in an intuitive fashion. A menu hierarchy is bui
into the visualization, giving the user access to the full func
tionality of the tool and guiding the user through reasonab
command sequences. Object manipulations are designe
be intuitive, clearly prompting the user for required inpu
and showing the user controls when object geometries m
be modified. Figure 1 shows the opening scene after invo
ing the visualization. Note that the image here is black an
white; however, the actual visualization is in color. As noted
an integral feature of the application is the menu that serv
as the primary user interface. To select a menu option, t
user moves the cursor over the desired button and clicks
(left) mouse button. Menu operation includes full navigatio
through the menu structure as well as an express menu p
that moves the user efficiently across menus, representing
anticipated usage. A typical operation is the addition of a
object to the visualization. Figure 2 shows the visualizatio
and the menu state after the addition and placement of t
building. Objects are added to the visualization by clickin
on the desired point in the visualization when signaled
do so. Objects that have been added to the visualizati
can be modified naturally through mouse clicks and drag

4 MANAGEMENT OF OBJECTS

Managing objects requires the interaction of four compo
nents within the visualization: menus, objects, arbitration
and resource allocator. In addition, some browser depend
accommodations were necessary. As a result, a consist
interface has been defined to enable all operations to
carried out in a decentralized fashion.

4.1 Menu Hierarchy

The menu hierarchy is the primary component of the us
interface. The hierarchy is constructed from a collectio
of menu geometries. During normal operation, one men
is made visible while the remaining menus are mad
invisible. The operation of menu hierarchy includes
command event that is “daisy chained” from lower menu
to the top menu that communicates menu selectio
to the rest of the visualization. In addition, an objec
activated event generated by clicking on an object
distributed from top-level menus to lower level menus
ultimately resulting in the display of the appropriate menu
For this organization to work, each class of objects
assigned the same class identifier so that when the obj
is clicked, the appropriate menu appears by detecting t
appropriate class identifier. Within the menu hierarch
the user may move freely among menus linked in th
hierarchy. Each menu directly controls the visibility of
the menu beneath it in the hierarchy. The user ma
move up the menu hierarchy through the linkage betwe



VRML for Urban Visualization
Figure 1: Opening Visualization Scene

Figure 2: Visualization After Adding Building
the
g
h is
chy

d-
e-

d
n,
e

ific.
pled
ear
xt.
g

rol
ick
child and parent menus in the hierarchy. Figure 3 gives
structure of the menu hierarchy. In addition to allowin
user movement through the hierarchy, an express pat
also included that allows movement across the hierar
between major object classes.

4.2 Object Manipulations

Objects may be manipulated in several ways, inclu
ing changing position, changing orientation, or changing g
1456
ometry. Initially, the position of each object is define
by clicking at the desired location(s). After its additio
an object can be moved to any position within th
working area. Other manipulations are geometry spec
Roadways and hedges are defined by points sam
along their extent. For these objects, controls app
when the object is selected into the editing conte
Geometries are modified by dragging and clickin
the controls. Objects that are not defined by cont
points and that are asymmetrical may be rotated with cl



Belfore and Vennam
Sizes Menu

Menu Entry

Manual Main Menu Tour

Roadways MenuBuildings Menu

ResetMove Menu

Mostly uniform across
all objects

Manipulation Menu

A
dd

D
elete

R
elease

M
ove

R
otate

Interface to Visualization

Lamppost MenuLandscaping MenuParcel Selection Menu

Figure 3: Menu Organization.
os
n,

on
en
ing
ed
ch
ed

-

n-

hall
es.
the

ur-
the
lf

ion
later

hat
us
ct.
sm.
and drag operations. Constant area manipulations are p
sible for parking lots. Trees are defined by their locatio
and no modification of the geometry is possible.

4.3 Arbitration

Arbitration is necessary when one or more resources or c
texts must be shared among a collection of other concurr
processes. In this work, the menu hierarchy and the edit
context are shared among the objects that have been add
the visualization. The arbitration process requires that ea
object be assigned an unique serial number. A centraliz
arbiter has arequestIndex eventIn that is received
from all objects and has agrantIndex eventOut that is
transmitted to all objects. When an object is clicked, it com
municates its serial number through itsrequestIndex
eventOut that is received by the central arbiter. The ce
1457
-

-
t

to

tral arbiter first communicates that a change in context s
occur, forcing the current object to surrender any resourc
After a suitable delay (0.2 seconds), the serial number for
winning object is communicated through thegrantIndex
eventOut to all objects that have been added in the c
rent session. The object whose serial number matches
grantIndex event communicates information about itse
by transmitting anobjectActivated event to the main
menu hierarchy. The remaining objects in the visualizat
become quiescent, not generating any events unless
selected by a mouse click. Thecommandevent received by
the main menu is used to call up the menu for the object, t
includes taking into account any variations in the men
resulting from user selected modifications to the obje
Figure 4 schematically presents the arbitration mechani



VRML for Urban Visualization

b-
dy-

le
al
the
al
e

g
u-

on
te

L
i-
le

m-
the
-

the

e
ect
e

to
iz-
5

n
or

his
to
e

tion

e-
rd,
the
re-

t is
de-
nd

t
ot.

vent
the
on-
m
lts
Arbiter

Object N

Object 1

Object 2

R
equest

Resource
Allocator

G
ra

nt

Figure 4: Object Arbitration

4.4 Dynamic Object Creation and Management

In order to more effectively utilize machine resources, o
jects that become a part of the visualization are created
namically. The initial version of the visualization statically
allocated a limited number of all objects that were invisib
until inserted into the visualization. Because the intern
data structures associated with some objects were large,
amount of memory required was larger than the physic
memory present in the computer. This resulted in larg
startup times resulting primarily from disk swap thrashin
on the machine. On lower performance machines, the vis
alization operated unreliably and even failed to operate
these slower machines. For these reasons, we implemen
a mechanism to allocate all objects dynamically. VRM
provides two methods for dynamically creating objects init
ated by browser method calls from script nodes. For simp
objects, thecreateVrmlFromString method was em-
ployed. For complex objects, thecreateVrmlFromURL
was employed and used extensively for inserting the co
plex objects. The method has three arguments where
first is the URL for the object, the second and third argu
ments are the node that receives the new object and
name of the node’seventIn , respectively. The URL con-
tains aPROTOdefinition for the object followed by a single
instantiation of the newly defined node. In this work, th
recipient node is a script that subsequently adds the obj
to the visualization and routes to the new object with th
addRoute browser method. Once the object is added
the visualization, events are sent to the object custom
ing the object for the desired initial conditions. Figure
outlines the object creation mechanism.
1458
d

Object N

Object 1

Object 2

Allocator
Resource

Menu

O
bject A

ctivated

C
om

m
an

d

O
bject C

reated

Browser
Plug-in

createV
rm

lF
rom

U
R

L

N
ew

 o
bj

ec
t

Scene

O
bj

ec
t I

ni
tia

liz
at

io
ns

Figure 5: Dynamic Object Creation

4.5 VRML Browser Dependent Accommodations

VRML technology is fairly robust and well defined whe
all that is necessary is static visualization geometries
if geometry changes are simple animations. When t
project was begun, few browsers had the capabilities
perform the tasks described in this work at which tim
CosmoPlayer provided the most extensive implementa
of VRML97. Because VRML technology is still relatively
immature, aspects of the VRML standard are poorly d
fined, the browsers may not fully implement the standa
or the browser may include features that are outside
standard. One significant accommodation comes as a
sult of a shortcoming in the standard. When an objec
dynamically created, no standard mechanism exists to
termine whether the new object has been fully loaded a
initialized. When aneventIn is transmitted to an objec
that is partially loaded, the event is either be caught or n
Compensation is possible by repeatedly sending the e
until the newly created object acknowledges receipt of
event. Unfortunately in this case, CosmoPlayer occasi
ally freezes forcing the user to reload the visualization fro
the beginning or to restart the browser. This likely resu



Belfore and Vennam

f
d

n

id

,

t

n.

-
f

from a bug in CosmoPlayer that causes the corruption o
some internal data structures. The solution implemente
in this work is to insert delays between the creation of the
object and subsequent events. Furthermore, receipt of a
acknowledgment is required from the new object before
proceeding with any potentially destabilizing actions.

5 SUMMARY AND FUTURE WORK

In this paper, a visualization was presented to serve as an a
to marketing an urban commercial park. The visualization
featured the ability to add new objects to the visualization
and to view the visualization from different perspectives.
The implementation featured an extensive menu hierarchy
an object arbitration scheme, and dynamic addition of new
geometries. A shortcoming of the visualization is the inabil-
ity to save a session that is a result of security features tha
are built into the visualization. A server based mechanism
is under development to enable save and restore operatio

ACKNOWLEDGMENTS

The authors would like to thank the City of Portsmouth,
Virginia for funding this work. The authors would also like
to acknowledgment of the Virginia Modeling, Analysis and
Simulation Center (VMASC) and in particular Drs. Thomas
Mastaglio and Roland Mielke for their support of this work.

REFERENCES

The VRML Consortium, Inc., “The Virtual Reality Modeling
Language,” http://www.web3d.org/Specifications.

The IEEE Computer Society,IEEE Computer Graphics &
Applications, vol. 19, no. 2, March/April 1999, Special
issue on VRML.

AUTHOR BIOGRAPHIES

LEE A. BELFORE, II is an Assistant Professor of Electri-
cal and Computer Engineering at Old Dominion University
in Norfolk, Virginia. He holds a Ph.D. in Electrical En-
gineering from the University of Virginia. His research
interests include internet based visualization, artificial neu
ral networks, and data compression. He is a member o
IEEE, ASEE, and Sigma Xi.

RAJESH VENNAM is presently a Developer at Digital Fu-
sion, Inc., Chantilly Virginia. He holds an M.S in Electrical
Engineering from Old Dominion University and a B.E. in
Electronics and Communications from Osmania University,
Hyperabad, India.
1459


	MAIN MENU
	PREVIOUS MENU
	---------------------------------------
	Search CD-ROM
	Search Results
	Print

