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ABSTRACT

This paper describes the context for and creation o
strategic planning model of a major U.S. railway.  The k
factors in choosing a system dynamics approach 
presented, and the synergy between the new model and
existing suite of planning applications is highlighted.  Th
overall structure of the model is reviewed, including th
key reinforcing and balancing loops, and model creati
issues such as level of aggregation are discussed.  
methodology followed in the data collection an
calibration phases is described in detail, and samples
calibration metrics and sensitivity testing parameters 
provided, as well as sample model output.  Lastly, poten
future uses of the model are noted.

1 BACKGROUND

 Built largely in the last century, then regulated int
financial distress, freight railroads are the stuff 
American legend.  Since 1980, when the passage of 
Staggers Act deregulated the industry and enabled railro
to price competitively, they have gradually reshap
themselves into leaner more cost-effective operations.

As the initial wave of cost-cutting that took place i
the 80’s ran its course, railroads have looked towa
mergers and acquisitions for further savings a
elimination of duplicative overhead functions. As a resu
the number of U.S.-based major “Class 1” freight railroa
has declined from 35 in 1980 to 12 in 1993 to 5 today. 
just the last five years, Union Pacific has acquired first t
Chicago & Northwestern, then the Southern Pacific.  T
two major Canadian railroads, Canadian National a
Canadian Pacific, each gobbled up a U.S. line, a
Burlington Northern acquired the Santa Fe.  Most recen
CSXT and Norfolk Southern jointly acquired Conrail.

Against this backdrop of cost-focused manageme
the economy improved in the early 1990s, long-ha
trucking firms recognized a creeping labor shortage t
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impacted their ability to retain drivers, and rail intermoda
traffic – the placement of truck trailers and ocean shippi
containers onto rail flatcars – continued to win supporte
It was time to take advantage of the financial upturn a
decade of cost-cutting to invest in growing the business!

But what to invest in?  The average Class 1 Railro
locomotive was already 15 years old.  Most Class 1
hadn’t bought freight cars in over a decade, and t
average age of the railroad-owned freight car fleet h
crept up to be just shy of 20 years old.  Track investme
in the '80s had been mostly cost-focused, with significa
efforts to replace traditional jointed track with welded rai
and extensive programs to replace wooden with concr
rail ties in certain high-stress locations.  Few if an
locomotive engineers (drivers) or conductors had be
hired in the prior decade, and the average age of 
workforce at the typical Class 1 had passed 50.

To take volume off the highways and move it by ra
(in traditional railcars or as intermodal traffic), any
investment would need to be evaluated according to 
impact on on-time performance and service.  These w
the historical Achilles’ heel of railroads and the strength 
the trucking industry.

CSXT derived a metric which attempted to measure 
reliability and embarked on a series of studies a
initiatives to determine what could be done to improv
performance.  The results were unsettling – no sing
course of action would have much effect.  As soon as o
new computer system could be built to address one asp
of the operation or a new batch of locomotives could 
acquired, a subsequent bottleneck would surface to prev
the kind of performance improvement that was desired.

Existing analytical tools were unable to offer furthe
insights.  It was in this setting, in late 1997, that th
decision was taken to try to develop a strategic planni
model that might be able to assist the railroad in evaluat
various potential investments and policy changes.
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2 MODELING APPROACH

2.1 Other Planning Tools

CSXT employs a wide array of operations research (O
tools for the regular planning and scheduling of operatio
on a weekly to bimonthly basis.  These are used 
optimize the use of particular resource subsystems, suc
locomotives or freight cars or crew, based on assumpti
about the near-term demand for and availability of t
target resource, assumptions about the availability a
performance of other impinging resources, and curr
operating policies and standards.

For example, on a monthly/weekly time horizon, th
train schedule is developed.  In that process, a numbe
other tools are employed, including an optimal blockin
model and a block-to-train assignment model, that a
designed to efficiently utilize the existing capacity of th
track and terminal network.  On a weekly basis, locomoti
assignment tools distribute locomotive resources to m
the train schedule.

On a daily basis, a train is built when a block of ca
with the same intermediate destination is identified.  Cre
are assigned to trains when a train is built and locomot
power is available for the train.  And, based on constan
changing demand, the dynamic car scheduling syst
assigns empty cars to destinations every 15 minutes.

2.2 Limitations of Operational Tools

Despite the many and considerable benefits they provid
the limits of these planning tools were acknowledged. 
general, the argument is that tools intended to optim
individual subsystems cannot reliably anticipate t
performance of the overall system, even when these to
are used in such a way that one tool’s results feeds 
another tool’s assumptions.  Thus, CSXT's existing tool 
was unable to accurately assess how vulnerable railr
performance was to unexpected changes in resou
demand or availability, say, in terms of the likel
magnitude and duration of impact on service reliabilit
Perhaps even more importantly, the existing tools co
only partially predict the potential synergies and syste
wide benefits that might be derived from enhancin
particular resource levels or modifying operating policie
When the whole is greater than the sum of the pa
traditional OR tools are generally inadequate for the task
strategic analysis (Forrester 1968, Homer 1999).

2.3 A Complementary Addition

A number of strategic modeling methods, bo
deterministic and stochastic, exist for addressing t
combined consequences of multiple variables.  Syst
Dynamics (SD) is unique among these for its ability n
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only to project ultimate consequences, but also 
anticipate the difficulties – often underestimated, ignore
or unforeseen by other methods – a system may face
“getting from here to there.”  Such transitional effects a
the combined result of a system’s feedback loop
nonlinear relationships – e.g., saturation and/or thresh
phenomenon, and time delays.

Indeed, it was precisely these aspects of rail netwo
operations that had made CSXT’s service performance
intractable to analysis.  The dominance of feedback loo
and nonlinear relationships is apparent in a discussion
congestion.  As one location in the network becom
clogged, locomotives become caught up and th
unavailable to meet their assignments, crews fail to rea
their destination within the Federally-mandated on-du
time limit and have to be taxied away from the train to b
replaced by relief crews, cars miss their connections, a
trains elsewhere begin to be affected.

SD offered a way to investigate relationships betwe
various performance measurements in light of this domi
effect of operational problems.

We designed the model to be complementary 
existing tools.  Thus, as shown in Figure 1, the SD mode
at a strategic level – the issues cross over departme
boundaries, the variables are aggregates rather t
individual trains, terminals, sections of track, etc., and t
time horizon is months or years rather than days or wee
This is in contrast with the narrower concerns of th
existing tools used for subsystem optimization.  In th
integrated planning framework, the higher level mode
can be used to establish the ground rules or operat
assumptions to be input to the lower level models.

Strategic
> 60 Days

Operations
Planning
7-60 Days

Tactical
< 7 Days

System Dynamics Model

Locomotive Scheduling Tools
Crew Scheduling Model
Curfew Planning Tool
Car Blocking 
Block-to-Train Assignment Model
Terminal Simulation Model
Train Scheduling Tool

Dynamic Car Planning System
Locomotive Distribution System
Crew Assignment Tool
Train Dispatching System

Figure 1:  The SD Model Complements the Existing Sui
of Operational and Tactical Models
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2.4 The SD Modeling Process

The SD railroad performance model described in this pa
is the product of the combined effort of outside consulta
and railroad management and staff.  A first version of 
model was developed in the first half of 1998, and a sec
version in the first half of 1999.  This sort of sustained a
iterative effort is typical of SD modeling efforts.  Strateg
SD models almost invariably end up raising important n
questions which are not adequately answered by exis
theory and data, thus generating the need to develop
validate new theory and often new data (Homer 1996).

Several previous applications of SD to transportat
system performance modeling do exist, exploring 
dynamic interplay of transportation supply and dema
(Wright 1978, Stephanede 1981, Gottschalk 1983, Ab
1990).  These models serve as useful background, but 
specifically addresses the question of on-time performa
and the various sources of delay affecting it, which wa
primary focus of our railroad modeling.

The process of SD model development and valida
has been discussed at length elsewhere, but some as
bear repeating here.  To be an effective strategic tool
SD model must be able to reproduce relevant aspec
past history, but the model must also produce plaus
outputs in the face of test conditions, even those that de
radically from historical experience.  Also, its equatio
and parameter values must have a firm foundation
reality, being drawn directly from detailed records 
recollections wherever possible, rather than fro
unconstrained “model tuning” to match history (Forres
1188
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and Senge 1980, Graham 1980).  A process of par
model analysis often contributes to the realism a
robustness of the model’s individual sectors (Morecr
1985), and can be useful for doing a constrained form
model tuning to estimate parameters when detailed data
not available (Homer 1983).

Every strategic SD model, no matter ho
sophisticated, contains elements of uncertainty, includ
imprecise parameter values and unpredictable source
disturbance, e.g., weather.  Thus, strategy options sh
be considered in the context of sensitivity tests or scen
alternatives that establish not just a single baseline re
but rather a whole range or envelope of possibilities t
accurately reflect the magnitude of uncertainty.

2.5 Model Structure

An overview of the model’s causal logic is presented
word-and-arrow form in Figure 2.  The railroad
operational and financial performance derives ultimat
from three things:  customer shipment demand, 
operating plan for the scheduling and routing of trains a
rail cars, and the physical resources available.  From
operational standpoint, the focus is on car cycle tim
expressed as a number of days from load to load, or in
relative terms as on-time delivery percentage.  From
financial standpoint, the focus is on earnings growth
simply on unit cost.  For a given level of owned resourc
cycle time and unit costs tend to rise or fall togeth
according to the adequacy of those resources to ha
customer demand.
Car Cycle
Time

     TRAIN 
RESOURCES
  - Power
  - Crew
  - Track
  - Terminals
  - Cars

SHIPMENT
DEMAND

OPERATING
PLAN

Train
Delays

Overtime/
Relief Crew

Costs

Extra/
Annulled

Trains

REVENUES
COSTS

Resource
Adequacy

B2

B1

R1

Fuel Costs

Power &
Car Leasing

Standard
Resource

Costs

Per Diem
Car Costs

Unusual
Events

Figure 2:  Overview of Model Causal Structure
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2.5.1  Train Delays – A Vicious Cycle

Let us take a closer look at car cycle time – one of the k
drivers of asset productivity for the railroad.  While th
planned cycle time is a function of train velocity, distan
traveled, and time spent in the terminals and at custom
cycle time variations are driven in large part by tra
delays.  Train delays affect average velocity and also aff
the fraction of cars that miss connections due to late arr
(and thus have to wait for the next available train goi
their way.)  Cars may also miss connections wh
terminals become congested with cars or trains (inadequ
terminal resources), or when a car is bumped from 
originally scheduled train as a result of too many ca
already on board (extra train required) or too few (origin
train annulled).

Train delays are a chronic problem and have a se
perpetuating or self-reinforcing tendency, symbolized 
Figure 2 as Loop R1.  Trains absorb more hours 
resources (i.e., power/locomotives, crews, track, a
terminals) when they are slow or delayed than they wo
otherwise.  This extra absorption of resource hours ma
the railroad less flexible than the operating plan assume
e.g., there are fewer spare locomotives or idle cr
available to be used if necessary, and thereby makes
railroad likely to suffer further delays.

2.5.2  Matching Resources to Demand

Train delays may start as a result of unusual events, suc
severe storms, equipment breakdowns or accidents, 
more commonly and persistently, when the demand for o
train resource or another exceeds or presses too h
against its supply.  In the case of inadequate power or 
few cars, the railroad has the short-term ability to lea
resources to alleviate the problem (see Loop B1 in Fig
2), albeit at additional cost.  Note that owned resources 
considered a given in the railroad model, because they
determined by annual budgets and cannot be adjus
quickly based on need.   Another way that the railroad m
prevent or alleviate a demand-supply mismatch is to ad
the train schedule, which is a central component of 
operating plan.  The intent of such schedule adjustmen
to minimize the required number of extra and annull
trains, which not only cause missed connections but a
put a disproportionate strain on train resources.  Th
unscheduled trains tend to increase the need for co
locomotive repositioning, may create unexpected cr
demand, and may lead to problematic bunching of tr
arrivals at terminals.

2.5.3  Matching Demand to Performance

If a resource demand-supply imbalance is not correc
through power or car leasing or through train sched
adjustments, and if such an imbalance leads to long 
1189
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cycle times, then another balancing mechanism may co
into play:  a limit on actual shipments (see Loop B2 
Figure 2).  Potential shipments are considered a given
the railroad model, reflecting basic considerations 
feasibility, urgency, and price that determine a custome
standard choice of transportation mode and carrier.  Bu
extended cycle times constrain the railroad’s capacity 
ship, customer orders may become backlogged and e
cancelled, customers may switch to other carriers, and 
railroad is likely to lose some potential shipments as
result.  From a financial standpoint, this means that po
operational performance may hurt not only costs but a
revenues.

2.5.4  Level of Aggregation

Although the SD model represents the railroad in a
aggregated way as befits its strategic purpose, 
considerable amount of structural detail was required 
flesh out the causal relationships shown in Figure 2.  T
model contains about 450 active equations and is organi
into ten interconnected sectors:  Shipments, Train sta
Train delays, Car cycle time, Cars, Crew, Powe
Terminals, Track, and Financials.  The model does n
depict individual geographical areas or corridors, b
instead describes variables in terms of network-wide tot
or averages.

On the other hand, the model does use busine
segment-specific variables in many areas.  We curren
have four segments:  Merchandise, Unit (primarily coa
Automotive, and Intermodal.  These segments have disti
characteristics that result in different levels of operation
and financial performance, and that place different leve
of demand on the train resources they share.  For exam
while all merchandise cars (and a fraction of automoti
and intermodal cars) make connections and change tra
one or more times to get from their origins to their variou
destinations, cars on unit trains are assumed not to m
connections.  Another important distinction is that un
trains are unscheduled, and thus put somewhat more st
on power and terminal resources, while all other train typ
are scheduled.

3 MODEL CALIBRATION

The railroad model contains, in addition to its equation
some two hundred parameters – constants, time se
inputs, and nonlinear functions – requiring data collectio
and calibration.  The majority of these parameters we
estimated directly from available information source
often based on straightforward statistical averages a
regressions.  Indeed, much of the model-building effo
was spent in gathering and analyzing data to support 
model’s structural assumptions and for the purpose 
parameter estimation.
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3.1 An Iterative Process

Like the modeling process generally, the data collec
effort was and is an iterative process.  We began, base
a draft version of the model, with a structured datab
listing all of the desired information, the format it w
desired in, the unit of measure, the model sector it wo
be used in, and likely sources.  Every few weeks we wo
compile a “Hot List” of desired data clarifications an
additions, and attempt to resolve as many items as poss
Some required custom query development.

For example, one of the simplifying assumptions in 
draft model was that freight cars carrying automobiles (
model’s Automotive business segment) did not ma
connections at terminals from one train to another, but ra
traveled directly from origin to destination on one tra
Further discussions and observations suggested that
assumption was overly simplistic.  The model structure 
therefore changed and data collected to estimate the a
number of connections being made by Automotive rail ca

SD model review discussions quite often reveal tha
given variable may be causally influenced by other variab
not originally considered.  For example, we origina
postulated in the model's crew sector that greater train ar
delays would lead to more crew ‘deadheads’ requiring 
rides to transport the crews.  There are two reasons for
First, crews arriving late are sometimes unable to be read
time for their next planned trip, and may need to 
transported back to their home terminal.  Second, crews
are underway and delayed can be stranded by hour
service limitations prior to reaching their assigned trip e
points, and then must be removed from the train, replace
a ‘relief crew,’ and transported to a rest location.  To initia
calibrate this assumed function, we compared costs for c
deadheads from a financial database to a custom quer
to report train arrival delays.

In reviewing this assumed relationship with memb
of the project steering group, we learned that cr
deadheads can also occur when a terminal or service re
is temporarily short of its own regular road crew, requiri
other crews to be taxied in from outside the area to h
out.  From a modeling standpoint, such spot shortages
more likely to occur during certain seasonal periods w
road crew are less available than usual.  Based on
discussion and additional data analysis, the model 
includes two different effects on crew deadheads, one f
late arriving crew and one from unavailable depart
crew.  (These overlay a base amount of deadheads tha
simply a result of train imbalances.)

3.2 Partial-Model Calibration

Despite the wide array of data sources at the railroad
did not always have sufficient information to estimate
particular parameter with the necessary precision.  In s
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a case of missing data, the parameter was adjusted w
its range of plausibility during the process of partial-mod
testing.  In this process, a model sector, or portion ther
is tested in isolation from the rest of the model 
determine whether it can produce appropriate outputs
response to historical or other possible inputs (Hom
1983).  For example, the model’s car cycle time sec
contains a nonlinear function that relates missed 
connections back to car arrival and processing delays 
the planned dwell time per connection.  This function w
first estimated roughly by considering the logic of norm
and extreme conditions.  It was then adjusted until the 
cycle time sector in isolation, using historical time ser
on delays and planned dwell time (data feeds from outs
the sector), could closely reproduce correspond
historical data on missed car connections (validation d
internal to the sector).

3.3 Full-Model Testing

After the completion of all partial-model testing, th
model’s sectors were linked together to verify that the f
model could do a satisfactory job of matching a yea
worth of actual history.  In fact, the full model produces
very good to excellent fit to history for some two doz
different model variables, in many cases at the level
individual business segments.  For example, Figure
below shows the fit of average departure plus line-of-ro
(“LOR”) delay hours per train start produced by the mod
(solid line) with the actual  collected data (dotted line
Note that there are some Christmas/New Year (week 
52) delays in the actual data that the model does 
reproduce.
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  Total Departure and LOR Delay Avg. Per Train  
  All Business Segments  

Weeks

Delay_hrs_avg1

EX_Delay_hrs_avg2

0 10 20 30 40 50

1 2

1

2

1

2

1
2

1

2

1

2

Figure 3:  Model Fit for Average Total Train Delay

An example of the full-model and partial-model fit t
history is shown in Figures 4a and 4b, where on-ti
delivery performance is the variable of interest.  The f
model (Figure 4a) captures the general shape and rang
historical behavior, but produces output that is smoot
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than the actual data, and misses the plunge in on-t
performance that occurred around Week 10.

In contrast, running the car cycle time sector 
isolation as a partial model produces output nearly as sp
as reality, including the Week 10 plunge (Figure 4b).  W
can see one of the reasons for the difference by look
back at Figure 3.  There we can see that the overall tr
delays produced by the model are somewhat smoother 
the exogenous data.  In particular, there are spikes in ac
delays around weeks 10-11 and weeks 33-36 that 
model does not fully portray.  Feeding the actual rath
than the model-produced train delays into the cycle tim
sector results in the difference between Figures 4a and 4

������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������

  Early plus 12 Fraction:  
  (On-Time Performance Measurement for Freight Cars at

Ultimate Destination)  

Weeks

Model_OnTime1

EX_OnTime2

0 10 20 30 40 50

1

2

1

2

1
2

1
2

1

2

1

2

Figure 4a:  Full-Model Fit for On-Time Performance
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Figure 4b:  Partial-Model Fit for On-Time Performance

In general, one should expect a partial model to 
better than a fully connected SD model in reproducing 
detailed spikes of history and not just the smooth tren
This is because the drivers of behavior in social systems
always a combination of the predictable and t
unpredictable, the usual and the unusual.  For example,
most important variable affecting on-time deliver
performance is train delays.  In the full model test, tra
delays are generated deterministically, whereas in the pa
model test, they are taken directly from actual data.  
noted previously, train delays originate mostly from resou
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shortages but also in part from unusual events; the form
are mostly predictable while the latter are mostl
unpredictable.  In looking back at the actual history leadin
up to the Week 10 performance plunge seen in Figures 
and 4b, one unusual event not represented in the mo
stands out:  the introduction of a new network-wide progra
intended to improve productivity at terminals.  This program
unfortunately led to numerous train delays.  As a result, t
program was phased out after a relatively short time.

While we have not captured in the model’s causa
structure the impact of every operational policy chang
known to have occurred, it is important to understand th
factors underlying those data swings that remain outsi
the model.  Only by doing such investigation can on
unearth those "usual" factors that repeatedly an
systematically affect system behavior, as opposed to tho
unusual factors that one can never predict.

4 SCENARIO TESTING

Inputs to the model that may vary from one scenario 
another include assumptions about potential shipme
demand, train resources, and the operating plan, specif
over the model's time horizon of one to two years.

Within the SD model proper, potential shipments hav
both trend and seasonality components that can be app
to specify future demand.  In addition, a linked spreadshe
input module provides further flexibility in creating
alternative demand scenarios.  For example, one may 
this spreadsheet to reshape seasonal peaks in sub-segm
of shipment demand, such as grain or coal.

One may specify changes in any modeled tra
resource, i.e., crew, power, terminal, track, and/or cars, b
must also to specify the ongoing cost (e.g., maintenan
and depreciation) impacts of such changes.  In regard to 
operating plan, one may change planned train velocit
planned cars per train, planned dwell time per connectio
miles per shipment, the number of connections p
shipment, and/or the fraction of shipments for which th
railroad provides local train service at origin or destination
One may also modify the priorities that affect the wa
different business segments are treated when tra
resources are short, which may lead to significantly mo
train delays for one business segment than for another.

4.1 The Impact of Key Assumptions

Figure 5 demonstrates the impact of a sizeable increase
Merchandise business segment volume beginning in we
22.  The increase in this case is set large enough to prod
a significant degradation in service.  The solid lin
represents our baseline assumption, as described in sec
2.5.3, that some customers will cancel their shipments 
service is not sufficiently prompt.  While no one eve
wants to lose business due to poor service, it was import
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for us to understand the degree to which cancellations m
actually benefit on-time performance during and after
period of resource inadequacy.  In Figure 5, such a per
occurs during weeks 35-45, after which demand slack
during weeks 46-51 and performance recovers.  Th
graphs indicate that cancellations are quite importa
during the rebound period, but assist performance o
moderately prior to that time.  This analysis als
underscores the need for sensitivity testing, and 
usefulness of presenting an envelope of possible results
described earlier in section 2.4.

Merchandise Shipments

0 5 10 15 20 25 30 35 40 45 50
Weeks

On-Time Performance

0 5 10 15 20 25 30 35 40 45 50
Weeks

Figure 5:  The Effect of Cancellations

5 PLANS FOR ONGOING USE

The SD model has gained acceptance as a strat
planning tool among top CSXT management.  Already, t
model is being used to probe a variety of managem
concerns that have arisen as the integration of Conrail w
CSXT proceeds.  It is also being used in conjunction w
the budgeting cycle.  Typical inquiries involve predictin
the performance impact of various demand scenarios,
evaluating alternative capital investments..

Looking past current planning purposes, we s
several potentially fruitful uses for the model.  One is as
training tool for operating management.  The model 
quite good at conveying a sense of how the network a
whole responds to increases in volume and to operatio
policy changes.  Especially for those managers new

solid = allow cancellations
dotted = no cancellations
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railroading or for those who have worked only in jobs tha
are local in nature, the broad network perspective provid
by the model will be instructive.
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