
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

TALUS – AN OBJECT ORIENTED AIR COMBAT SIMULATION

Sigurd Glærum

Norwegian Defence Research Establishment
Division for System Analysis

P. O. Box 25
NO-2027 Kjeller, NORWAY

e
c
e
e
l
 

a
m
is
d
f
 
e

d
e
m
e
w

a

c

te
a
e
e
b
n
a
e
ld

lly
),

or
re

the
he
ian
re
t.
e,
d
 be

e
rch

the
the
ABSTRACT

TALUS (TAktisk LUftkampSimulering) is a discrete
event, Monte Carlo based air combat simulation mod
developed at the Norwegian Defence Resear
Establishment (Norwegian acronym: FFI).  The mod
was requested by the Royal Norwegian Air Forc
(RNoAF), but will mainly be used for operationa
research at the FFI.  The development took place in
small, well integrated project with the authority to
establish the requirements to the model.  Much effort w
dedicated to the establishment of a sound syste
development process, employing object-oriented analys
design and implementation.  The result has been a mo
that satisfies the initial requirements and verification o
the fact that the time invested in a systematic approach
the system development is directly proportional to th
quality of the end product.

1 INTRODUCTION

Engagement level air combat with multiple aircraft an
aircraft types on both sides represents a highly compl
and dynamic system.  Analysis of such a syste
requires a well-balanced view of the questions that ne
to be answered and the tools that are used to ans
them.

The background for the development of the air comb
simulation model TALUS is the Combat Aircraft Analysis
project that was carried out at the Norwegian Defen
Research Establishment during the years 1993–1996.  T
purpose of this analysis was to evaluate a number of figh
aircraft - candidates for an acquisition by the Roy
Norwegian Air Force which is to take place early in th
next century.  An important tool for the evaluation of th
operational performance of these aircraft was an air com
simulation model, developed abroad in the seventies a
eighties.  During the analysis it became increasingly cle
that this model – and most other current air combat mod
– was much too inflexible to meet the needs of post co
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war operational research.  These old models usua
combine an old programming language (e.g. FORTRAN
a procedural approach, hardcoded limitations, inferi
documentation and an inflexible pilot model, and a
therefore difficult to modify and extend.

Due to the limited availability of modern, flexible air
combat simulation models, the decision was made that 
FFI should develop such a model in-house.  While t
model was requested and financed by the Royal Norweg
Air Force, the specific requirements to the model we
formulated by the project that would actually develop i
This made it possible to set up a very effectiv
unbureaucratic organization with clearly formulated an
coherent goals. Three fundamental questions needed to
addressed:

• What questions should the model be able to
answer?

• What properties should the model have?
• How to design and implement a complex

model with limited resources?

The first question was relatively straightforward, given th
needs arising from ongoing and future operational resea
at the FFI:

• What is the performance of a given aircraft
type over a wide range of different air-to-air
scenarios?

• What impact does subsystem performance
have on overall system performance?

• What are the consequences of new
technologies like sensor fusion, data link,
stealth, anti-stealth etc.?

• What are the consequences of given tactics,
rules of engagement, ID-requirements etc.?

The answers to the second question, which properties 
model should have, were given partly by the answers to 
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first, but mainly by the need to get a model that would
easy to use, modify and extend:

• A balanced model of engagement level air
combat.

• A closed, Monte Carlo based discrete event
simulation.

• User friendly, with a graphical interface.
• Well documented at all levels.
• Easily extendible to future requirements.

Given the limited resources available for the project, l
than 10 man years in total, the answer to the last questi
how to design and implement the model – was the m
critical factor for a successful outcome.  The standard 
of system development in the field of military simulation
start in one corner, implement the bits and pieces 
throw enough manpower at the problem until the wh
colossus is tied together – was clearly not efficie
Instead, the project turned to the well established field
object oriented system development.  It was decided
employ an iterative system development process:

• A detailed design using the object oriented
design tool OOram Professional, (Numerica
Taskon 1996) and (Reenskaug 1995).

• Implementation of the design using the object
oriented programming language MODSIM
III, (CACI Products Company 1997).
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• Continuous documentation effort, at both the
design and program code level.

• Milestones and testing.
• Iteration through the above points.

At the start of the project, much effort was put into th
design phase of the development.  This effort repaid its
later in the project by greatly reducing the risk of not bei
able to complete the development at all.  With the over
structure of the model in place, it simply came down 
implementing the necessary detail of any given module.

It must be stressed, however, that while muc
emphasis was put on a sound system developmen
necessary prerequisite for a successful outcome is a g
understanding of the problem domain.  This had be
achieved through the Combat Aircraft Analysis project a
through continuos input from fighter pilots of the RNoAF.

2 MODEL DESCRIPTION

The area of interest for TALUS is primarily engageme
level air-to-air combat, although no hardcoded limitation
exist with regard to time, space nor the number 
participating aircraft or aircraft types.

2.1 Scenario Definition

A scenario is defined through the graphical user interfa
to the model.  Figure 1 below shows the main scena
Figure 1:  Scenario Definition Screen



TALUS – An Object Oriented Air Combat Station

n
ry
ir
e
t

ic
a
,
io
re
a
d
o

or
e

nd
d

ft
e
a
i
e
to
/o
e
t
e
h

n
o

le,
the
e
 in
ft
-

he
s,

so
ss
on
for

r
y
of

ly
the
e 4
s

definition screen, where individual aircraft are created a
added to their respective formations.  The initial geomet
is defined either by dragging the individual aircraft to the
desired starting positions, or by numerical input. Th
command and control hierarchy is defined in a separa
screen.  The hierarchy’s smallest unit is the Section, wh
consists of a Section Leader (SL) and an option
Wingman (WM).  The next level up, the Formation
consists of any number of sections, with one of the sect
leaders designated Formation Leader (FM).  Furthermo
any number of formations can be combined to form 
Mission, with one of the formation leaders designate
Mission Commander (MC).  One side may even consist 
several missions, but there will be no coordination 
communication between them.  The hierarchy is depict
in Figure 2.

Figure 2: Command Hierarchy Definition

The main reason for implementing the command a
control hierarchy was to facilitate communication an
coordination between different aircraft and to allow
flexible assignment of mission plans for groups of aircra
Mission plans are defined for each formation and are eith
defined in detail through the interface or picked from 
library of standard plans in the database.  Each aircraft w
read its designated plan and its pilot model will b
responsible for its implementation, though responding 
any coordination from the proper command element and
any specific situation that requires a deviation from th
predefined plans.  There are three levels of plans built in
the pilot model – which will be discussed below – it is th
specific parameters of these plans that are defined throug
the user interface.

One major task for the user is to define all the differe
kinds of aircraft that are to participate in the scenari
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These may either be predefined in an existing input fi
picked from a database or composed by selecting 
different subsystems for a given aircraft type from th
database.  Figure 3 shows one of the screens involved
defining a configuration.  If the user so wishes, all aircra
in a scenario may be of completely different types 
without any performance penalty.

Several other elements may be defined through t
graphical interface – radars of different types, EW-system
IRSTs and missiles, for instance.  Aircraft types may al
be specified to the required level of detail, with radar cro
section, IR signature, drag coefficients, fuel consumpti
tables etc.  All of these may be stored in the database 
later use in other scenarios.

Figure 3: Aircraft Configuration Definition

2.2 Scenario Execution

A scenario, either given by an input file or defined (o
modified) through the graphical interface is normall
executed as a batch job, running through a number 
Monte Carlo iterations in order to produce statistical
valid results.  For demonstration or debugging purposes 
scenario can also be run with animated graphics.  Figur
shows the resulting screen with five sub-window
(clockwise from top right):

• Current sensor plots and track files as
maintained by the attack computer of the
designated aircraft

• Current airpicture as perceived by the pilot of
the designated aircraft

• History of important actions taken by the
pilot of  the designated aircraft

• Side view of the scenario
• Top view of the scenario (designated aircraft

marked with yellow dot)
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Figure 1

Figure 4: Scenario Animation
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3 MODEL DESIGN

The real world of air-to-air combat is actually quit
modular.  Aircraft and missiles are discrete entities a
they are themselves modular in structure, with subsyste
like sensors, computers, cockpit displays pilot etc, all w
formalized ways of communicating with each other.

This feature of the real system is readily exploited 
the object-oriented design of TALUS, which exhibits 
strong correspondence between real entities and objec
the model.  Modularity is also enhanced by collecti
objects that structurally and functionally belongs togethe
like the collection of objects that make up a radar – in
program structures called Modules. Interfaces betwe
objects change frequently, while interfaces betwe
modules are relatively stable, simplifying work-share a
reducing the need for constant synchronization betw
developers in both the design and implementation phas
the project.

A common mistake in object-oriented design is to st
out trying to establish class hierarchies for the differe
1163
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objects in the model domain.  In this way relationships li
flyingVehicle → aircraft → fighterAircraft is created, each
with more specialized functionality than its parent clas
Through inheritance and reuse there is then the potentia
save a lot of programming effort.  The trouble with th
approach is that it does not address the real problem
designing a simulation model, which is to identify th
interactions between objects of different classes.

The concept of role modeling in the OOram design tool
is centered on identifying these interactions and has b
used successfully in designing TALUS.  By creating ro
models for parts of the model that are reasonab
independent, and by subsequent synthesizing of these 
models, a complete design is created by a divide-a
conquer technique.  The end result is a design where 
roles translate directly to the objects of the model.

4 MODEL STRUCTURE

The main object within the simulation is the aircraft objec
which again contains objects making up its compone



TALUS – An Object Oriented Air Combat Station

us
ile
s i
ng
o

 th
ld.
de
p.
ote
cra

o
ted
 t

es
 th
nts
the
ay
wi
w
nd
es
 th

 a
y 
or
 i
rg

af
elf
on
e-
 In
lle
nt
th

ate
ch
 is
.

er
te
lso
te
 a
e
of
an

s a

nd
es.
f
is
er.
t
 in
inst
al

el
e
e

eat
ry
of
re
el
than
dar
of
o
ch
nt.
or
o
ld
s

e
 6
parts.  This is the only “living” object with an autonomo
existence inside the model (apart from an airborne miss
Other, higher level, objects exist, but their presence i
general only for initialization and/or housekeepi
purposes.  Even the command and control hierarchy d
not have an independent existence, but resides in
“mind” of each pilot instance – a parallel to the real wor
A multitude of lower level objects exist, but they all resi
in a “part-of” hierarchy with the aircraft object at the to
Figure 5 shows a simplified picture of this hierarchy.  N
that not all subsystems need be present in a given air
instantiation (e.g. not all aircraft have an IRST).

Figure 5: OOram View of the Aircraft Model

The main flow of events in the simulation is in tw
directions in this tree-structure.  One direction is initia
by track updates/detections reported by subsystems like
radar, IRST or data-link – with simulated inaccuraci
These track-files are organized and possibly fused by
mission computer and relayed to the cockpit instrume
If the pilot is scanning his instruments at the time (or 
tracks are displayed on the HUD/helmet mounted displ
the track updates are sent to the pilot object, which 
integrate it into its current airpicture.  The downward flo
of events is initiated by the pilot’s planning process a
subsystem management actions resulting from this proc
These are routed through the cockpit instruments and
mission computer to the subsystem in question.

In TALUS, particular emphasis has been put on
realistic representation of the data content and accurac
this message flow.  A sensor will, for instance, only rep
a target position with a given accuracy, and target ID
unknown unless that particular sensor is capable of ta
identification in the given circumstances.

It is important to note that any instance of the aircr
object (including its subsystems) is a completely s
contained and autonomous entity within the simulati
There is no need for an explicit global clock or tim
stepping mechanism to drive the simulation forward. 
effect, the different aircraft instances executes in para
using their own internal, local clocks to schedule eve
like position updates etc.  This is also true for some of 
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subsystems.  A radar will, for instance, schedule an upd
of itself when the time for a complete scan of its sear
volume has elapsed.  This time management scheme
very flexible since it allows local control of update cycles
A radar will automatically adjust its update frequency aft
a mode change, while a missile will increase its upda
frequency when it gets close to a target.  There are a
mechanisms allowing for external interrupts of upda
cycles (or any other scheduled event).  A sensor taking
peek at another aircraft will, for instance, interrupt th
regular cycle of this aircraft to force an update ahead 
schedule – in order to make the aircraft able to return 
updated position.

The time management scheme described above i
feature built into the MODSIM III language and will –
when used to its full extent – increase the modularity a
eliminate the need for complex synchronization schem
Also in TALUS there is, of course, synchronization o
events against a global simulation clock, but this 
managed by the compiler and hidden from the develop
An additional benefit of the MODSIM III language is tha
it gives the user the choice of running a simulation either
compressed time (discrete event) or synchronized aga
wall-clock time.  This is selectable through the graphic
user interface.

5 PILOT MODEL

In the introduction it was stated as a goal that the mod
should be balanced.  The reason is previous experienc
with imbalanced simulation models – particularly in th
field of military simulation.  Imbalance occurs when
certain parts of the real world system are modeled in gr
detail, while other significant parts receive just a curso
treatment.  This may be due to a simple lack 
understanding of the real system, or it may be mo
psychological in nature.  It is, after all, a lot easier to mod
systems and processes that are thoroughly understood 
systems that are not.  It is relatively easy to model a ra
warning receiver in minute detail and a high degree 
accuracy, but it is not easy to model a human operator t
the same degree of fidelity – yet the latter ‘system’ is mu
more important to the outcome of an air-to-air engageme

Considering the sorry state of human behavi
representation in military simulation, it was decided t
devote a significant part of the development effort to bui
a credible pilot model.  An overview of the pilot model i
given below.

5.1 Main Design Principles

The pilot model is designed to mimic the human cognitiv
and decision making process to some extent.  Figure
depicts the major roles (objects) involved in this process.
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Figure 6: OOram View of the Pilot Model

The main tasks of the pilot model are twofold.  One is t
interpret all sensor inputs, radio messages and syste
status data and integrate it into his perception of th
airpicture.  The other task is to – based on the airpictur
pre-laid plans and coordination with other pilots – plan
ahead and execute the resulting decisions.

All inputs to the pilot are routed through the main
container object in the pilot model, the pilot object.  Dat
relating to the airpicture is forwarded to the interprete
object, while data relating to coordination of the plannin
process is forwarded to the missionPlanner object.

5.2 The Interpreter

The task of the interpreterObj is, on a single-track basis, 
convert the track to a more “humane” format and to
evaluate the threat levels associated with this track.  If th
mission computer of the aircraft does not have a sens
fusing capability, a rough sensor fusion will be performe
in the interpreter.  For some tracks which do not pas
through the mission computer – tracks originating from 
radio message or from the pilot’s own eyes – the sens
fusion will be performed regardless.  Figure 7 shows th
design of the interpreter.

After treatment by the interpreter, the airpicture is
asked to integrate the new or updated track.

5.3 The Airpicture

The task of the airpicture is to maintain an update
situational awareness by synthesizing the continuous tra
updates received from the interpreter.  It will organize th
single tracks into formations and identify their higher leve
characteristics.  It will also, when requested by the planne
give an assessment of the current situation by compari
the airpicture to a library of templates.  Figure 8 show
how the airpicture is organized.
1165
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Figure 7: OOram View of the Interpreter

Figure 8: OOram View of the Airpicture

The formations are formed and updated based on 
characteristics of the tracks they consist o
A correlation of target geometries, identities, types et
may lead to either the creation of a new formation, 
formation split or a formation merge.  Furthermore, th
airpicture has a certain ‘memory’ span.  Even if all targe
in a formation have been deleted, the formation will b
maintained and extrapolated until it is decided to delete
altogether.  As in the rest of the pilot model, there are bu
in features that simulate the limits of human capacity, bo
with regard to the amount of data that can be integrated 
the latency involved in decision-making and execution.

5.4 The Planner

The planner has a three-level organization.  The topm
level is the missionPlanner which is responsible fo
carrying out the overall mission plan defined for this pilo
in the user defined input.  The next level down is th
tacticalPlanner which consists of a library of intermediat
term tactical plans.  These plans are objects derived from
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generic tactical plan with default behavior which they i
turn override and extend as necessary.  Examples here
tactical plans like: Combat Air Patrol, Intercept, Attack
and Return To Base.  At the bottom level there is a libra
of short-term action plans, again with objects derived fro
a generic action plan, overriding and extending 
Examples here are action plans like: Cruise, Commit, 
Pole Maneuver, Missile Avoidance etc. Figure 9 shows
simplified overview of the full planning structure.

Figure 9: OOram View of the Planner

The three levels all operate on different upda
frequencies, the mission planner typically on a 5-10 seco
update cycle and the bottom-level action planner on a
second or less update cycle.

The mission planner will in effect execute a use
defined script of tactical plans and will oversee th
transition between those plans according to the miss
plan, the situation assessment or orders received fr
superior pilots.

A tactical plan is similarly based on a default, use
defined, script of action plans and will oversee th
execution and transition between the action plans.  It
important to note that these scripts are not set in stone
pilot may have several flavors of a given tactical plan, 
be used for different parts of the mission.

An action plan deals with short-term tasks like targe
sort, sensor management, weapon management, airc
maneuvering etc.

In order to allow for unforeseen or critical events
shortcuts have been incorporated into the planni
structure.  If, for instance, an incoming missile has be
detected, the airpicture will raise a flag and the planner w
suspend all other activity and execute the action pl
Missile Avoidance.  Another example is the reception of a
order from a superior pilot, which will lead to an
overriding of the standard script.

All in all, the planning structure has proven to be ver
flexible and easy to extend.  New behavior patterns a
implemented by inheritance of the generic plan objects a
1166
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the amount of modification needed is usually both limite
and localized.

5.5 The Executor

The executor is responsible for implementing the decisio
taken by the planner.  It interfaces to the cockp
instruments and flight control system and coordinates 
different actions requested by the planner.  It will als
introduce action-specific delays in order to simulate hum
behavior.

6 FUTURE ENHANCEMENTS

While TALUS is presently complete to a certain degree 
an air-to-air engagement level combat simulation, it w
certainly be extended in the future.  These augmentati
will be implemented not on a nice-to-have basis, but 
requirements appear.  In the medium-term, however, so
developments seem likely:

• Distribution of the model to operational
squadrons to be used for evaluation of tactics.

• Interfacing the simulation to the Royal
Norwegian Air Force F-16 simulators, to act
as computer generated forces.  The interface
would be through HLA and the RPR-FOM.

• Incorporation of AEW (like AWACS) and
GCI (Ground Controlled Intercept) into the
model.  This would be a relatively
straightforward extension, given the
command and control structure already
present.

• Introduction of air-to-ground specific
capability.  Some aspects of this are present
already, but could be extended to include
SAM-sites, digital terrain, weapons delivery
etc.

CONCLUSIONS

The main lesson to be drawn from the development 
TALUS at the FFI is that in spite of limited resources o
manpower and time, a full-blown, quite complex
simulation model can be successfully completed 
employing sound system development methods.  By us
the right object-oriented design tools significant gains 
terms of model structure and reduced implementati
effort are achieved.  Adding to that an object-oriente
programming language that does not require developer
be software engineers, but rather scientists with 
understanding of the problem domain, an integrate
efficient system development can be achieved.  Sin
everybody is involved in analysis, design an
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implementation, there is less room for misunderstanding
and discontinuities in the process.

Another lesson is that a small group of people may b
equally, or even more, productive than a larger group.  A
large system development group would have to employ 
more rigid and bureaucratic approach to the various phas
of the development, with strict adherence to time-lines
version control etc.  While these aspects are important als
to a smaller group, they can be treated in a more dynam
way.

Since the model is not to be fully completed until the
end of ’99, it has not yet been through any full-scale test
or employed for serious analysis.  Preliminary tests usin
data and scenarios from the Combat Aircraft Analysis
does, however, produce results that comply with
expectations.
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