
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

MULTITRAJECTORY SIMULATION PERFORMANCE
FOR VARYING SCENARIO SIZES

John B. Gilmer, Jr.
Frederick J. Sullivan

Wilkes University
P.O. Box 111

Wilkes-Barre, PA  18766, U.S.A.

a
ue
of
 o
ri
on
er
io
be

of
he
h
 o
su
s 
e
e

tha
en

e
a
s
an
hi
 th
o
se
es
m
er

tly
 1

rs,
ed,
e.
 to
,
ts
es
an
 to
ese

ff
ne

ly
to
e

ABSTRACT

Multitrajectory Simulation allows random events in 
simulation to generate multiple trajectories, a techniq
called "splitting", with explicit management of the set 
trajectories.  The goal is to gain a better understanding
the possible outcome set of the simulation and scena
This has been applied to a prototype combat simulati
"eaglet" which was designed to have similar, but simpl
representations of the features of the "Eagle" simulat
used for Army analyses.  The study compared the num
of multitrajectory simulation trajectories with numbers 
stochastic replications to experimentally determining t
rate of convergence to a definitive outcome set.  T
definitive set was determined using very large numbers
replications  to develop a plot of loss exchange ratio ver
losses of one side.  This was repeated with scenario
from 40 to 320 units.  While the multitrajectory techniqu
gave superior results in general as expected, there w
some anomalies, particularly in the smallest scenario, 
illustrate limitations of the technique and the assessm
method used.

1 BACKGROUND

The goal of multitrajectory simulation is to explore th
outcome space of a simulation, that is, the set of 
possible outcomes, more systematically and le
expensively (for a given quality of understanding) than c
be achieved with conventional stochastic simulation.  T
may be considered a variance reduction technique, but
analysis goals may be formulated not only in terms 
better estimates of statistical properties of the outcome 
e.g. a mean and variance for Measures of Effectiven
(MOEs), but also representative instances of extre
behavior or other "interesting" cases (Al-Hassan, Gilm
and Sullivan 1997).

The heart of the proposed method is to explici
track each possible trajectory, as illustrated in Figure
1137
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When an event that would normally be stochastic occu
instead of one outcome, multiple outcomes are generat
each constituting a trajectory having its own stat
Because the trajectory bifurcates, this is also referred
as "splitting", with "cloning" of the state.  In concept
such a multiple trajectory simulation is integrated with i
support system in such a way that its use provid
outcomes with probabilities associated with each, 
accounting for the key events or circumstances leading
the differences, and some measure of confidence in th
results.

Draw number

Conventional Simulation:

Multi-Trajectory Simulation:

State Random 
Event

State

Random 
Event

State 
P=.2State 

P=.3
State 
P=.1

Each replication gives only one outcome,  
randomly determined

Each replication gives numerous outcomes, 
characterized by their probabilities

Figure 1:  Concept of Explicitly Tracking Trajectories

Two techniques have been used which trade o
coverage for the sake of keeping resources bounded.  O
is the "truncation" management technique that explicit
decides, for each event in some trajectory, whether 
resolve the event in multitrajectory fashion (resulting in th
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creation of a new trajectory) or to instead resolve it
deterministically or stochastically.  The case of stochastic
resolution with only one continuing state corresponds to
the "Russian Roulette" used in conjunction with
"splitting" as a variance reduction technique.  This is
illustrated in Figure 2.  A second approach to reducing
the number of states to look for and consolidate states
that are "similar".  That technique was not used in the
work reported here.

Random Event
State State

Only one 
trajectory

p=.1 p=.07

Trajectory “truncated”
No new state created

Figure 2:  Trajectory Truncation

The software techniques for cloning the states and
properly initiating the alternative trajectories can be tricky,
especially if the stochastic event is deeply embedded in the
functional model code.  Several ways to do this have been
found, but are beyond the scope of this paper  (Gilmer and
Sullivan 1998).  The technique used to generate the results
reported here is "Sullivan's Method", in which the objects
in the simulation base classes are responsible for trajectory
management, so that the modeler does not have to be
concerned with the messy details of cloning and splitting.
At the time the results were generated, the algorithm
operated only in "breadth first" fashion, with all active
trajectories brought forward with time staying consistent.
Since then, a "depth first" technique and hybrid methods
have been developed that allow the memory usage to
remain manageable while producing large numbers of
trajectories.

The most representative trajectory management
technique used for the analysis to follow is illustrated in
Figure 3.  This "breadth first" approach uses
multitrajectory resolution of events up to the point
where a state limit is reached.  From that point, the
resolutions are random draws, with alternate trajectories
truncated.

Other approaches included a method in which
beyond a "soft" state limit only relatively high
probability trajectories have events resolved in
multitrajectory fashion.  Deterministic rather than
stochastic resolution beyond the state limit is another
alternative, and in other studies the idea of using
multitrajectory resolution only for "important"
trajectories with respect to some Measure of
Effectiveness has been explored.
113
Multitrajectory 
event resolution

State 
limit 
reached

p=.4

p=.3

p=.2

p=.05

p=.05

p=.4

p=.3

p=.2

p=.05

p=.05

MOE

3

2

4

6

7

Stochastic 
event 
resolution

estimated 
 MOE: 3.25 
  (not 4.4)

Figure 3:  Hybrid Event Resolution (Method 4)

2 THE MULTITRAJECTORY SIMULATION

This research has been conducted using a simplified,
unclassified surrogate for the military simulations of
interest.  The simulation "eaglet" was designed to resemble
the Corps level simulation "Eagle" in important respects,
but to be of manageable simplicity.  It includes Lanchester
square law combat, movement by nominally battalion sized
units along routes with multiple paths, decisionmaking, and
artillery support.  Figure 4 illustrates the smallest scenario
we have used with "eaglet".  Two Blue units attack a Red
unit.  A second Red unit counterattacks from the flank.
Note that the route objects show multiple paths; when there
are multiple links from a given node, a multitrajectory
event occurs for the choice of which path to follow.  Figure
5 illustrates the process of creating a new trajectory when
this happens.  Multitrajectory attrition (variations in
combat losses), decisionmaking (whether a decision rule
fires), acquisition (whether a unit sees another) and
acquisition loss have also been implemented.  All except
multitrajectory attrition were used in the results shown
later.  Multitrajectory attrition was found to be very
expensive relative to its value, and so was not implemented
in the "Sullivan's Method" version of "eaglet".

2

1

3

4

Figure 4:  "Eaglet" Scenario with Multitrajectory Routes
8
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Unit 1 
on link 12

.8 probability

.4

State 0
link 12

link 24

link 25

Node 2

.6

Unit 2 
elsewhere
other units

State prior to Unit 1's 
arrival at Node 2

State after Unit 1's 
arrival at Node 2, 
original state copy 
and trajectory

Unit 2 
elsewhere

other units

State after Unit 1's 
arrival at Node 2, 
new state for the 
alternative trajectory

Note: State 1 would 
have been created in 
an earlier bifurcation.

p=.8
Unit 1 
on link 24
Unit 2 
elsewhere

other units

p=.48
State 0

Unit 1 
on link 25

State 2

other units

p=.32

Unit 2 
elsewhere

Figure 5:  New Trajectory Creation for a Move Event

Because we were interested in scaling performan
there was a need to generate scenarios automaticall
various sizes.  To do so, a template based plan gene
was developed that would, hierarchically, generate divis
and brigade plans for both sides.  Templates w
developed for attack (Blue) and defense (Red) operati
at both levels, and instantiated for each division specif
for a given size scenario.  The smallest scenario in 
analysis featured two divisions, one Blue and one R
with a total of 40 resolution (battalion sized) units.  Larg
scenarios were generated by having multiple division siz
battles, side by side.  Units in adjacent divisions m
encounter enemy units other than their direct opposites
it is somewhat more complicated than just a series
disconnected battles.  However, representi
decisionmaking above division level was beyond the sco
of what was possible in this effort.

Figure 6 below illustrates a brigade level templa
used in the planner.  The tasks have associated temp
routes, which are illustrated in Figure 7.  The unit initi
locations, objectives, and route waypoints are varied 
25% with respect to the planning grid formed by the un
sector width and distance to its objective.  This giv
variation in the battle configurations and prevents to
synchronization across the scenario.
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Phases

Original 
Task

Type = attack

Template 
Plan

Type = attack

Roles

L. Attacker

R. Attacker

Reserve

Artillery

HQ

Template 
unit (tank)

Template 
unit (tank)

Template 
unit (tank)

Template 
unit (arty)

Template 
unit (HQ)

attack

attack

follow

support

be a HQ

Template TasksTemplate UnitsTemplate Roles

Reference to 
template for 
plan based 
on task 
type

(Input or a 
task passed 
down by 
recursive 
disaggregation)

Figure 6:  Brigade Attack Planning Template
1139
e,
at

tor
n
e
s

d
e
,

r
d
y
so
f

e

te

y
s

l

"Start" 
 reference point

ObjectiveContingency "R" 
Route

Contingency 
"L" Route

Figure 7:  Attack Route Template with Contingency

Figure 8 shows a typical 2 division scenario.  Som
rear units are not shown.  The grid lines are 5 Km apa
Only initial routes are shown.  Note the two brigades, eac
with two battalions up and one in reserve, advancing left 
right, with the division reserve being one large battalion.

Figure 8:  2 Division Scenario with Random Variations

3 EXPERIMENTAL APPROACH

The analysis performed in this project was designed 
compare the performance of the multitrajectory techniqu
to that of traditional stochastic simulation.  We have
selected two Measures of Effectiveness of particula
interest to form a surface onto which the outcome spa
generated by a given set of runs can be projected.  We th
can compare various outcome space subsets produced
different methods by comparing their "pictures" formed b
this projection onto the two dimensional MOE space.  I
particular, we wished to compare sets of n stochastic ru
with the outcome of multitrajectory runs with a state limi
of m, and find the values of n and m that give equivalen
performance in terms of the fidelity with which the MOE
plot is given.  Figure 9 illustrates.  This was thought to be
useful measure of how well a given set of runs conveys t
nature of the outcome space to the analyst.
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Figure 9:  The Analysis Process Used to Compare
Multitrajectory and Stochastic Runs.

This approach requires as a definitive reference 
“outcome set” against which comparisons can be mad
With the number of events in the hundreds, the size of 
exhaustive outcome set is too large to produce even
memory limitations were overcome.  We resorted to hu
numbers of stochastic runs, generally 5 million.  Figure 1
shows the reference 5M stochastic MOE plot for the tw
division case.  The shading is logarithmic for this and a
subsequent MOE plots.
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Figure 10:  2 Division Scenario Plot, 5M Replications

The number of points in an MOE plot (generally 100 
100) is rather large considering the number of trajectorie
Some degree of smoothing was thought necessary 
dampen the random fine grained variations.  We employ
both the 3x3 and 11 x 11 center weighted smoothi
functions, given in Figure 11.  These were convolved wi
the both plots prior to making comparisons.  The effect 
smoothing can be seen by comparing unsmoothed Fig
12 and Figure 13, in which the 11x11 smooth has be
applied.
1140
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Figure 11:  Smoothing Filters Used in Comparisons
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Figure 12:  2 Division Scenario Plot, 1K Stochastic
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Figure 13:  2 Division 1K Stochastic plot, smoothed
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Distances between histogram plots, either smoothed
unsmoothed, were taken by summing the absol
differences of the values for each pair of correspond
cells, then dividing by the number of cells.

As the number of runs increased, we checked to ens
that the differences in the MOE plot led to smaller a
smaller changes.  Figure 14 shows the convergence
average distance from the 5M replication case (shown
Figure 11) as the number of stochastic replicatio
increases.  (The comparison is to varying sized subset
the large run, so the distance necessarily converges to 
at 5 Million.)  The comparison is made with and witho
using a 3 x 3 point smoothing filter, that damps out the fi
scale granularity when the number of replications (as f
as 1K) is small compared to the resolution of the plot (1
by 100).  For many runs an 11x11 smooth was used inst
of 3x3, which is not shown, but would be lower on the le
end of the graph.
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Trend

Figure 14:  Convergence Toward 5M Replication Plot

Because of memory limitations, the Multitrajector
results are not for single multitrajectory runs, but for 
collection of 1000 trajectory runs having different seed
So, this really does not do full justice to the multitrajecto
approach.  With Multitrajectory Choice Policy 4, when th
limited state budget is exhausted, the simulation runs
stochastic mode.  Choice policy 6 differs from Policy 4 
that a lower "soft" state limit applies to low probabilit
states, which go stochastic earlier than the "hard" st
limit that applies to higher probability states.  We did n
find any significant differences between the tw
multitrajectory policies.

4 RESULTS, TWO DIVISION SCENARIO

The two division scenario includes 30 units.  All of th
maneuver units, and most of the other units, beco
involved in the battle, in contrast to the hand crafted 
unit scenario that was used in earlier studies, in wh
somewhat less than half of the units enter combat.  T
data was produced using an 11x11 smoothing prior
making the comparisons.  The unsmoothed and 3
smoothed data showed performance ratios between the
cases that were similar, with distances for th
multitrajectory runs being about twice as large..  (Choi
1141
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policy 4 was used on the multitrajectory runs rather th
choice policy 6, which was used in later cases.)

It is illustrative to compare the actual outcome plo
for this case.  Figures 15 and 16 show the stochastic 
multitrajectory plots for the 10K trajectory cases.
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Figure 15:  2 Division Scenario, 10K Stochastic Plot
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Figure 16:  2 Division Scenario, 10K Multitrajectory Plot

Distance data collected for the two division scenar
are summarized in Table 1.  For this scenar
Multitrajectory Simulation does worse than Stochastic, 
least using the analysis technique presented.  T
differences in distances are larger than the  estimate
error in the definitive outcome set.
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Table 1:  Distance Results from 5M Stochastic, f
Multitrajectory Runs for 2 Division Scenario, Smoothed

Replications All events
stochastic

All events
policy 6

1000 7.01E-06 1.52E-05
2000 6.36E-06 1.05E-05
3000 4.96E-06 1.00E-05
4000 3.89E-06 7.48E-06
5000 3.39E-06 5.90E-06
6000 2.72E-06 6.12E-06
8000 2.41E-06 5.94E-06
10000 1.99E-06 4.75E-06

The multitrajectory outcomes include some wit
smaller probabilities than are present in the stochastic c
reflecting the fact that some trajectories had less than 
average probability at the time when the state limit w
reached.  This was expected to allow the multitrajecto
mechanism to perform better.  However, it is also the c
that the multitrajectory outcome MOE plot shows mo
variability in the cells that are toward the middle of th
MOE center of mass.  It is this variability that seems 
account for why the multitrajectory runs grade worse th
stochastic.  The greater fine scale variability toward t
center of the figure is a side effect of the multitrajecto
technique together with the smoothness of the distribut
and the relatively high resolution of the MOE plot.  In th
multitrajectory case, trajectories toward the center of t
distribution tend to be fewer but of greater weight, a
toward the edges more numerous but of smaller weig
This gives more variability than in the stochastic cas
where each outcome has the same weight, but more
toward the center, and thus more uniformly distributed.. 
variance reduction, the greater importance of points aw
from the center would be expected to yield a benefit to 
multitrajectory technique which is absent when using t
analysis based on average histogram difference.

A possible perspective is that the analysis meth
attempts to use too high a resolution for the given numb
of runs.  An analysis was made with 25 by 25 histogra
instead of 100 by 100.  Figure 17 shows the 5M stocha
reference, and Figures 18 and 19 the 10K cases.  Tab
gives histogram comparison results.  The Multitrajecto
technique does not do much better, except at 100K, a 
well beyond what was considered earlier, and only for t
smoothed data.  This is not thought to be very significant

As part of an investigation into the unexpected poo
multitrajectory performance, we chose policies to reso
some events in multitrajectory fashion, and othe
deterministically.  The most interesting of these cas
shows how the simulation and scenario perform-
1142
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Blue Losses

Figure 17:  2 Division Scenario, 5M Stochastic
Plot, 25 x 25 Resolution
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Blue Losses

Figure 18:   2 Division Scenario, 5M Stochastic
Plot, 25 x 25 Resolution
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Figure 19: 2 Division Scenario, 5M
Multitrajectory Plot, 25 x 25 Resolution
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Table 2:  Distance Results from 5M Stochastic, for 
Division Scenario, 25 x 25 Plots, Smoothed

 Stochastic  Multitrajectory 4

1000 2.61E-05 1.80E-04
5000 1.88E-05 6.81E-05
10000 6.89E-06 1.93E-05
20000 5.44E-06 1.07E-05
100000 6.74E-06 2.90E-06

with deterministic Decisionmaking, but other event
stochastic or multitrajectory.  Figure 20 shows a 2 millio
trajectory stochastic run (the largest we have for this ca
used as a reference.  Figures 21 and 22 show the plots
10K runs.  Table 3 gives numerical results.
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Figure 20: 2 Division Scenario, with Deterministic C2, 2M
Stochastic

The response surface is no longer so simple; serio
medium scale nonmonotonicity has been introduced.  W
still see small scale nonmonotonicity that can be attribut
to random variations.  Given smoothing, the multitrajecto
algorithm does better, by almost a factor of two.  Witho
smoothing, it does not do as well.  The poorer performan
of the multitrajectory algorithm seen earlier may hav
something to do with the decisionmaking events, whic
more recent analysis show are the most important.  Ev
though the stochastic results seem to be smoother, the f
grained features are more recognizable in th
multitrajectory plot.  For example, the isolated island to th
bottom left can be seen more clearly in Figure 22 than
Figure 21.  Figure 22 allows two separate "tails" toward t
bottom right to be distinguished, and gives a remarkab
extreme at the top missing in Figures 21 and 20.
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Figure 21:  2 Division Scenario, with Deterministic C2
10K Stochastic
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Figure 22:  2 Division Scenario, with Deterministic C2
10K Multitrajectory

Table 3:  Distances from 2M Stochastic Plot: for 10K Ru
with Deterministic Decisionmaking

Stochastic Multitrajectory 4
unsmoothed 2.38E-05 3.90E-05
smoothed 3.02E-06 1.62E-06

This excursion is of particular interest because of 
irregularity.  Recognition of such multimodal behavior 
expected to be of particular interest to an analyst.  If t
multitrajectory technique does better in such cases, it m
be justified even if it does worse on histograms that a
roughly Gaussian in shape.
3
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5 RESULTS:  LARGER SCENARIOS

For the four division scenario, Table 4 gives the distan
figures, and Figures 23 to 25 show the definitive 5M
replication plot, and the 10K Stochastic and Multitrajecto
MOE Plots.  For this comparison, an 11 x 11 smooth w
used.  The Multitrajectory algorithm performs significantl
better.  For unsmoothed data, the Multitrajectory algorith
does slightly worse.  The characteristic fine graine
variability in the Multitrajectory runs that leads to this
difference can be seen in these and other plots.
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Figure 23:  4 Division Scenario 5M Stochastic Plot

Table 4:  Four Division Scenario Results (smoothed)
Replications Stochastic MT policy 4
1000 1.77E-05 1.78E-05
5000 1.90E-05 7.93E-06
8000 1.95E-05 5.94E-06
10000 1.95E-05 5.02E-06
50000 7.57E-06
100000 3.15E-06
500000 9.60E-07
1000000 6.72E-07

For the eight division scenario, Table 5 gives th
results, also for smoothed data.  MOE Plots for the 10
case are shown in Figures 26 and 27.  For the 4 divis
smoothed case, it would take something over 100
stochastic replications to give the same distance as 1
multitrajectory replications.  For the eight division
scenario, even the 1M stochastic run did not have
distance as low as that of the 10K Multitrajectory run.

Sixteen division and thirty two division scenarios wer
run. We do not have large numbers of replication
necessary to established the comparisons for the 
1144
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division scenario.  Table 6 gives MOE comparisons for
sixteen division case.  Multitrajectory runs were in grou
of 250.  Plots are shown in Figures 28 and 29.
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Figure 24:  4 Division Scenario 10K Stochastic Plot
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Figure 25:  4 Div. Scenario 10K Multitrajectory Plot

Table 5:  Eight Division Scenario Results:

Replications Stochastic MT policy 4
1000 2.58E-05 2.71E-05
5000 2.61E-05 1.23E-05
10000 2.60E-05 1.23E-05
50000 2.54E-05
100000 2.54E-05
500000 2.57E-05
1000000 2.56E-05
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Figure 26:  8 Division Scenario, 10K Stochastic Plot
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Figure 27:  8 Division Scenario, 10K Multitrajectory Plot

Table 6: 16 Division Scenario Results

Stochastic Multitrajectory
1000 4.75E-06 1.46E-05
5000 1.46E-06 5.72E-06
10000 1.39E-06 6.72E-06
50000 3.16E-07
100000 4.46E-07
500000 9.75E-08

6 OBSERVATIONS

The results obtained are unsatisfying, as the two divisio
scenario, which seemingly should do best, shows bet
performance for the stochastic case than fo
multitrajectory.  This extends even to simple statistic
such as average blue losses.  The figures are 198.00 
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Figure 28:  16 Div. Scenario, 10K Stochastic Plot
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Figure 29:  16 Div. Scenario, 10K Multitrajectory Plot

the 5M reference run, 198.61 for the 10K Multitrajector
run, and 197.75 for the 10K stochastic run, with oth
statistics also, on the average, being better for 
stochastic case.  The methodology and the simulation 
analysis software have been checked extensively.  Th
may yet be some sort of error that results in t
multitrajectory and stochastic outcome sets being differe
and thus explaining the unexpected two division resu
but extensive and ongoing consistency checks have fa
to uncover it.

If the results are taken at face value, then they seem
indicate that increasing scenario sizes make t
Multitrajectory approach more advantageous up to a po
and then less advantageous.  The smallest (2 division) 
largest (16 division) scenarios showed a disadvantage.  
the 4 division scenario, the Multitrajectory approach had
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significant advantage.  By interpolation, we would expe
that a 1200 replication stochastic run would match t
1000 replication Multitrajectory run set in terms o
achieving the same distance to the definitive outcome 
For the 8 division scenario, even 10,000 stochas
replications gives a greater distance than the 10
replication Multitrajectory run.  The rate of convergence
so slow that the number of stochastic replications nee
for equivalence is huge.

The simple trajectory management used to gener
these data results in the earliest events being given 
preferred (multitrajectory) treatment, with later even
resolved stochastically.  Early events are mostly movem
selection.  A recent event importance analysis  shows 
movement events are the least important. Decisionmak
events, which tend to come late, are the most importa
and are typically at least 10 times as important 
movement events.  These importance figures are 
average distance in the (scaled) state vectors betw
trajectories having opposite outcomes for a given event,
the simplest (4 unit) scenario.  If this relative importance
generally true, then the event management should 
different, giving priority for multitrajectory mode to
decisionmaking events.  This will be examined in furth
work currently under way.

One unexpected result is the overall smoothness of 
MOE plots.  There is little evidence of the
nonmonotonicity.  It may be that the nonmonotonicity 
generally due to a failure to use stochastic models 
processes which, in the real world, are random.  In the t
division case, significant nonmonotonicity emerges on
when one of the most important processe
decisionmaking, is resolved in deterministic fashion.  Th
particular issue deserves additional study.

7 CONCLUSIONS

For some cases, the Multitrajectory simulation techniq
seems to have clear advantages over traditional stocha
simulation, requiring as much as an order of magnitu
fewer runs to generate an equivalent quality histogra
However, in other cases the Multitrajectory technique do
less well.  In the two division case in which it was expect
to do best, it failed to achieve the performance of t
stochastic approach.  These results and statistical beha
seem inconsistent with what we should expect from t
technique.  The analysis methodology, based on closen
of approach to a reference histogram, may be biased
favor of the stochastic technique.  As a variation on t
theme of variance reduction, the Multitrajectory techniq
thus cannot at this time be shown to offer a cle
quantitative advantage.  The multitrajectory technique do
seem to be somewhat better at presenting struct
features of the MOE plots which are more likely to be lo
in stochastic plots.  This is more applicable to simulatio
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and scenarios which are nonmonotonic.  It is th
unfortunate that the scenarios used to drive this st
turned out, unexpectedly, to be so well behaved.  H
pervasive this kind of well behaved, almost Gaussi
performance is for a wider range of scenarios would se
worthy of a study independent of multitrajectory issues.
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