
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

AUTOMATED DISTRIBUTED SYSTEM TESTING: APPLICATION OF AN RTI VERIFICATION SYSTEM

John Tufarolo
Jeff Nielsen

Susan Symington
Richard Weatherly

Annette Wilson

The MITRE Corporation
1820 Dolley Madison Boulevard
McLean, VA 22102-3481, U.S.A.

James Ivers

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA 15213, U.S.A.

Timothy C. Hyon

TRW International Defense
Simulation Systems

12902 Federal Systems Park Drive
Fairfax, VA 22033, U.S.A.

l

t
e
s

h
n
ta

a

h
h

i

T
n
c
a

f
,

tic
re
uld
se

the
ly
st
ve

st
 well
ice
fail.
uld

d.
 of

ice
t is
ce

red
re
 to

 be

es
e
are
e
that
ABSTRACT

A new distributed test system is used to verify the Runtim
Infrastructure (RTI) component of the High Leve
Architecture (HLA). As part of this effort, a test suite ha
been designed and implemented to provide a coordina
and automated approach to testing this distributed syst
This paper describes the application of this te
environment and its utility in verifying an HLA RTI.

1 INTRODUCTION

The High Level Architecture (HLA) was established as t
standard technical architecture for all DoD simulatio
(U.S. Department of Defense 1996). A fundamen
component of this architecture is known as the HLA
Interface Specification (Defense Modeling and Simulation
Office 1998). This specification describes the function
interface between simulation federates (simulation or
simulation surrogate participating in a federation) and t
runtime environment. An implementation complying wit
the HLA Interface specification is known as an HLA
Runtime Infrastructure (RTI).

A verification system (The Verifier) has been designed
and developed in order to test implementation of an RTI. S
the companion paper, Tufarolo et. al, (1999), for a descript
of the design and implementation of The Verifier system.

This paper describes the application of the R
verification system and the experiences therein. Sectio
presents the process of transforming the interfa
specifications into test scripts. Results and conclusions
included as sections 3 and 4.

2 USING THE VERIFIER

Distillation of the HLA Interface specification into a set o
test requirements requires looking across HLA services
110
e

s
ed
m.
t

e
s
l

l

e

ee
on

I
 2
e
re

as

many of the services are interrelated. A systema
approach is needed to confirm that all services we
covered and that that the resulting test requirements co
be easily traced back to the Interface Specification (in ca
a test is challenged, or the specification changes).

2.1 Interface Specification to Test Requirements

The test requirements are organized first by chapter of
interface specification, and then by service or close
related group of services (e.g., grouping the te
requirements for the Send Interaction and Recei
Interaction services together).

For each service or service group (hereafter ju
service), test cases are created that should succeed as
as those that should fail. Each pre-condition of the serv
is considered in producing a separate case that should
Each post-condition is checked for every case that sho
succeed.

The next consideration is how to account for other
services that could interact with the service being teste
Sometimes examining these interactions takes the form
considering how the results of a service invocation differ
based on the state of the system prior to making the serv
invocation. In these cases, it is the System State tha
typically specified in the test requirement, not the sequen
of services that established that state.

In other cases, these interactions are better conside
by examining how the invocation of a service affects futu
service invocations (e.g., Does it cause something else
happen? Does it set up some transaction that must
completed in subsequent service invocations?).

A third category of services to consider represent cas
in which an RTI should invoke a service when som
condition becomes true. For such services, cases
included that verify the RTI invokes the proper servic
when the condition becomes true, as well as cases
3

Tufarolo, Nielsen, Symington, Weatherly, Wilson, Ivers, and Hyon

y
t
s

o

o
r
e
h

a
t
a
f

o

a
u
s

F
o
c
o
d

h

c
re
t
a
a

t
a
b
e
e

s
e

ted

he

the
to
he
n
at

al
at
ss
t

re
 a
check that an RTI does not invoke the service when the
condition is not true. The latter is most frequentl
accomplished by setting up the system state such that
condition is “almost” true (e.g., three of four pre-condition
were satisfied). The SDL keyword other is very useful in
catching unexpected RTI service invocations outside
these special cases.

Much of the specification service interaction
information could be drawn from formal representations
the HLA, such as documented in (Allen, Garlan, and Ive
1998). Other interactions could be found in th
documentation of the services themselves, or t
statecharts found in the HLA Interface Specification.

In producing test requirements for a given service,
important question is: how much is enough? Comple
coverage is not attempted, a well-known impractical go
A more realistic goal is more to produce a level o
confidence that the hard cases and interrelationships am
services are considered and correctly addressed.

In addition to including the cases that should fail,
decision is needed to determine how many cases to incl
that should succeed. In most cases, this decision is ba
on the possible combinations of the service arguments.
each argument, a set of possible abstract states that c
be represented is identified. For example, an instan
attribute could be owned, un-owned, in the process
being divested, or in the process of being acquire
Determining the abstract states is based, as often
possible, on the results of prior formal analyses or t
statecharts in the specification.

In some cases, such as the Time Management servi
this is a much more difficult task. The arguments a
numbers and cannot be easily broken into abstract sta
(before, same, and after are a starting point, but there
several, related numbers to consider for each service
the combinations do get large). Complete coverage
clearly unachievable, even using the abstract sta
approach. Consequently, this area instead focuses on
most likely areas of complexity (as determined by form
analysis of the specification and understanding of possi
algorithms to implement these services). For the cas
deemed less complex, only some basic cases are identifi

2.2 Example Test Requirement Derivation

Take for example the RTI service Request Federation
Restore. One of the pre-conditions for this service is:

The correct number of federates of the correct
types that were joined to the federation execution
when the save was accomplished are currently
joined to the federation execution.

This one pre-condition generates several te
requirements, namely, verification that invocation of th
1104
he

f

f
s

e

n
e
l.

ng

de
ed
or
uld
e
f
.
as
e

es,

es
re
nd
is
te
he
l
le
s
d.

t

Request Federation Restore service generates an exception
in the cases that:

• the number of federates that are currently
joined to the federation execution is fewer
than the number of federates that were joined
when the save was accomplished, and

• the number of federates that are currently
joined to the federation execution is greater
than the number of federates that were joined
when the save was accomplished, and

• the total number of federates that are
currently joined to the federation execution is
equal to the total number of federates that
were joined when the save was accomplished,
but a different number of each type of
federate is joined.

For Federate services, test requirements associa
with preconditions typically involve verifying that if all
preconditions for the service have not yet been met, t
RTI will not invoke a callback for that service at the
Federate. Judgement must be used on the part of
individual who is generating the test requirements to try
discern what sets of circumstances that don’t satisfy t
preconditions for a given federate service might, in a
erroneously implemented RTI, generate a callback for th
service at the federate.

Consider, for example, the federate service Start
Registration For Object Class. One of the preconditions
for this service is:

At least one of the class attributes that the
federate is publishing at the specified object class
is actively subscribed to at the specified object
class or at a super-class of the specified object
class by at least one other federate in the
federation execution.

This one pre-condition is capable of generating sever
test requirements. Namely, verification that a federate th
is publishing one or more attributes of a given object cla
but is not yet registering instances of that class will no
receive a Start Registration For Object Class callback as a
result of another federate:

• passively subscribing to one or more of those
attributes at that class or at a superclass of
that class, or

• actively subscribing to one or more different
attributes of that class or of a superclass of
that class.

For each service, one or more test requirements a
also needed to verify that after the RTI has executed

Automated Distribution System Testing: Application of an RTI Verification System

e
s

n
ce

s
e

h
in
bo

t

ill
io

io
n
 t
he
,
s
t

ly a

ill
.

a
p,
nd
hat
nd
ipt
in
p3.
ss

up
g
st
ld

gn
on
of
given service, the post-conditions for that service are m
For RTI services, test requirements associated with po
conditions typically involve verifying that after the give
RTI service is invoked, the post-conditions for that servi
are met. Consider the RTI service Unpublish Object Class.
One of the post-conditions for this service is:

The federate shall no longer own any instance
attributes of object instances whose known class
is the specified object class.

This one post-condition generates several te
requirements, namely, verification that invocation of th
Unpublish Object Class service by a given federate for a
given class results in:

• Divestiture of all instance attributes whose
known class at that federate is the given class
and whose known class is equivalent to the
registered class.

• Divestiture of all instance attributes whose
known class at that federates is the given
class and whose known class is not
equivalent to the registered class.

Again, judgement must be used on the part of t
individual generating the test requirements to determ
that the distinctions between two cases such as those a
make them each worth testing.

For Federate services, test requirements associa
with post-conditions typically involve verifying that upon
all pre-conditions for the service being met, the RTI w
callback the Federate with that Federate service invocat
For example, consider the federate service Stop
Registration For Object Class. Its post-condition is merely,

The Federate has been notified of the requirement
to stop registration of object instances of the
specified object class.

The invocation of the Stop Registration For Object
Class service at a given federate constitutes the notificat
to that federate to stop registration. Test requireme
generated from this post-condition, therefore, amount
requirements that verify that once all preconditions of t
Stop Registration For Object Class service have been met
the service will in fact be invoked. Specifically, these te
requirements include verification that a publishing federa
will receive the Stop Registration For Object Class service
callback in the following cases:

• When all subscriptions to published class
attributes at a given class and at all
superclasses of that class are removed, and
1105
t.
t-

t

e
e
ve

ed

n.

n
ts
o

t
e

there are no passive or active subscriptions to
attributes that are not published.

• When all active subscriptions to published
class attributes at a given class and at all
super classes of that class are removed, but
passive subscriptions to one or more
published attributes exist.

• When all active subscriptions to published
class attributes at a given class and at all
super classes of that class are removed, but
active subscriptions to one or more attributes
that are not published exist.

• When there are active subscriptions to the
published attributes of a given class and then
the publishing federate changes the set of
class attributes that it is publishing such that
none of the class attributes that are published
are subscribed at the given class or at any
superclass of it.

• When there are active subscriptions to the
published attributes of a given class and then
the publishing federate changes the set of
class attributes that it is publishing such that
none of the class attributes that are published
are actively subscribed at the given class or at
any superclass of it, but some are passively
subscribed at the given class or a superclass
of it.

2.3 Test Requirement to Test Script

Once a test requirement has been generated, general
single test is written to verify that the RTI under
examination meets the test requirement. The test w
typically consist of several scripts run in sequence
Consider the last test requirement listed above for the Stop
Registration For Object Class service. A test to verify that
an RTI meets this requirement would typically consist of
sequence of three scripts for accomplishing setu
requirement-specific testing, and cleanup. Setup a
cleanup are accomplished via generic, re-usable scripts t
set up and clean up the testing environment before a
after the requirement-specific script is run. The setup scr
would, for example, create a federation execution and jo
three federates at attachment points ap1, ap2, and a
Variables would be declared and appropriate object cla
and attribute handles would be retrieved. The clean
script would be designed to clean up the testin
environment regardless of the whether the RTI under te
met or failed to meet the requirement being tested. It wou
accept appropriate pending callbacks from the RTI, resi
all federates from the execution, and destroy the federati
execution. The requirement specific test would consist
the SDL code presented in Figure 1.

Tufarolo, Nielsen, Symington, Weatherly, Wilson, Ivers, and Hyon

h
p
a
s
fo

tl
a

i

a
h
fi
io
ti

p

T
te

he

to
e

2
he

pt
-
TI
s,
ip
ing

.
to
e

t
ust
ted
 in
f

)

The requirement-specific script generates t
following scenario: the federate at attachment point 1 (a
publishes class attributes x, z, w, and s of object cl
ACD. The federate at ap2 subscribes only to attribute
and z at class ACD. Because all of the preconditions
the Start Registration For Object Class service are now
met, the federate at ap1 should receive the Start
Registration For Object Class callback. If the callback is
not received at ap1, the RTI is not functioning correc
and the test fails, and the script exits. If the federate at
does receive the Start Registration for Object Class
callback, then the object class for which it receives th
callback should be class ACD. If it is not, then the test fa
and the script exits. Next, the federate at ap3 subscrib
passively, to class attributes w and s at class ACD. Th
the federate at ap1 changes the set of class attributes th
publishes at object class ACD such that none of the cl
attributes that it is publishing is actively subscribed at t
specified object class or at a super-class of the speci
object class by any other federate in the federat
execution. This happens to be the last unmet precondi
for the Stop Registration For Object Class service.
Therefore, because of the federate at ap1 changing the
of class attributes that it is publishing, the federate at a
should receive the Stop Registration For Object Class
callback for object class ACD. If it does not, then the R
has failed the test for this requirement and the test is exi
If it does, the test completes successfully.

invoke ap1 publishObjectClass(class_ACD, attrs_xzws)
invoke ap2 subscribeObjectClass(class_ACD, attrs_xz)
accept any
startRegistration ap1 (whichClass) {
 if (whichClass != acd) then
 exitFailure (“incorrect class”);
 }
unsatisfied {
 exitFailure (“Did not receive expected callback”);
}
invoke ap3 subscribePasObjClass(class ACD, attrs_ws
invoke ap1 publishObjectClass(class_ACD, attrs_ws)
accept any
 stopRegistration ap1 (whichClass) {
 if (whichClass !=acd) then
 exitFailure (“incorrect class”);
 }
 unsatisfied {exitFailure(“Did not receive expected
callback”);}

exitSuccess (“Script completed successfully”);

Figure 1: Sample SDL Code
110
e
1)
ss
 x
r

y
p1

is
ls
es,
en
at it
ss
e
ed
n
on

set
1

I
d.

2.4 Executing Tests

To test whether an RTI meets a given test requirement, t
following steps must be taken:

• The RTI to be tested must be initiated.
• The RTI Verifier system must be initiated.
• One or more test federates need to be

initiated. (A maximum of five. The required
number may be discerned from the particular
scripts that are to be run.)

• Once the Verifier system has been initiated,
the human tester must use the test controller
GUI to associate the test federates that have
been initiated with particular Verifier
attachment points.

• The human tester must use the test controller
GUI to select and initiate the particular script,
test, series, or scenario to be executed.

• The human tester may monitor the ongoing
execution of the script, test, series, or
scenario and/or the results of this execution
may be stored in the database.

Successful execution of a test script yields a test trace
the Test Controller GUI, as well as recorded results th
database. A sample test trace (based on the Stop
Registration For Object Class service example presented
in section 2.2) is provided in Figures 2 and 3. Figure
shows the trace from the setup script, and Figure 3 t
trace from the main part of this test.

3 PRELIMINARY RESULTS

The Verifier system has been implemented and scri
development for the RTI specification version 1.3 is in
progress. The system has successfully tested R
Federation Management, Federation Support Service
Time Management, Object Management, and Ownersh
Management services. Other RTI service tests are pend
completion of script development efforts. The Verifier
helped to identify an number of legitimate (non-trivial)
problems with an RTI currently under development
Moreover, the trace data from the failed tests helped
easily reproduce the error and to communicate th
information to the RTI developer.

4 CONCLUSIONS

In conjunction with design and implementation of the
Verifier, it was necessary to develop a set of tes
requirements that an RTI must meet and that therefore m
be tested by the Verifier. These requirements were genera
by systematically proceeding through each service defined
the Interface Specification and distilling a set o
6

Automated Distribution System Testing: Application of an RTI Verification System

f
p
t

e
h

at

e
TI.
on
n,
 to
for

s

ed
t
e
d

se
)

y
 the

g
n
l
re

h

.,
d
I

te
y,

el

by

,
e
.

l

Begin Script Execution: Stop_Reg_Script_5
To AP 1: publishObjectClass
 theObjectClass: 11
 theAttributes: { 1,2,3,4 }
To AP 2: subscribeObjectClassAttributes
 Object Class: 11
 Attributes : { 1,2 }
From AP 1: startRegistrationForObjectClass.
 theClass: 11
Returning startRegistrationForObjectClass To AP: 1
To AP 3: subscribeObjectClassAttributesPassively
 Object Class: 11
 Attributes : { 3,4 }
To AP 1: publishObjectClass
 theObjectClass: 11
 theAttributes: { 3,4 }
From AP 1: stopRegistrationForObjectClass.
 theClass: 11
Returning stopRegistrationForObjectClass To AP: 1

End Script Execution: Stop_Reg_Script_5

Figure 3: Test Script Output

requirements that is sufficient to produce a level o
confidence that the hard cases and interrelationshi
among services had been considered and correc
addressed by the RTI under test. Because the goal
achieving complete coverage of all requirements wa
not practical, formal analysis of the interface
specification and an understanding of possibl
algorithms to implement each service had to be broug

Begin Test Execution: Stop_Reg_Test_5
Begin Script Execution: setup

To AP 1: createFederationExecution
Federation successfully created
To AP 1: joinFederationExecution
FedType: type1; FedEx : Verification
Done. Returned handle 1.Federate 1 joined
To AP 2: joinFederationExecution
FedType: type2; FedEx : Verification
Done. Returned handle 2.Federate 2 joined
To AP 3: joinFederationExecution
FedType: type2; FedEx : Verification
Done. Returned handle 3.Federate 3 joined
To AP 1: getObjectClassHandle; Name : A.C.D
Done.Handle : 11
To AP 1: getAttributeHandle; Name : X; Class : 11
Done. Handle : 1
To AP 1: getAttributeHandle; Name : Z; Class : 11
Done. Handle : 2
To AP 1: getAttributeHandle; Name : W; Class : 11
Done. Handle : 3
To AP 1: getAttributeHandle; Name : S; Class : 11
Done. Handle : 4
Script completed successfully

End Script Execution: setup

Figure 2: Setup Script Output
1107
s
ly
of
s

t

to bear in determining the specific requirements th
would be tested.

Application of this system to date has proved to b
very useful to meet the unique needs of testing an R
Future efforts include completing requirements generati
and script development for the entire RTI 1.3 specificatio
and evolving the test requirements and existing scripts
address the IEEE Standard "P1516.1 Draft Standard
Modeling and Simulation (M&S) High Level Architecture
(HLA) – Federate Interface Specification" when it i
approved as a formal standard.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the efforts of Re
Little of the Software Engineering Institute (SEI) a
Carnegie Mellon University and Dave Seidel of th
MITRE Corporation for their assistance in creating an
reviewing this paper. The U.S. Department of Defen
(DoD) Defense Modeling and Simulation Office (DMSO
supports the work on the Verifier Project.

The Software Engineering Institute is a federall
funded research and development center sponsored by
U.S. Department of Defense.

REFERENCES

Allen, R.J., D. Garlan and J. Ivers. 1998. Formal modelin
and analysis of the HLA component integratio
standard. Proceedings of the Sixth Internationa
Symposium on the Foundations of Softwa
Engineering (FSE-6).

Defense Modeling and Simulation Office. 1998. Hig
Level Architecture Interface Specification, v1.3.

Tufarolo, J., Nielsen J., Symington, S., Weatherly, R
Wilson, A., Ivers, J., and Hyon, T. 1999. Automate
Distributed System Testing: Designing an RT
Verification System. In 1999 Winter Simulation
Conference Proceedings, ed. P.A. Farrington, H.B.
Nembhard, D.T. Sturrock, and G.W. Evans. Institu
of Electrical and Electronics Engineers, Piscatawa
New Jersey.

U.S. Department of Defense. 1996. DoD High Lev
Architecture (HLA) for Simulations. U.S.
Departement of Defense. Memorandum signed
USD(A&T).

AUTHOR BIOGRAPHIES

JOHN A. TUFAROLO is a Lead Simulation Systems
Engineer for the MITRE Corporation in Reston, Virginia
where he is currently involved in High Level Architectur
(HLA) testing and HLA federation development activities
Mr. Tufarolo is the Information Director for the
Association of Computing Machinery (ACM) Specia

Tufarolo, Nielsen, Symington, Weatherly, Wilson, Ivers, and Hyon

o
l

o

a

n
n
in
o
e
r

g

n
a
i
f

e
he
d
 to
ter
ity
ie

at
s
to
e
e

n
al
ter

g
he
d
nd
hy
e

d

el

se
l
e
n
in
e

d
,
,
nd
e
e
d
g
m

Interest Group on Simulation (SIGSIM), and a member
the ACM, IEEE CS, and SIGSIM. His professiona
interests include discrete event simulation, simulati
systems development, and military modeling an
simulation. Mr. Tufarolo has a BS degree in Electric
Engineering from Drexel University and an MS in System
Engineering from George Mason University.

TIMOTHY C. HYON is a Software Developer for the
TRW Systems & Information Technology Group i
Fairfax, Virginia, where he is currently developing a
advanced simulation system known as the Plann
Support Function (PSF). PSF will provide a software to
to help Japan's new system of centralized governm
better prepare itself to handle natural disaste
humanitarian assistance, and national defense. Prior
joining TRW, he was a Senior Simulation and Modelin
engineer for the MITRE Corporation in Reston, Virginia
where he was a lead engineer for the HLA Runtim
Infrastructure (RTI) and RTI Verifier system developme
projects. Mr. Hyon received a BS degree in Electric
Engineering from the University of Delaware and an MS
Electrical Engineering from Georgia Institute o
Technology.

JAMES IVERS is a member of the technical staff at th
Software Engineering Institute where he works in t
Architecture Trade-off Analysis initiative. He is intereste
in formal methods and analysis, particularly as applied
software architectures. He received a BA in Compu
Science and Mathematics from Transylvania Univers
and an MSE in Software Engineering from Carneg
Mellon University.

JEFF NIELSEN is a Senior Software Systems Engineer
the MITRE Corporation. His current HLA-related activitie
include providing technical and management support
DMSO-sponsored federation efforts, participating in th
HLA IEEE specification development, and developing th
RTI Verifier test suite. Mr. Nielsen holds an MS i
Computer Science and a M.A.Ed. in Instruction
Technology, and is currently pursuing a Ph.D. in Compu
Science. He is a member of IEEE.

SUSAN SYMINGTON is a Lead Scientist at the MITRE
Corporation where she is involved in HLA testin
activities using the Verifier. She is also the chair of t
IEEE High Level Architecture Working Group that drafte
the three HLA draft standards: P1516, P1516.1, a
P1516.2. She holds a BA in Mathematics and Philosop
from Yale University and an MS in Computer Scienc
from the University of Maryland at College Park.

RICHARD WEATHERLY is the Chief Engineer of the
MITRE Corporation’s Information Systems an
110
f

n
d
l
s

g
l
nt
s,
to

,
e
t
l

n

Technology division where he leads their DoD High Lev
Architecture (HLA) Runtime Infrastructure (RTI) software
development team. He is a core member of the Defen
Modeling and Simulation Office (DMSO) Technica
Support Team and contributor to their HLA Interfac
Specification, Time Management, and Data Distributio
Management working groups. He received his Ph.D.
Electrical Engineering from Clemson University. Pleas
see http://ms.ie.org/weatherly for recent work.

ANNETTE L. WILSON is a Lead Modeling and
Simulation Engineer in the Information Systems an
Technology Division at the MITRE Corporation, McLean
VA. She is currently project engineer for the RTI Verifier
is a member of the RTI 1.3 development team, a
supports the CADRE program by providing RTI expertis
for participating federations. Ms. Wilson was one of th
developers of the ALSP Infrastructure software (AIS) an
chaired the AIS subgroup of the ALSP Interface Workin
Group. Ms. Wilson has a BS in Computer Science fro
Texas A&M University and is pursuing an MS in
Computer Science at George Mason University.
8

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

