
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

WHO SERVES WHOM?
DYNAMIC RESOURCE MATCHING IN AN ACTIVITY-SCANNING SIMULATION SYSTEM

Photios G. Ioannou

Civil & Environmental Engineering Department
University of Michigan

Ann Arbor, MI 48109-2125, U.S.A.

Julio C. Martinez

Charles E. Via, Jr. Department of Civil Engineering
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061-0105, U.S.A.

d

p

it
in
h

r

i
r

ll
s
ti
e

ic
n

m
e
s
d

ta
r

a
i

n
or

g
ge
A
n

ce
n

nt
y
ic

is
d

.

o
e

c

ic
m
o

f
e
.
of
g

).

s

ABSTRACT

This paper presents an activity-scanning simulation mo
for the familiar barbershop problem where customers ha
favorites, barbers may not show up for work, an
customers may get impatient and leave. This exam
illustrates the mechanisms for matching customers
barbers or barbers to customers and argues that e
approach may be implemented in an activity scann
system without altering the basic model structure. T
solution to this problem is described in detail using
simulation model written in STROBOSCOPE.

1 INTRODUCTION

Perhaps the most important characteristic of any gene
purpose discrete-event simulation modeling system is
simulation strategy. The main simulation system strateg
in use today for modeling construction operations a
process interaction and activity scanning.

Process interaction simulation models are typica
written from the point of view of the moving entitie
(transactions) that flow through the system. These enti
typically arrive, undergo some processing where th
capture and release scarce resources, and then exit. T
an important characteristic of these models is the expl
classification of resources into those served (movi
entities) and those that serve (scarce resources).

In contrast, activity scanning models are written fro
the point of view of the various activities that ar
performed and focus on identifying the nature of the
activities and the required resources and conditions un
which they may take place. In activity scanning, a
resources are viewed as prerequisites for activities to s
and as a result, no distinction is made between resou
that serve and resources being served.

This difference in resource modeling is of particul
importance in applications of simulation modeling to civ
engineering construction, and in particular to earthmovin
96
el
ve
d
le
to
her
g
e
a

al-
its
es
e

y

es
y

hus,
it
g

e
er

ll
rt,

ces

r
l
g,

where the focus is often on the interaction betwee
dissimilar equipment, such as loaders and haulers,
pushers and scrapers. A typical objective of an
earthmoving application, for example, may be to
investigate resource-matching strategies for assignin
equipment of various sizes and capacities, such as lar
and small pushers and scrapers, to various activities.
detailed discussion of this type of problem appears i
(Martinez & Ioannou 1999). An important conclusion of
this discussion is that the equitable approach to resour
modeling taken by activity scanning makes this simulatio
strategy particularly suitable for modeling construction
operations that are characterized by interdepende
components, complex activity startup conditions, and man
resources that must work together under highly dynam
rules.

This paper presents an example that supports th
conclusion and demonstrates the modeling power an
flexibility afforded by activity scanning for modeling
complex resource-matching problems relatively easily
This example also shows that in activity scanning it is
possible to switch the role of resources (from servers t
customers) and still arrive at a correct representation of th
underlying operation without having to change the basi
structure of the model.

The example selected for this purpose is the class
barbershop problem. Its description has been adapted fro
that in (Chisman 1996) where the problem is estimated t
be of moderate difficulty, requiring 10 to 19 hours of work.
This non-construction problem was chosen for a variety o
reasons. It is familiar, complex, and yet small enough to b
described completely in a limited amount of space
Furthermore, we hope to show that the required number
hours when modeling the problem in an activity-scannin
system is substantially less than estimated.

A simulation model for this problem is presented using
the notation of STROBOSCOPE (an acronym for STate and
ResOurce Based Simulation of COnstruction ProcEsses
STROBOSCOPE is a simulation language and system
designed specifically for modeling construction operation
3

Ioannou and Martinez

c

in
ez

it
e
e

he
r
at
 i
at
ar
a
a

o
to
re

f

he

g

d

ve

e

e,
ier.
based on three-phase activity scanning and activity cy
diagrams. The STROBOSCOPE language is described in
(Martinez 1996). Example applications can be found
(Ioannou & Martinez 1996a, 1996b, 1996c) and (Martin
& Ioannou 1994, 1995, 1999).

2 PROBLEM STATEMENT

A barbershop with three barbers has to contend w
customers choosing favorites, customers getting impati
and leaving, and absentee barbers. The mean time betw
customer arrivals is 12 minutes and it takes 19 minutes
cut a head of hair, both exponentially distributed. Of t
customers, 30% prefer Barber B and 10% prefer Barbe
(no one prefers A, the owner). There is a 5% chance th
barber will be absent any given day. If a favorite barber
absent, the customer will not wait. A customer will look
the overall queue to determine his impatience—if there
more than six, he will leave. A customer wanting
favorite will not wait if the number of customers stating
preference for his favorite is more than three.

3 SIMULATION MODEL

The activity-based network for the barbershop simulati
model is shown in Figure 3. We will use this network
outline the overall structure of the simulation model befo
we describe any of its statements in detail.

The upper half of the simulation network represents
24-hour clock that controls the day-to-day availability o
Barbers. Together, the three nodes Start, Work, and
OffShift act like a simple clock mechanism to regulate t
daily cycle. At the start of simulation, queue Start is
initialized with one unit of generic resource Token. This
Token allows combi (i.e., conditional) activity Work to start
at simulation time zero. When Work finishes eight-hours
later, it releases the Token to the normal (i.e., bound)
activity OffShift. Sixteen hours later, activity OffShift ends
and releases the Token to queue Start to repeat the cycle.
Thus, Work and Offshift follow each other in a continuous
cycle of 8 hours of work-time and 16 hours of off-time.

At the start of simulation the three Barbers are located
in queue AbsentQ. The queue NewDay contains one
resource of generic type Token to enable combi activity
StartOfDay to start. StartOfDay is a dummy (zero-
duration) activity that removes all Barbers from AbsentQ
(except any absentees) and releases them to BarberQ
where they are available for work. At the end of workin
time, activity Work releases n Tokens (where n equals the
number of Barbers working that day) to queue EndDay to
allow dummy activity EndOfDay to start n times. Each
such instance transfers one Barber from BarberQ to
AbsentQ for the overnight break. When OffShift finishes, it
releases one Token to queue NewDay to allow StartOfDay
to start again and bring the Barbers to work.
964
le

h
nt
en

to

C
 a
s

e

n

a

The bottom-left part of the network models the
arrival of Customers. The bottom-right part models what
happens to these Customers when they arrive—they
either get a haircut, or they change their minds an
leave.

Queue Seq is initialized with one Token to allow
activity CustArrive to start. The duration of CustArrive
represents the interarrival time between successi
Customers. When CustArrive finishes, it returns the
Token to Seq and the cycle is repeated. Every time
activity CustArrive finishes, it generates a new
Customer resource that is released either to queu
CustWait or to queue CustExit depending on the queue
of Customers waiting for a haircut, the availability of a
preferred Barber, and the time of day. Each Customer
routed to CustExit is immediately drawn by an instance
of dummy activity Leave and is destroyed. A Customer
that enters CustWait joins the queue of Customers
waiting for service. When a compatible pair of Barber
and Customer are available, activity Cut starts and the
Barber gives the Customer a haircut. A Customer that
has a favorite Barber, waits in queue until that particular
Barber is free. If a Customer that prefers another
Barber, or has no preference, arrives in the meantim
he may bypass those in queue and get served earl
The mechanism for matching Customers to Barbers (or
Barbers to Customers) is described in detail below.

C ustW aitC ustArrive

Seq

C ut

BarberQ

C 1
T

1

T
2

C 2

AbsentQ

StartO fD ay

B1

B
2

EndO fD ay

B3

B
4

N ewD ay
TK5

T
K

4

B
5

B
6

C
3

CustExit
C4

Leave

W orkO ffShift

S tart
TK1

TK2

TK3

EndDay
TK6

T
K

7

Figure 1: Barbershop Simulation Model Network

Who Serves Whom? Dynamic Resource Matching in an Activity-Scanning Simulation System

t

i

e

i
a

r
r

del

e

e

ny
ty

e.
e is

ed

 of
3.1 Combi Instantiation and Resource Drawing

Before we present the STROBOSCOPE statements for the
barbershop simulation model shown in Figure 1, it i
necessary to explain the mechanism that determines wh
combi activities can start and how they acquire resourc
from preceding queues.

For a combi activity to start at any point during
simulation (i.e., to create an instance of itself), it must pa
two tests. The first test is the logical expression for it
semaphore which must return a true (i.e., non-zero) value.
The second test is that the enough expressions for all
incoming links must also return true values. The default
expressions and the statements for changing the semaphore
for a combi and the enough expression for a drawing link
are shown in Figure 2 (a drawing link is link from a queue
to combi).

The default logical expression for the semaphore is
(true). The default enough expression for a drawing link
returns the value true if the contents of the preceding queue
are not zero. Thus, by default, a combi activity star
whenever all queues preceding it are not empty.

The process for determining whether a combi can start
and create a new instance is completely separate from
process of actually drawing resources from the preceding
queues to the new activity instance. Here we shall descr
the drawing process for a combi preceded by
characterized queue (the process for queues holdi
generic resources is slightly different).

When an activity passes the semaphore and enough
tests, it creates a new activity instance and by default tri
to draw one resource from each preceding characteriz
queue. In general, the drawing process continues until t
DRAWUNTIL logical expression for the corresponding
link becomes true. In the default case, this occurs when th
link is able to draw once. Every time the combi makes a
attempt to draw a characterized resource from th
preceding queue, it uses the drawing link to cursor (poi
to) a resource in the queue (starting at the front) an
evaluates the logical expression for the DRAWWHERE
attribute of the drawing link. If the result is true, then the
resource is drawn. Otherwise, it is passed over and the l
cursors the next resource in line. Thus, the logic
expression for DRAWWHERE acts like a filter. The
default logical expression for this filter is the value 1 (true)
and the currently cursored resource is drawn. The drawi
process continues until the DRAWUNTIL logical
expression becomes true or the entire queue of
characterized resources has been examined one-by-one.

The ability to define complex logical expressions fo
combi instantiation and resource drawing provides ve
precise control as to when activities can start and th
resources they acquire.
965
s
en
es

ss
s

1

s

the

be
a
ng

es
ed
he

n
e

nt
d

nk
l

ng

y
e

3.2 STROBOSCOPE Simulation Code

This section describes the statements for a complete mo
implemented in STROBOSCOPE to illustrate how resource-
matching and the dynamics of this problem may b
modeled in an activity-scanning simulation system.

First we define the number of available Barbers as a
problem parameter to allow for sensitivity analysis:

VARIABLE nBarbers 3;

Next we define the resources that flow through th
simulation model network.

GENTYPE Token;
COMPTYPE Barber;
CHARTYPE Customer Choice;
SUBTYPE Customer Cust0 0;
SUBTYPE Customer Cust2 2;
SUBTYPE Customer Cust3 3;

Token is a generic resource that does not have a
attributes and is used to initialize and maintain activi
cycles like the clock and the arrival of Customers.

Barber is a compound characterized resource typ
Each resource that belongs to a compound resource typ
an individual entity with its own serial number (ResNum).
As shown below, queue AbsentQ is initialized with three
resources of type Barber (corresponding to the three
barbers in the problem) that will automatically be assign
ResNum equal to 1, 2, and 3. The Barber whose ResNum is
1 represents the owner, whereas the ones with ResNum
equal to 2 and 3 are the ones preferred by 30% and 10%
the Customers respectively.

aQ ueue aC om bi
aL ink

SEMAPHORE aCombi LogicalExpression;
Default LogicalExpression: 1 (i.e., true)

ENOUGH aLink LogicalExpression;
Default LogicalExpression: aQue.CurCount

DRAWUNTIL aLink LogicalExpression;
Default LogicalExpression: aLink.nDraws>=1

DRAWWHERE aLink LogicalExpression;
Default LogicalExpression: 1 (i.e., true)

DRAWDUR aLink SampleExpression;
Default SampleExpression: 0

Figure 2: Combi Instantiation and Drawing Statements

Ioannou and Martinez

s

a

rt

e

is
ll

t

n
h

e.,

ces

nd
ich

d

e

e’s

ept

ctly

se
Customer is a characterized resource type for which
we define one property called Choice. We also define three
subtypes of Customer, Cust0, Cust2, and Cust3 each
having a value of Choice that reflects their Barber
preference. The value 0 indicates no preference wherea
and 3 point to the Barbers with the same ResNum.

The control statements for initializating the network
queues with resources at the start of simulation appear
the end of this section.

PRIORITY Work '100';
DURATION Work '8*60';
DURATION OffShift '16*60';

Every time the simulation system enters the combi
instantiation phase it sorts combi activities based on their
priority and creates a new instance of every activity th
can start. In this model, combi activity Work is assigned
the highest priority because the existence of a Work
instance is a prerequisite for other combi activities to sta
The duration of Work (8 hrs) and OffShift (16 hrs) are
expressed in minutes (the time units for this model).

DRAWUNTIL B3 '0';
DRAWWHERE B3 'Rnd[]<=0.95';

When combi StartOfDay starts, it tries to remove all
three Barbers from AbsentQ. Link B3 does this by pointing
to (cursoring) and attempting to draw each Barber one
after another. This process continues until th
DRAWUNTIL logical expression becomes true (i.e.,
different from 0). In this case, this never happens (0
always false) and link B3 cursors and attempts to draw a
three Barbers. For each cursored Barber, link B3 evaluates
the logical expression for the DRAWWHERE statemen
and if the result is true it draws the cursored Barber to the
starting new instance of StartOfDay. Otherwise, it cursors
the next Barber and the process is repeated. A Barber is
drawn only if the random number returned by functio
Rnd[] is less than 95%. Thus, on any given day eac
Barber has a 5% chance of staying in AbsentQ and not
showing up for work.

RELEASEAMT TK6 nBarbers-AbsentQ.CurCount;

The number of Tokens released into queue EndDay at
the end of activity Work equals the number of working
Barbers (i.e., nBarbers - absentees). Each of these Tokens
allows a separate instance of EndOfDay to start and
transfer a working Barber from BarberQ to AbsentQ as
soon as he is done with his last Customer for the day.

DURATION CustArrive 'Exponential[12]';
966
 2

at

t

.

The duration of CustArrive is exponential with a mean
time of 12 minutes between Customer arrivals.

BEFOREEND CustArrive GENERATE
 PRECOND Work.CurInst 1
Rnd[]<0.3?Cust2:LastRnd[]<0.4?Cust3:Cust0;

When activity CustArrive ends, but before it releases
any resources through its outgoing links, it generates (i.
creates) the arriving Customer resource. The terms
PRECOND logicalexpression mean that the action
GENERATE takes place only when logicalexpression is
true. The expression above returns the number of instan
of activity Work currently going on. Thus, a Customer is
generated only during working hours. No Customer
arrivals should be modeled during OffShift because the
barbershop is closed. The conditional expression at the e
of this statement uses random sampling to determine wh
subtype of Customer to create (Cust0, Cust2, or Cust3).

Once a Customer resource is generated, it is release
either through link C1 to CustWaits or through C3 to
CustExit. The order in which links are defined in the
simulation input file determines which is used to releas
resources first. In this model, link C1 is defined first. Thus,
only those resources not allowed through link C1 will be
released through C3. The release mechanism for link C1 is
controlled by the following statements.

FILTER NewCustChoice Barber
 ResNum==CustArrive.Customer.Choice;
FILTER SameChoiceCusts Customer
 Choice==CustArrive.Customer.Choice;
RELEASEWHERE C1

'Choice > nBarbers ? 0:
CustWait.CurCount>6? 0:
!Choice? 1:
!AbsentQ.NewCustChoice.Count &

 CustWait.SameChoiceCusts.Count<=3';

The first two statements define filters. A filter is
applied to a queue to create a subset of the queu
contents. Thus, AbsentQ.NewCustChoice is a subset of the
Barbers currently in queue AbsentQ. This subset includes
only those Barbers whose ResNum equals the Choice
property of the Customer in activity CustArrive. Since
Customers arrive (i.e., are generated) only during working
hours, this subset should be empty for most cases exc
when the Barber preferred by the new Customer is an
absentee (in which case, the subset should contain exa
one Barber resource).

Similarly, CustWait.SameChoiceCusts is the subset of
Customers in CustWait that prefer the same Barber as the
newly generated Customer in activity CustArrive.

The RELEASEWHERE statement makes use of the
filters and allows only those Customers that satisfy its

Who Serves Whom? Dynamic Resource Matching in an Activity-Scanning Simulation System

e

e

ti
 o
n

t

nd

e

f

egg

r

s
s
s

h

f

n

of

s

logical condition to flow through link C1. This condition
first rejects those Customers that prefer a Barber that does
not exist (due to sensitivity analysis on nBarbers). Then it
examines if there are more than 6 Customers in CustWait.
If so, the new Customer is not released. Otherwise, if the
new Customer does not have a favorite (!Choice is true)
then it is released. Otherwise, a Customer flows through
C1 only if the preferred Barber is not in AbsentQ and the
Customers in CustWait that have the same favorite as th
newcomer is at most three. A Customer that does not flow
through C1 is released through link C3.

The statements that follow at this point deal with th
matching of Barbers to Customers (or Customers to
Barbers) to determine whether combi activity Cut can start
and which resources it draws. Since a detailed descrip
of this portion of the model is one of the main objectives
this paper, the statements and their detailed explanatio
deferred until the next section.

INIT Seq 1;
INIT Start 1;
INIT NewDay 1;
INIT AbsentQ nBarbers;
SIMULATEUNTIL SimTime>=100*24*60;
REPORT;

The INIT statements define the contents of queues
the start of simulation. Queues Seq, Start, and NewDay are
initialized with one Token. Queue AbsentQ receives three
Barbers (that are automatically assigned ResNum values of
1, 2, and 3). The SIMULATEUNTIL statement runs the
actual simulation until its logical expression becomes tru
i.e., until the simulation clock time (SimTime) exceeds 100
24-hour days (expressed in minutes). The REPORT
statement produces the standard simulation output repor

3.3 Matching Customers to Barbers

The following statements match Customers in queue
CustWait to Barbers in queue BarberQ to allow activity
Cut to start and draw the correct resources.

FILTER MatchedCustomers Customer 1; /dummy
FILTER MatchedBarbers Barber
 CustWait.MatchedCustomers.Count;
VARIABLE CurrentlyCursoredBarber
 ' MatchedBarbers.HasCursor?
 MatchedBarbers.ResNum : B5.ResNum';
FILTEREXP MatchedCustomers
 !Choice|Choice==CurrentlyCursoredBarber;

PRIORITY Cut '10';
ENOUGH B5
 'BarberQ.MatchedBarbers.Count';
967
on
f
 is

at

e,

.

DRAWWHERE B5
 'CustWait.MatchedCustomers.Count';
DRAWWHERE C2
 '! Choice | Choice ==Cut.Barber.ResNum';
DURATION Cut 'Exponential[19]';

These statements initiate the resource matching a
drawing process by first examining the available Barbers
and then trying to find the matching Customers. Similar
statements that examine the Customers first and then try to
find the matching Barbers are presented below.

Combi activity Cut can start when the enough
expressions for links C2 and B5 are true. C2 has the default
enough expression that returns true when queue CustWait
is not empty. Resource matching is performed by th
enough expression for link B5.

The enough expression for B5 makes indirect use o
two filters, MatchedCustomers and MatchedBarbers, that
cross-reference each other and create a chicken-and-
problem. This problem is solved by first defining
MatchedCustomers with a dummy filter expression that is
redefined later. Once the name MatchedCustomers is
defined, it may be used to define the filter expression fo
MatchedBarbers. The actual filter expression for
MatchedCustomers (that references MatchedBarbers) is
defined later by the FILTEREXP statement. This way it i
possible for two filters to reference each other. It is thi
ability to define cross-referencing filters that make
extremely complex resource-matching possible.

The expression BarberQ.MatchedBarbers.Count
returns the number of Barbers in BarberQ that belong to
the subset BarberQ.MatchedBarbers. The filter
MatchedBarbers creates this subset by cursoring eac
Barber in BarberQ to determine whether it should be
included. This decision is made by the value o
CustWait.MatchedCustomers.Count which counts the
number of Customers in CustWait that can be served by the
Barber cursored by MatchedBarbers.

To see how this process works let us consider a
example. Assume that Barbers B-1 and B-3 are in queue
BarberQ and that the Customers in CustWait are as shown
in Figure 3.

As indicated by the arrow, filter MatchedBarbers
cursors the first Barber in BarberQ (i.e., B-1). Then it
evaluates its filter expression and counts the number
Customers in CustWait.MatchedCustomers. This requires
filter MatchedCustomers to cursor each Customer in
CustWait and evaluate its own filter expression. The result
are shown next to each Customer in Figure 3. Notice that
Choice refers to the property of the Customer cursored by
MatchedCustomers, whereas the expression
MatchedBarbers.ResNum refers to the ResNum of the
Barber cursored by MatchedBarbers (i.e., B-1). Thus, the
subset formed by CustWait.MatchedCustomers is tailored
to B-1 and represents those Customers that this Barber can

Ioannou and Martinez

t

h
d

y

is

s

 in

of
serve. In this case, Barber B-1 can only serve Customer C-
14 (the last Customer in queue CustWait). The expression
CustWait.MatchedCustomers.Count for Barber B-1 returns
#{C-14} = 1 (true), and thus B-1 is included in the subse
BarberQ.MatchedBarbers.

Filter MatchedBarbers then cursors B-3 and the entire
process is repeated again as shown in Figure 4. T
Customers that can be served by B-3 are C-12, C-13, an
C-14. Expression CustWait.MatchedCustomers.Count for
Barber B-3 returns #{C-12, C-13, C-14} = 3 (true). As a
result, B-3 is also included in the subset formed b
BarberQ.MatchedBarbers.

Thus, the subset BarberQ.MatchedBarbers includes
both Barbers. The enough logical expression for link B5
BarberQ.MatchedBarbers.Count = #{B-1, B-3}=2 (true).
This means that there are enough matched Barbers and
Customers to create a new instance of activity Cut.

The new instance of activity Cut must now draw the
appropriate resources through its incoming links. Th
process begins by first drawing a Barber through link B5.
This is not necessarily the first Barber in line, but rather
the first one that can be matched with a Customer in
CustWait. Once the appropriate Barber is drawn, Cut
draws the first matching Customer through link C2.

The DRAWWHERE logical expression for link B5 is
identical to the filter expression for MatchedBarbers. As
shown in Figure 5 when link B5 cursors Barber B-1 and
evaluates its DRAWWHERE logical expression it return
#{C-14} = 1 (true). Thus, Barber B-1 is drawn to the
newly created instance of activity Cut and the drawing
process through link B5 ends.

The main difference between Figures 3 and 5 is that
the former the Choice property of Customers is compared
to the ResNum of the Barber cursored by filter

BarberQ MatchedBarbers
(front of queue) Filter logical expression:

ResNum CustWait.MatchedCustomers.Count

→→→→ 1 #{C-14} = 1 = true
3 #{C-12, C-13, C-14} = 3 = true
(back of queue) → indicates Barber cursored by filter

CustWait MatchedCustomers
(front of queue) Filter logical expression

ResNum Choice
!Choice |

Choice==MatchedBarbers.ResNum
11 2 (!2) | (2 == 1) = false | false = false
12 3 (!2) | (3 == 1) = false | false = false
13 3 (!2) | (3 == 1) = false | false = false
14 0 (!0) | (0 == 1) = true | false = true

(back of queue) (the above example values assume
B-1 is cursored by MatchedBarbers)

Figure 3: Evaluation of BarberQ.MatchedBarbers.Count
968
e

MatchedBarbers (i.e., MatchedBarbers.ResNum). In the
latter it is compared to the ResNum of the Barber cursored
by link B5 (i.e., B5.ResNum). Variable
CurrentlyCursoredBarber is defined to return the correct
ResNum depending on whether filter MatchedBarbers is
active or not (see variable MatchedBarbers.HasCursor).

The next step after drawing a Barber through B5 is to
draw a matching Customer through link C2. This does not
require the use of filters because the new instance
activity Cut has already drawn a Barber and makes it easy
to refer to its ResNum (i.e., Cut.Barber.ResNum). The
process is illustrated in Figure 6.

BarberQ Link B5
(front of queue) DRAWWHERE logical expression:

ResNum CustWait.MatchedCustomers.Count

→→→→ 1 #{C-14} = 1 = true
3
(back of queue) → 1 = Barber cursored by link B5

CustWait MatchedCustomers
(front of queue) Filter logical expression

ResNum Choice !Choice | Choice==B5.ResNum
11 2 (!2) | (2 == 1) = false | false = false
12 3 (!2) | (3 == 1) = false | false = false
13 3 (!2) | (3 == 1) = false | false = false
14 0 (!0) | (0 == 1) = true | false = true

(back of queue) (the above example values assume
B-1 is cursored by link B5)

Figure 5: Evaluation of DRAWWHERE for Link B5

BarberQ MatchedBarbers
(front of queue) Filter logical expression:

ResNum CustWait.MatchedCustomers.Count
1 #{C-14} = 1 = true

→→→→ 3 #{C-12, C-13, C-14} = 3 = true
(back of queue) → indicates Barber cursored by filter

CustWait MatchedCustomers
(front of queue) Filter logical expression

ResNum Choice
!Choice |

Choice==MatchedBarbers.ResNum
11 2 (!2) | (2 == 3) = false | false = false
12 3 (!2) | (3 == 3) = false | true = true
13 3 (!2) | (3 == 3) = false | true = true
14 0 (!0) | (0 == 3) = true | false = true

(back of queue) (the above example values assume
B-3 is cursored by MatchedBarbers)

Figure 4: Evaluation of BarberQ.MatchedBarbers.Count

Who Serves Whom? Dynamic Resource Matching in an Activity-Scanning Simulation System

e

h

l
a

g

li

us

.
les
l

e

y
nd

 of
he

 is
Link C2 cursors the first Customer in queue CustWait
and evaluates its DRAWWHERE expression. Since th
result is false, it cursors the next Customer in line. This
process is repeated until a Customer can be drawn (i.e., C-
14). (If the DRAWWHERE expression is false for every
cursored resource then no drawing takes place.) After t
new instance of Cut receives Barber B-1 and Customer C-
14, it proceeds to determine its duration.

For the resource situation assumed for the examp
above, activity Cut is able to start a second time and cre
another new instance. It is not hard to see that the seco
Cut instance will draw Barber B-3 and Customer C-12.
When these resources are drawn, BarberQ becomes empty
and no more Cut instances can be created at this time.

3.4 Matching Barbers to Customers

The statements below illustrate how the modelin
perspective can be reversed to match Barbers in queue
BarberQ to Customers in queue CustWait.

FILTER MatchedBarbers Barber 1; /dummy
FILTER MatchedCustomers Customer
 BarberQ.MatchedBarbers.Count;
VARIABLE ChoiceOfCursoredCustomer
 'MatchedCustomers.HasCursor?
 MatchedCustomers.Choice : C2.Choice';
FILTEREXP MatchedBarbers
 '!ChoiceOfCursoredCustomer |
 ResNum==ChoiceOfCursoredCustomer';
ENOUGH C2 CustWait.MatchedCustomers.Count;
DRAWWHERE C2 BarberQ.MatchedBarbers.Count;
DRAWWHERE B5 '!Cut.Customer.Choice |
 ResNum==Cut.Customer.Choice';
PRIORITY Cut '10';
DURATION Cut 'Exponential[19]';

These statements are very similar to those used ear
for matching Customers to Barbers. Figure 7 shows the
same example as above to illustrate how they work.

CustWait Link C2
(front of queue) DRAWWHERE logical expression:

ResNum Choice
!Choice |

Choice==Cut.Barber.ResNum
11 2 (!2) | (2 == 1) = false | false = false
12 3 (!2) | (3 == 1) = false | false = false
13 3 (!2) | (3 == 1) = false | false = false
14 0 (!0) | (0 == 1) = true | false = true

(back of queue) (the above example values assume
Cut.Barber.ResNum = 1)

Figure 6: Evaluation of DRAWWHERE for Link C2
969
e

e
te
nd

er

The enough expression for link C2 returns the value
#{C-12, C-13, C-14} = 3 (true). In other words, there are
three Customers that can be matched with a Barber, so
there are enough to create a new instance of activity Cut.
As shown in Figure 8, the new instance will first draw
Customer C-12 and then Barber B-3 (to draw in this order,
link C2 should be defined before link B5).

At this point, the enough expression for link C2 is
reevaluated and returns #{C-14} = 1 (true). Thus, Cut
creates a second activity instance that draws Customer C-
14 first and then Barber B-1. No more instances of Cut can
be created because queue BarberQ is now empty. Notice
that the two instances of Cut are created (i.e., draw
resources) in reverse order from that in the previo
section, i.e., #1:{B-1, C-14}, #2:{B-3, C-12} vs. #1:{C-12,
B-3}, #2:{C-14, B-1}.

4 CONCLUSION

The two barbershop models have been animated using
PROOF Animation to verify that they are indeed correct
They also produce identical results, even though the ro
of Barbers and Customers are reversed. In the actua
models, it is impossible for more than one instance of Cut
to start at the same simulation time. (At most, only on
instance can start when a Customer arrives, or when a
Barber becomes free).

This example illustrates the power of an activit
scanning system to model complex resource matching a
activity startup-up conditions, and even reverse the role
resources without changing the basic structure of t

CustWait MatchedCustomers
(front of queue) Filter logical expression

ResNum Choice BarberQ.MatchedBarbers.Count

→→→→11 2 #{} = 0 = false
12 3 #{B-3} = 1 = true
13 3 #{B-3} = 1 = true
14 0 #{B-1, B-3} = 2 = true
(back of queue) →indicates Barber cursored by

filter

BarberQ MatchedBarbers
(front of queue) Filter logical expression:

ResNum !MatchedCustomers.Choice |
ResNum==MatchedCustomers.Choic

e
1 (!2) | (1 == 2) = false | false = false
3 (!3) | (3 == 2) = false | false = false

(back of queue) (these example values assume C-11
cursored by MatchedCustomers)

Figure 7: Value of CustWait.MatchedCustomers.Count

Ioannou and Martinez

)
b
to
n

o
g
,

r

,

o

f

w

le

ce
.

se

e

se

s
l

f

h
nd

;

,

s
h
f

nt

is
simulation model (Figure 1). As shown in (Martinez 1996
many resource-matching problems such as this can
classified into a few standard types. Thus, the time
develop and verify a model for this problem is less tha
half that estimated by (Chisman 1996).

STROBOSCOPE, its documentation, and several solved
examples are available at http://grader.engin.umich.edu
and http://strobos.ce.vt.edu.

ACKNOWLEDGMENTS

The authors wish to thank the National Science Foundati
(Grants CMS-9415105, CMS-9733267) for supportin
portions of the work presented here. Any opinions
findings, and conclusions or recommendations expressed
this paper are those of the authors and do not necessa
reflect the views of NSF.

REFERENCES

Chisman, J.A. 1996. Industrial Cases in Simulation
Modeling, Duxbury Press, Wadsworth Publishing Co.
International Thomson Publishing, p.29.

Ioannou, P.G. and J.C. Martinez. 1996a. Comparison
Construction Alternatives Using Matched Simulation
Experiments. Journal of Construction Engineering
and Management, ASCE, (122)3:231-241.

Ioannou, P.G. and J.C. Martinez. 1996b. Simulation o
Complex Construction Processes. In 1996 Winter
Simulation Conference Proceedings. Institute of
Electrical and Electronics Engineers, Piscataway, Ne
Jersey, 1321-1328.

Ioannou, P.G. and J.C. Martinez. 1996c. Scaleab
Simulation Models for Construction Operations. In
1996 Winter Simulation Conference Proceedings.

CustWait Link C2
(front of queue) Filter logical expression

ResNum Choice BarberQ.MatchedBarbers.Count
11 2 #{} = 0 = false
→12 3 #{B-3} = 1 = true
13 3 #{B-3} = 1 = true
14 0 #{B-1, B-3} = 2 = true
(back of queue) → shows Customer cursored by C2

BarberQ MatchedBarbers
(front of queue) Filter logical expression:

ResNum !C2.Choice | ResNum==C2.Choice
1 (!2) | (1 == 3) = false | false = false
3 (!3) | (3 == 3) = false | true = true

(back of queue) (these example values assume C-12
cursored by link C2)

Figure 8: Evaluation of DRAWWHERE for Link C2
970
e

n

in
ily

f

Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey, 1329-1336.

Martinez, J.C. 1996. STROBOSCOPE: State and Resour
Based Simulation of Construction Processes. Ph.D
Dissertation, Department of Civil and Environ.
Engineering, University of Michigan, Ann Arbor, MI.

Martinez, J.C. and P.G. Ioannou. 1994. General Purpo
Simulation with STROBOSCOPE In 1994 Winter
Simulation Conference Proceedings. Institute of
Electrical and Electronics Engineers, Piscataway, New
Jersey,, 1159-1166.

Martinez, J.C. and P.G. Ioannou. 1995. Advantages of th
Activity Scanning Approach in the Modeling of
Complex Construction Processes. In 1995 Winter
Simulation Conference Proceedings. Institute of
Electrical and Electronics Engineers, Piscataway, New
Jersey, 1024-1031.

Martinez, J.C. and P.G. Ioannou. 1999, General Purpo
Systems For Effective Construction Simulation, J. of
Construction Engineering and Management, ASCE,
(125)4, July-August.

AUTHOR BIOGRAPHIES

PHOTIOS G. IOANNOU is Associate Professor in the
Dept. of Civil and Environmental Engineering at the Univ.
of Michigan. He has received a Civil Engineer’s degree
from the National Technical University, Athens, Greece, in
1979; and a S.M.C.E. and Ph.D. in Civil Engineering from
MIT in 1981 and 1984. From 1989-1995 he has served a
Chairman of the Computing in Construction Technica
Committee of the ASCE. He co-developed the UM-
CYCLONE construction process simulation system with
R.I. Carr, supervised the design and development o
COOPS by L.Y. Liu, and chaired J.C. Martinez’s Ph.D.
dissertation on STROBOSCOPE. His primary researc
interests are in the areas of decision support systems a
construction process modeling.

JULIO C. MARTINEZ is an Assistant Professor in the
Via Department of Civil Engineering at Virginia Tech. He
received his Ph.D. in Civil Engineering at the University of
Michigan in 1996; an M.S.E. in Construction Engineering
and Management from the University of Michigan in 1993
an M.S. in Civil Engineering from the University of
Nebraska in 1987; and a Civil Engineer's degree from
Universidad Catolica Madre y Maestra (Santiago
Dominican Republic) in 1986. He designed and
implemented the STROBOSCOPE simulation language a
part of his Ph.D. dissertation research. His researc
interests include discrete event simulation, scheduling o
complex and risky projects, and construction manageme
information systems.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

