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ABSTRACT difficult to gather, and their sheer volume makes validation

arduous. Issues such as setups, batch tools, reentrant flow,
Planning capacity for wafer fabrication is complicated by and shared tools across tool groups make planning fab
time constraints between process steps. For example, ifcapacity difficult. Many of these issues have been
certain baking operations are not started within two hours addressed (with varying success) by available capacity
of a prior cleaning then the lot in question must be sent planning tools, which include spreadsheets, analytic
back to be cleaned again. For two-element systems anmodels, and simulation models.
approximation based on M/M/c queuing formulas is One issue that is not generally addressed by current
developed and compared with results from discrete eventcapacity models is the presence of time constraints
simulations. The approximation performs well in between process steps, also calietk bound sequences
predicting the probability of reprocessing and provides a In a time bound sequence (TBS), there exists a step that
bound that can easily be included in the spreadsheetmust be completed within some fixed time of an earlier
capacity models often employed by manufacturers. For step. There may or may not be intervening operations
multi-element systems, the results of a fluid model used to between the two steps. In semiconductor manufacturing, an
understand general system characteristics are summarizedexample is a baking operation that must be started within
Discrete event simulation was used to validate the resultstwo hours of a prior clean operation. If more than two
of the analytic models and provide guidelines for operating hours elapse, the lot must be sent back to be cleaned again.

time-constrained systems. The capacity of a system is the maximum feasible
arrival rate of work to the system, or, equivalently, the
1 INTRODUCTION maximum achievable throughput rate of the system. The

behavior of a time bound sequence with more than two

The efficient production of semiconductors is the driving operations is difficult to predict except at very low
force in electronic technology. As competition increases, equipment utilizations. In this case, lots flow through with
semiconductor manufacturers must pay close attention tofew delays, and are rarely sent back for reprocessing. At
production costs. New facility construction can cost higher arrival rates, or for highly variable systems, time
upwards of a billion dollars, with equipment alone bound sequences can rapidly become unstable. Once a few
accounting for up to 80% of the total cost (Padillo and lots are delayed enough to be sent back for reprocessing,
Meyersdorf 1998). With some types of equipment costing these lots increase the arrival rate to the earlier equipment.
several million dollars each, capacity planning decisions This in turn increases queuing delays, and makes it more
have an immediate impact on the bottom line. Operating likely that other lots will be sent back. A “vicious cycle”
capacity is critical to maintaining profitability. If demand ensues, making predicting system capacity difficult.
exceeds capacity then revenue is lost when facilities are not Determining the capacity of a time bound sequence,
run at maximum capacity. On the other hand, overloading a even one with only two operations, requires understanding
factory is costly because of long cycle times, missed the distribution of lot cycle times. Such knowledge can not
delivery dates, excessive inventory, and possibly lower easily be derived from spreadsheet models, which usually
yields (Srinivasarmt. al.1995). include only static data such as mean cycle times. Even

Operating a wafer fabrication facility (fab) is highly analytic models, such as queuing models, customarily rely
complex, with technologies and market conditions on the first and second moments of arrival and service
constantly changing. Planners are continually juggling times, not on the entire distribution. Therefore, to
cost, capacity and cycle time trade-offs, but data are oftenunderstand the behavior of a time-constrained system,
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capacity planners must turn to simulation. Most completing processing on Machine 1. Otherwise, they must

commercially available factory simulators, however, do not go back and repeat processing on Machine 1. The elapsed

include time constraints between process steps, so capacittime between completing processing on Machine 1 and

planners must often ignore this effect, and hope for the starting on Machine 2 is denoted @& The capacity of

best. The goal of this research is to provide capacity this system is the number of lots that can be processed

planners with an alternative to “hoping for the best.” during a given time window (e.g. lots per week). Suppose
For time bound sequences that involve only two that processing on Machine 1 requires six minutes per lot,

operations a simple approximation based on M/M/c while processing on Machine 2 requires five minutes per

gueuing formulas is developed and compared with results lot, and that all lots must go through the two machines in

from a discrete event simulation for various system sequence. Assume also that the machines are both available

parameters. The approximation is shown to perform well in for the same number of hours per week. In this case,

predicting the probability of reprocessing for highly Machine 1 is the bottleneck, and the maximum capacity of

variable systems. It provides a bound that can easily bethe system is 10 lots per hour.

included in spreadsheet capacity models. For time bound

sequences with intermediate operations, a fluid model was

used to understand system behavior. The results were et et 1 Tor onon e Job

validated using discrete event simulation, and are

summarized here in the form of operational

recommendations for time bound sequences. y ol Machine 1

Machine2 [y,

v

2 BACKGROUND
TE = Time elapsed between
completing Machine 1 and

The manufacture of integrated circuits consists of four | starting Machine 2
basic steps: wafer fabrication, wafer probe, assembly
(packaging), and final testing. The most expensive phase is rjgyre 1: Sample Diagram of a Time-Constrained System
wafer fabrication, in which circuits are layered through
successive operations onto a smooth, typically silicon,
wafer. This involves a sequence of as many as 300-600  The presence of the time constraint, combined with
highly complex processing steps. Many of the intermediate variation, may reduce actual capacity to less than 10 lots
steps are repeated for each layer of circuitry, different per hour. If the time constraint is 3 minutes and Machine 2
circuits require different sequences of steps, and eachhas highly variable processing times, then waiting lots may
operation can include multiple sub-operations on different easily have & E greater than 3 minutes. In this case, lots
machines. will have to be sent back to Machine 1, increasing the load
Some of the processing steps are performed on on that machine, and thereby decreasing the throughput of
individual wafers, others on lots (groups) of wafers, and the system.
still others on batches (collections) of lots. A lot generally The situation becomes even worse if there are
consists of 24 or 48 wafers, while a typical batch contains machinesp>2, and lots must begin processing on Machine
up to six lots. The collection of lots into batches results in a n within a pre-defined time after completing processing on
non-smooth product flow. The situation is further Machine 1. If the delay exceeds TE while in queue for any
complicated by the existence of re-entrant flow, a machine, say maching 1<k<n, then the lot will be sent
characteristic that makes wafer fabrication different from back to Machine 1, increasing the load on machines 1
traditional manufacturing. As different layers are added to throughk-1. This increased load will increase queuing at
the surface of a typical semiconductor device, lots at Machines 2 througk-1 (all of which are subject to the time
different stages of production return to the same processingconstraint), and make it more likely that still more lots will
equipment many times. Capacity planning of a fabrication be sent back for reprocessing. This will lead to a vicious
facility, therefore, may involve analyzing production cycle in which system performance degrades rapidly.
sequences and processing time recipes for several products, Unless a TBS has very low variability, there generally

>

each with non-smooth, re-entrant flow. will be some positive probability that lots will exceed the
time constraint, and be sent back for reprocessing. Once
2.1 Problem Definition this happens, system behavior is likely to degrade further.

To predict stability and determine the capacity of a general
Figure 1 shows a time-constrained system in which lots TBS requires knowledge of the entire distribution of lot
flow through two operations in series, with each operation cycle times. However, this research has found that the
performed on a single-machine group. Lots must begin behavior of two-operation TBS, which have no intervening
processing on Machine 2 within a pre-defined time after operations, can be approximated reasonably well.
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3 LITERATURE REVIEW variable) and are cleaned at a sinktfominutes {; is also
an 1.1.D. exponential random variable) before being baked

Although no references have been found describing thein an oven fort, minutes (andy, is an 1.I.D. exponential
specific problem of time bound sequences for semiconductor random variable). The cleaning and baking workstations
manufacturing, numerous studies depict capacity planning each consist of a number of identical machines. After a part
for wafer fabs. Neacwt. al. (1994) describe a survey of over is cleaned, the baking operation must start withminutes
200 participants from companies across the United States(wheret, is a constant), or else it must be returned to be
and Europe, highlighting difficulties with current capacity cleaned again. Note that exponential processing times are
planning methods, as well as factors that contribute to not a realistic approximation for wafer fabrication, where
capacity loss in wafer fabs. Uzsey: al. (1992) provide an processing times are fairly deterministic. This assumption
excellent review of the relevant issues in production will be relaxed later in the paper.
planning for semiconductor fabs. If there were no reprocessing due to the time constraint,

Several authors describe case studies in which the model described above would be an open Jackson
multiple methodologies are used for capacity planning: network, and the decomposition method (Whitt 1983a,
Brownet. al.(1997), Domaschket. al. (1998), Burmaret. 1983b) could be used with the bake workstation treated as a
al. (1986), Johal (1996), and Grewetl al. (1998). Many simple M/M/c queue. Reich (1957) proved that the output
studies describe the application of simulation to capacity process of an M/M/c queue is a Poisson process. For a FIFO
planning decisions in wafer fabs: Spence and Welter M/M/c queue, the distribution of customer waiting times is
(1987), Tulliset. al. (1990), and Potti and Mason (1997) well-known, and it is possible to calculate the probability of
are a few examples. Other researchers have appliedan individual customer waiting in the bake operation queue
analytic models to questions related to capacity planning for a time less than or equaltf¢Gross and Harris 1985).

for wafer fabs, including Srinivasan (1995), Chem al. With reprocessing, customers with bake operation
(1988), and Connorst. al. (1996). For a more detailed waiting times greater thaty are pulled out of the bake
review of these papers, see Robinson (1998). operation queue, and sent back to the clean operation. As
long as the clean queue is stable, customers who leave the
4 TWO-ELEMENT TIME BOUND SEQUENCES bake queue return later, and, therefore, the total number of

lots serviced at the bake workstation, in steady state, is not
This section describes a series of simulation experiments affected by reprocessing. This is the crux of why the two-
constructed to understand the behavior of two-operation operation model is more tractable than the three-operation
time bound sequences. A two-operation system is of model. Of course the distribution of arrivals to the bake
interest because time bound sequences in actual wafer fabsvorkstation is no longer Markovian. The intent of this
sometimes do include only two operations, and because theexperiment was to determine the magnitude of inaccuracy
basic representation can serve as a building block for moreintroduced by this non-Markovian behavior.
complex layouts. For example, suppose that the middle Let i, be equal to the service rate of an individual
machine in a three-operation system has a meanserver in the bake workstation, and Mgtbe equal to the
significantly less than the first machine or a variance small external arrival rate into system,(= 1/E[t,]). Note that,
compared ta'E. In this case, there is little probability that s not equal to the arrival rate into the queue for the clean
a lot will be recycled due to Machine 2, and the means and operation, because of reprocessing, but is equal to the
variances of Machines 1 and 2 can be aggregated into onearrival rate to the bake workstation (because lots are never

virtual machine. _ processed more than once at the bake workstation)c,Let
Simulation results are compared with M/M/c  pe equal to the number of servers in the bake workstation.
approximations for the probability of lots being reworked. Employing Equation 2.43 in Gross and Harris (1985),

The simulation models were developed using SIGMA for it can be shown (see Robinson 1998) that the probability

Windows, an event graph simulator developed by Lee that an arriving customer will be reprocessed at the clean
Schruben (1995). Models were converted to standard C step before going through the bake workstation is

code. Models were converted to standard C code. This

conversion increased run speed by a factor of more than Pr(REDO =1-w, (tr)
300, and allowed large experiments to be run through the d
use of batch files.

where
4.1 Computation of Expected Results
~(kpCp =2
The system modeled is a clean and bake sequence. Lots %gﬂbe (o2
arrive everyt, minutes (wheret, is an independent, wq(t): b Po (1)
identically distributed, or I.I.D., exponential random (Cb ‘1)
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In Equation (Lw(t) is the probability that an arriving  to 1/0.90 lots per hour. From this overall service rate, the
lot will have time in queue less than or equalt,tand mean clean process timéPT, and the mean bake process
hence will not have to be reprocessgglis the probability time, BPT, were calculated according to the number of
that the bake workstation is idle. The arrival rate to the tools in each workstation. Service at both queues followed
cleaning station now consists of the external arrival rate to a FIFO dispatch rule. Interarrival times and service times
the systemA,, plus the arrival rate of reprocessed lots. were exponentially distributed. Three factors were

Denoting this arrival rate a% yields examined in this experiment: time constrai), (mean
interarrival time (E{]), and number of servers in each
Ae :,\b(1+ Pr(REDO)) 2) workstation. The latter were always changed together, so

that there were, for example, two cleaning stations and two
cleaning operations, or three of each. The service rates
were held constant at each workstation, so that varying the
mean interarrival time to the system was like varying the
traffic intensity at each server. Because of the reprocessed
lots the actual traffic intensity at the clean workstation
could not be known ahead of time. Each simulation
replication was run until 100,000 lots had entered the
A system. Each design point was replicated three times, and
¢ <1 (3) the results averaged.
Cclec The estimated REDO probability from the simulation,
Pr(REDO) was defined as the average number of REDO
Equation (3) can be used to determine the stability of a events observedREDOS for each replication, divided by

two-process time-constrained system, where the maximumthe number of arrivals to the systebdMIT. Six levels of
stable input rate is the system’s capacity. To compute thet;, five levels of E{;] and four levels of number of servers
system capacity, first define* as the value obtained from  were simulated for this experiment, using a full factorial
Equation (3) at equality. A search algorithm can then be design. The levels of ea(_:h fact_or are shown in Table 1. The
applied to Equation (2) to find the value Afthat results ~ €xperiment had 120 design points.
in equality whenA* is substituted for A.. (Note that

Here the arrival rate of reprocessed lots is equal to the
arrival rate to the system, multiplied by the probability of
reprocessing. Letting. be the number of servers in the
cleaning workstation, and. be the service rate of an
individual cleaning operation, the condition for stability of
the cleaning operation is

Pr(REDO) is a function o). Since the right-hand side of Table 1: Factor Settings for First Two-
Equation (2) can be shown to be monotonically increasing Operation Experiment

in A, deriving this algorithm is fairly straightforward. Time Mean Number of
However, the result is only an approximation, because the Constraint Interarrival Servers
arrival process to the bake workstation is not Markovian. Time

In the next section, the predicted probability of reprocess- 1 2 1

ing will be compared with the simulated probability of 0.9 1.8 2
reprocessing in order to determine those circumstances 0.8 16 3

where the approximation performs acceptably. 0.7 14 2

4.2 Experimental Design g'g 1.2

Although a two-operation TBS is the most basic system of

interest, that simple model contains several variables: the4.2.2 Experiment 2

time constraintf,, the mean interarrival time of lots to the

system, B[], the number of identical tools in the clean All parameters in Experiment 2 were identical to those in
workstation, c;, the number of identical tools in the bake Experiment 1, except that the dispatch rule at the oven was
workstation,c., and the service rates of each workstation. LIFO instead of FIFO.

Other possible parameters of interest include the distribu-

tions of interarrival and service times, and the dispatch rule 4.2.3 Experiment 3

followed at each workstation. A series of experiments was

conducted to evaluate the impact of these different variables. The third experiment examined how variability in the
service time distributions affected system performance.

4.2.1 Experiment 1 This experiment tested the effect of radically violating the
Jacksonian network assumption of Markovian service

In the first experiment, the total service rates at both the times. Three different models of service time were

cleaning and baking workstations were always held equal Proposed: constant, uniform, and exponential service at one
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or both workstations, yielding nine combinations of service

. L . . . . Impact of Time Constraint on Pr(Redo)
time distribution, one of which was identical to Experiment

1. The uniform distribution employed the same mean 0.600
values used in Experiment 1, translated to a range of mean
+/- 100%. This resulted in a coefficient of variation of 0.33 0.500

for all values. The interarrival time distribution to the
system was always exponential because a distribution with
low variability does not meaningfully represent the highly

0.400

variable environment of a wafer fab. These runs used a § 0300 |
FIFO dispatch rule. €

o
4.3 Results 0.200
For each design point, expected system characteristics 0.100

were computed using the approximation described in

Section 4.1, and compared with observed values from the 0,000 ‘ ‘ ‘ ‘ ‘ ‘
simulation. An Analysis of Variance (ANOVA) was also 0400 0500 0600 0700 0800 0900  1.000  1.100
performed on the simulation results from Experiment 1 to Time Constraint

determine the significance of the input variables.

‘-O-Avg, ReDo Prob. =#=Exp. ReDo Prob. ‘

4.3.1 Experiment 1 Figure 2: Impact of Time Constraint on Pr(Redo)

The input variables for this experiment were time
constraint, mean interarrival time, and number of servers at Impact of Mean Interarrival Time on Pr(Redo)
the cleaning and bake workstations. The results for each
level of each input variable were averaged across all values
of other input variables, to investigate the overall effect of
each variable on predicted and simulated reprocessing 0:500
probability. The results are shown in Figures 2 to 4. Note

in particular Figure 3. Here the predicted and simulated 0.400 \\

0.600

results forPr(REDO) are very close at all but the highest
traffic point Et;]= 1.2. Investigation reveals that the clean
operation is unstable for experiments at this interarrival
time. To determine whether or not the approximation fit
better when only stable points were considered, the highest
interarrival time was eliminated from the results for certain
calculations.

To confirm the graphical results regarding the
appropriateness of the approximation, the time sexdgs { O o 120 140 1o 1o00 2000 2200
was computed, where for each design pdimepresented
the analytically approximated probability of reprocessing
minus the simulated probability of reprocessing. A 95%
confidence interval fod was then computed for all 120
design points. The confidence interval did not contain zero,

indicating evidence of a statistically significant difference A second confidence interval was computed using

between the analytically approximated probability of o1y the 96 stable design points. For those points the 95%
reprocessing and the true probability of reprocessing cqnfigence interval contained zero, indicating no evidence
(estimated via simulation). This is not surprising, since ¢ 4 statistically ~significant difference between the

Figure 3 clearly shows the M/M/c approximation gnavtically approximated probability of reprocessing and
exceeding the simulated probability of reprocessing for the {1a true probability of reprocessing.

highest traffic case.

0.300

Pr(Redo)

0.200

0.100

Interarrival Time

‘-O-Avg, ReDo Prob =#=Exp. ReDo Prob. ‘

Figure 3: Impact of Mean Interarrival Time on Pr(Redo)
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Impact of Number of Servers on Pr(Redo)

0.600

0.500

0.400 \

[=}
w
o
[}

Pr(Redo)

0.100

S

0.000

0.00 1.00 2.00

3.00

Number of Servers

4.00 5.00

‘—O—Avg. ReDo Prob. =#=Exp. ReDo Prob. ‘

Figure 4: Impact of Number of Servers on Pr(Redo)

In addition to showing the accuracy of the M/M/c

Overall, this experiment shows that for systems where
the interarrival and processing times are exponential, the
dispatch rule is FIFO, the service rates of the two
workstation are equal, and there are no random failures, an
M/M/c approximation provides a reasonable guide for
estimating whether or not a time-constrained system will
be stable. This approximation is particularly valuable given
that the probability of reprocessing for an actual
workstation varies considerably depending on the
parameters of the system. This result could be strengthened
by looking at a wider range of time constraint values, and
possibly by looking at lower traffic systems.

4.3.2 Experiment 2

The experiment showed that the LIFO results for
probability of reprocessing were slightly higher than the
FIFO results. A one-sided t-test (with= 0.05) supported

the conclusion that the difference was significant. That
difference, however, is quite small (LIFO mean = 0.28866,
FIFO mean = 0.277942) relative to the magnitude of the
factor effects. The factors all remain significant under
LIFO and caus®r(REDO)to move in the same direction

approximation, Figures 2 to 4 illustrate the influence of the 55 pefore. Details can be found in Robinson (1998).

three input variables on the probability of reprocessing.

Tighter time constraints, smaller interarrival times (more 4.3.3 Experiment 3

heavily loaded systems) and smaller numbers of tools per

workstation all appear to be associated with increased When the service times at the two workstations were both
probability of reprocessing. To confirm the significance of constant, the observed number of reprocessed lots was
this influence, a 3-factor ANOVA was conducted on the always zero. For systems with processing variability, the
data and the results are displayed in Table 2.

Table 2: ANOVA Table for Experiment 1

ANOVA Table - Experiment 1 F Statistic .999 Percentile
F Stat.
Time Constraint Effect 1319.95 4.42
Interarrival Time Effect 8253.82 4.95
Number of Servers Effect 19019.80 5.78
TClInterArr Interaction 12.37 2.53
InterArr/NumServers Interact. 264.58 3.02
NumsServers/TC Interaction 91.05 2.78
3 Way Interaction 5.97 1.95

M/M/c approximation tends to overestimate the probability

of reprocessing in non-exponential cases. Table 3 shows
the overall average reprocessing probability observed for
the nine scenarios, sorted in descending order of
reprocessing. In general, less variability in the system
corresponds to a lower probability of reprocessing.

Variability at the sink, the first workstation, appears to

increase the probability of reprocessing more than

variability at the oven.

Table 3: Overall Average Probability of Reprocessing for
Various Combinations of Service Time Distributions

The ANOVA found that all three main effects were
highly significant. The two and three way interaction effects
were also significant, to a lesser extent. This indicates that
drawing general conclusions regarding probability of repro-
cessing is a complex endeavBr(REDO)for a workstation
depends upon the magnitude of the time constraint, the
utilization of the workstation, and the number of servers at
the workstation. Moreover, it depends upon how these
characteristics interact with one another. The single-server
system, for example, is much more sensitive to changes in
the other parameters than the multi-server systems.
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Sink Distribution Oven Distribution ~ Aferage PR(REDO)
Exponential Exponential 0.279
Exponential Uniform 0.249

Uniform Exponential 0.215
Exponential Constant 0.214
Uniform Uniform 0.168
Constant Exponential 0.166
Uniform Constant 0.124
Constant Uniform 0.105
Constant Constant 0.000
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