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ABSTRACT particular, we will investigate the use of local control

strategies such as reducing the average flow time, setting
In this paper, we investigate the dynamic behavior of a the desired target capacity, and reducing capacity
simple service-oriented supply chain in the presence of adjustment time at each stage. Additionally, we consider
non-stationary demand using simulation. The supply chain the impact of a more global strategy in which end customer
contains four stages in series. Each stage holds no finisheqdeémand is shared with all stages in the supply chain.
goods inventory. Rather, the order backlog can only be Measures of performance include application completion
managed by adjusting capacity. These conditions reflect Faté, backlog levels, and total cumulative costs. _
the reality of many service (and custom manufacturing) The remainder of the paper is organized in the
supply chains. The simulation model is used to compare following manner. Section 2 contains a description of the

various capacity management strategies. Measures Of5|m_ulat|on mo_del. In section 3, we present an analysis (.)f
. o . various capacity management strategies. Section 4 contains
performance include application completion rate, backlog

; some concluding remarks and future research directions.
levels, and total cumulative costs.

1 INTRODUCTION 2 MODEL DESCRIPTION

Figure 1 contains a block diagram of our supply chain
simulation model developed in the Vensim© Simulation
Package (Ventana Systems Inc., 1998). The simulation is
designed to model a simplified mortgage approval process.
Each application passes through four stages: initial
processing (that is filling out the application with a loan
officer), credit checking (confirmation of employment and
review of credit history), surveying (a survey of the
proposed property to check for its value, as well as any
infringements upon zoning laws or neighboring properties),
and title checking (ensuring that the title to the property is
uncontested and without liens).

We recognize that the simulation model is a highly
simplified version of reality. Real mortgage service
processes would contain more than four stages. For
example, there are additional stages to perform property
inspection and insurance endorsement. Additionally, some
of the stages depicted in Figure 1 would not be aligned in a
series but would be performed in parallel. For example,
credit checks and title searches are often conducted in
parallel by separate organizations. We keep the model
simple in order to focus on the fundamental dynamics of
service supply chain management with as few

One of the great strengths of simulation modeling is the
ability to model and analyze the dynamical behavior of a
system. This makes simulation an ideal tool for analyzing
supply chains because supply chains can exhibit very
complex dynamical behavior. For example, simulation has
been used to demonstrate and study the bullwhip effect
(i.e., the amplification of demand variation as demand
signals move up the supply chain from the end customer —
see Forrester 1958 and Lee et al. 1997) in the MIT Beer
Distribution Game (Simchi-Levi et al. 1999). The Beer
Distribution Game involves the management of finished
goods inventory of a single product in a serial supply chain
(Senge 1990, Sterman, 1989a,b).

In this paper, we develop a simulation model to
analyze the dynamic behavior of a simple service-oriented
supply using simulation. The supply chain contains four
stages in series. Each stage holds no finished goods
inventory. Rather, the order backlog can only be managed
by adjusting capacity. These conditions reflect the reality
of many service (and custom manufacturing) supply
chains. We use a simulation model to develop improved
control strategies for dynamically managing capacity and
backlog in the presence of non-stationary demand. In

742



Anderson and Morrice

complications as possible. Including more stages adds little In real life, of course, the purpose of each of these
to our current analysis. checks is to eliminate those applications that are too risky.
Mechanically, all the stages operate in an identical However, we will assume that each application is
manner, so we will describe here only the survey section of ultimately approved. This is reasonable because, despite
the model as an example of each stage’s processing. the fact that a random survival rate for each stage does
indeed complicate real-life management of the chain, the
primary dynamic control problems derive from other

. > Pg;iekf;gnﬁ sources. In particular, the largest problem results from
start rate each stage of the process generally being managed by a
/ separate company. Each of these companies controls its

PG own individual capacity; however, it typically only sees its

Capaciy own backlog when making the decision, not the new

: application rate (i.e., end user demand) or other stages’

1 backlogs. This creates something akin to the bullwhip

effect (Lee et al. 1997) seen in the physical goods supply

Target Credit | chains, albeit here the inventories controlled are strictly

backlogs. Also, as in many real life services, there is no
way for a stage to stockpile finished goods inventory in
advance as a buffer against fluctuating demand. Rather,

Check Credit Check
Caiac'ty Backlog

- credit
grﬁii each stage must manage its backlog strictly by managing
Capacty the its capacity size, that is the number of workers it
employs.
Target Surve Mathematically, the structure for each stage of the
Capacty : process is as follows (Let stages 1, 2, 3, and 4 refer

respectively to the application processing, credit checking,
surveying, and title checking stages):

s B =B +riy )
Capacity
Ttie Chech e =min(C, B, +r_,) (2)
Capacity , ) s ,

where B(i,t), C(i,t), and r(i,t) refer respectively to the
backlog, the capacity, and the completion rate at stage
dayt. Note thatr(0, t) represents new application start
rate. In the simulation, this variable will remain at 20 starts
per day until after week 5, when it jumps to 24 starts per
day. The number of starts then remains constant at 24 per
day until the end of the simulation in week 50. For
simplicity, we will assume that each employee has a
productivity of one application per day. This allows us to
constrain the completion rate of applications at any stage to
the minimum of the backlog plus any inflow from the
previous stage (if material is constraining processing) or
the number of employees (the more typical case). Each
stage’s backlog begins the simulationg(i,0)] whereA

is a constant representing the average nominal delay
required to complete a backlogged application. Each
stage’s capacity begins it,0) so that the backlogging and
completion rates at each stage are in balance (see
Equations 3 and 4 below). Hence, if there were no change
in the application start rate, there would never be a change
in any backlog, capacity, or completion rate throughout the
service chain.

Figure 1. Block Diagram of The Mortgage Service
Simulation

As each application is checked for the credit
worthiness of its applicantiedit checkingn the diagram),
the application flows from the backlog of credit checks
(Credit Check Backlogto join the backlog of surveys
(Survey Backlog Each week, based on the backlog of
surveys, a target capacity is set by deciding to hire or fire
employees: in this case, surveyors. However, it takes time
to actually find, interview, and hire or, conversely, to give
notice and fire employees; so the act8afkvey Capacity
will lag the Target Survey Capacityy an average of one
month. Those surveyors currently in the employ of the
survey company will then carry out as many surveys as
they can over the next week. Finally, as each application’s
survey is completedsqrveying) the application will then
leave the Survey Backlogto join the next backlog
downstream—in this case, tAdéle Check Backlog.Each
of the other four stages functions analogously.
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At the beginning of each week (i.e. every 5 business is determined by the magnitude 6f . In this case, the
days), each stage can change its target capacity by decidingiame value forr is used for all stages that set target
to hire more or fewer employees. However, it takes time to capacity using Equation 5. A more complicated version of
advertise for, interview, and hire employees; so the rate of the simulation could be designed to permit a diffecefur

capacity change is given in Equation 3. each stage.
We include the following costs for the mortgage
_ 1, . service simulation. Each employee will cost $2000 to hire
Cia =Ci +?(Cit Ci) (3) or terminate and $1000 per week to employ (or $200 per

application processed when fully utilized). Each
backlogged application costs $200 per week in potential
customer alienation. The costs will be used to compare
different supply chain management strategies.

The target capacityC*(i, t) is restricted to be
nonnegative. For purposes of this simulatianthe
capacity adjustment time, is set to one month, that is 20
business days (which is, in reality, a bit optimistic if large 3
hiring rates are required). In essence, each stage’s capacity

will move one twentieth of the gap from its current value imul h . licati
toward its target each day. On the average in a stationaryW(.a simulate the mprtgage service app Ications process
using the model depicted in Figure 1 for 500 days (or 100

system, this will translate into an average 20 business—dayﬁve day weeks). We analyze several scenarios defined by

lag in hiring (or firing) employees. h X q h . .
The target capacity decision will be made as follows: ~ he parameters, T, anda. For each scenario, we examine
total cumulative cost, and the dynamic behavior of

ANALYSIS

B applications completed per day in each stage and

C,, =—* if (t modulo 5) =0 4) application backlog in each stage. For all scenarios the
A system is initialized in equilibrium, i.e., each stage has the
Ci*'t = Ci*,H otherwise. capacity to process 20 applications per day and contains a

backlog equal to 20

Thus, each week the target capacity for each stage will be ~ We separate our analysis into two main capacity
set directly proportional to the stage’s current backlog management strategies: capacity management using local
B(i,t) and inversely proportional to the nominal service backlog at each stage (i.e., Equations (1) through (4)), and
delay timeA. This is not meant to be an optimal policy in €apacity management based on the new application rate
any sense; however, it seems to reflect reasonably well@nd local backlog (i.e., Equations (1) through (3) and
how real players make decisions in capacity managementEquation (5)).
simulations (Sterman 1989a). Thus, if the application start
rate is unvarying, the long-run average application will 3.1 Local Backlog Strategy
take A weeks to complete per stage. One can of course ) ) o
vary A either by stage or over time to make the simulation Figures 2 and 3 contain results for daily application
more complex. completions and backlog for all stages in the mortgage

Based on Equation 4, each stage operates Service supply chain over a 500-day period. (Note: Comp
autonomously and makes its capacity decisions based onRate stands for completion rate and App Start Rate stands
its own backlog. As an alternative, we propose another for new applications start rate; P, C, S, and T stands for
strategy called the new starts information strategy. In this Processing, Credit Check, Surveying, and Title Check).
strategy, each stage makes capacity decisions based on it¥he graphs in Figures 2 and 3 are generated by simulating
own backlog and the new application rate. In other words, Equations (1) through (4) for managing capacity or
each stage gains more visibility by being able to observe backlog withA = 5 andt = 20, i.e., capacity decisions are
end user demand in each time period. For those stages atompletely based on the local backlog at each stage. Notice
which the computer makes the target capacity decision, the erratic behavior that results in all stages of the supply
Equation 4 changes to: chain resulting from a change in the new application rate
from 20 to 24 after week five. Each stage transfers its
variation to subsequent stages. Consequently, demand
variation is magnified as it moves through the stages of the
supply chain. This is an illustration of something akin to
:Ci*'t_l, otherwise the bullwhip effect in managing backlog with capacity

adjustments. The total cumulative costs are $20,405,338.

Ci*,t :C"(O,t)"'(l—a)% , if (t modulo 5) =0 (5)

*

it

C

where 0< o < 1.The degree to which each stage in the
chain bases its target capacity on the new application rate
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Figure 3: Backlog foh = 5 andt = 20

Figures 4 and 5 contain applications completed per

day and application backlog for all stages when10 and
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T = 20. With more backlog at each station, the total
cumulative costs in the supply chain increases to
$28,527,483 due to the increase in backlog costs. However,
cost does not tell the whole story. Comparing Figures 2 and
3 with Figures 4 and 5, respectively, reveals that the longer
processing delay leads to less erratic changes in the
performance measures. If fact, under a different costing
structure, either increased capacity adjustment costs or
reduced backlog costs, a different ranking of the two
scenarios based on cost can result. For example, if backlog
costs drop to zero, the total cumulative costs for the
scenario withh = 5 andt = 20 is 10,322,990 and with=

10 andrt = 20 is $9,507,091.

The above result is somewhat surprising because it
differs from that seen in the classic bullwhip effect in
which shorter lead times generally reduce oscillatory
behavior (Anderson and Fine, 1998). However, as
Anderson and Morrice (1999) point out, the behavior is a
natural consequence of the shorter lead-time coupled with
the relatively long capacity adjustment lag time. When the
two are more closely matched less erratic behavior results.
As further support, consider the results in Figures 6 and 7
for the case wheh = 5 andrt = 10 (i.e., compare Figures 2
and 3 with Figures 6 and 7, respectively).
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Application Backlog
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Application Backlog
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Figure 7: Backlog foh =5 andt = 10
3.1 New Starts Information Strategy

Under this strategy, Equation (5) is used to establish target
capacity rather than Equation (4). Figures 8 and 9 contain
results for the case whe\ = 5,1 = 20, anda = 0.5.
Including new starts information into the target capacity
decisions improves both performance measures by
smoothing out oscillations (compare Figures 2 and 3 with
Figures 8 and 9, respectively). Furthermore it also reduces
total cumulative cost to $19,111,716.
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dictates that it would be optimal to set= 1 and use only
Applications Completed per Day new starts information for setting the target capacity.
35 ) .
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Under the current costing structure, Figure 10 indicates S Backlog T Backlog

how much new starts information to include (i.e., how to
selecta) in setting target capacity if the objective is to Figure 11: Backlog fok = 5,1 = 20,0 = 1
minimize total cumulative costs. The current cost structure

747



A Simulation Model to Study the Dynamics in a Service-Oriented Supply Chain

Once again total cumulative costs do not provide a Sterman, John D. 1989a. Misperceptions of Feedback in

complete picture. Figure 11 indicates that with= 1 the Dynamic Decision MakingOrganizational Behavior
erratic oscillations in backlog are eliminated. However, the and Human Decision Process£3:301-335.

backlog remains unbalanced with the first stage holding the Sterman, John D. 1989b. Modeling Managerial Behavior:
most and never being able to work it off after the change in Misperceptions of Feedback in a Dynamic Decision
demand. For the organization controlling the first stage of Making ExperimentManagement Scien@b (3):321-

the supply chain, this may be considered an inequitable 339.

solution to adjusting to the changes in demand. Perhaps theVentana Systems, Inc. 1998ensim Version 3.060 Jacob
costing structure could be revised to more accurately Gates Road, Harvard, MA 01451.

reflect the costs associated with inequitable solutions in the
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