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ABSTRACT

This paper deals with a discrete simulation optimiza
method for designing a complex probabilistic discr
event system. The proposed algorithm in this pa
searches the effective and reliable alternatives satisf
the target values of the system to be designed throu
single run in a relatively short time period. It tries 
estimate an autoregressive model, and construct mea
confidence interval for evaluating correctly the object
function obtained by small amount of output data.  T
experimental results using the proposed method are
shown.

1 INTRODUCTION

The modern systems become larger and more com
These systems, therefore, could not be solved by si
analytical methods or mathematical methods, wh
require the theoretical assumptions.    We must solve
problems by using discrete event simulation as a de
tool of a complex and stochastic discrete event system.

The difficulties and problems in using simulati
optimization method can be summaried as follows. F
the values of object functions and constraints to eval
performance measures of a system could not be obta
by simple calculation of known functions exce
simulation run. Second, because the results of simula
run include stochastic elements in a stochastic disc
event system, an efficient statistical analysis and
stochastic optimization approach are required. Third, w
the type of a simulation is a steady-state simulation
calculate performance measure of an alternative design
steady state we need so many output data and expe
calculation costs when the output data have the prope
of autocorrelation. Fourth, if the search space of 
problem under study is large more calculation costs 
time is needed.
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This study deals with a discrete simulation
optimization method for designing a complex probabilistic
discrete event system. An algorithm is proposed, whic
searches the effective and reliable alternatives satisfyin
the target values of the system to be designed through
single run in a relatively short time. It tries to estimate an
autoregressive model, and construct mean and confiden
interval for evaluating correctly the objective function
obtained by small amount of output data.  

In this section we discussed general problems o
simulation optimization method, and literature reviews on
simulation optimization method is explained in section 2
In section 3, we describe an algorithm to be proposed fo
searching a feasible solution including the basic concept 
the proposed algorithm, the detailed algorithm to adjust th
value of decision variables, and the stopping conditions o
the proposed algorithm. In section 4, in order to tes
availability and efficiency of the proposed algorithm, we
experiment and analyze using an (s,S) inventory model.
Finally, the summaries of researches are described 
section 5.

2 LITERATURE REVIEW

Simulation optimization problems have been discussed b
Glynn (1986), Meketon (1987), Jacobson and Schrube
(1989), Safizadeh (1990), Ho and Cao (1983), Rubinste
and Shapiro (1993), and etc. The methods using Fini
Differences which is broadly used in optimization have
disadvantage such that at least n+1 number of simulation
runs is necessary to estimate gradient of a given proble
with n number of parameters (Heidergott 1995). Therefore
in order to solve the problem of multiple replication runs in
simulation optimization, we need to develop simulation
optimization method using a single run. For the single ru
simulation optimization, Perturbation Analysis (Ho and
Cao 1983) and Score Function (Rubinsten and Shapi
1993) were developed, but all of them are focused on th
8
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cases of continuous decision variables and require th
theoretical assumptions.

For discrete variable simulation optimization, the
methods were studied using simulated annealin
(Ahmed, Alkhamis, and Hasan 1997, Lee and Iwat
1991), stochastic ruler method (Yan and Mukai 1992)
stochastic comparison method (Gong, Ho, and Zha
1992), random walk (Andradottir 1996), nested
partitions method (Shi and Sigurdur 1997),
evolutionary(genetic) algorithm (Pierreval and Tautou
1997), multi-armed bandit method (Barry and Fristed
1985), learning automata (Yakowitz and Lugosi 1990)
and etc. But most of the methods tried to optimize
simulated systems using multiple runs.

Also, in the optimal design of discrete variable
stochastic systems using simulation optimization method
the previous researches did not consider the long length 
simulation which must be mentioned, and only focused o
the algorithm of stochastic optimization based on Mont
Carlo simulation.

3 ALGORITHMS

The general process for searching design alternatives in
single run simulation is described in algorithm 3.1.

[Algorithm 3.1]
Step 1: Set objective functions ( )(Xfi ), decision

variables, njxj ,...,1, = , target values ( iA  and c),

incremental value of decision variables (jx∆ ), and time

interval for evaluating objective functions and adjusting
values of decision variables (t∆ ), and start simulation.

Step 2: During simulation, objective functions with
target values(refer to Algorithm 3.2) are compared and th
values of decision variables are adjusted with jx∆ .

Step 3: If the stopping condition of the algorithm is
satisfied, then the values of decision variables that hav
been most frequently visited are determined as the fin
solution.

Step 4: Simulation is conducted for verification with
the obtained solution and enough run length.

Generally speaking, when t∆  are small, objective
functions values are frequently evaluated and then th
algorithm can faster converge to the value of decisio
variables that satisfy target values. In this case because 
gathered data are small the evaluation errors of objectiv
functions are larger than the case of large t∆ . Also much
time to evaluate objective functions and adjust the value 
decision variables is needed. Thus, an algorithm 
proposed, which effectively estimates the value o
objective functions with relatively short time simulation in
679
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steady state. In Step 2 of the previous Algorithm 3.1, th
value of decision variable, jx , is changed with the

increment of jx∆  during simulation using the algorithm in

section 3.1

3.1 Adjustment of Decision Variables

The basic algorithm is explained here to change value 
decision variable, jx , at each t∆  during simulation

according to the compared results of objective function
and target values. The values of objective functions a
observed, which are obtained by simulation output an
either a monotonic increasing function or a monotoni
decreasing function. Using the form of given objective
functions in iA , }]{  },{ },[{ cforcfcf iii <>=  and target

value, c, the value of decision variable j at time t-1 and
t, 1, −tjx  and tjx , , the value of objective function i at time t-1

and t, 1, −tiy  and tiy , are obtained from simulation.

According to the increasing and decreasing information o
decision variables, the value of decision variables i
changed with jx∆  to the direction in which the frequencies

of the accumulative number of none changed decisio
variables are the largest.

The notations and algorithms for adjusting the value
of decision variables can be described as follows:

tjx , : Value of decision variable, j, at time, t.

tiy , : Value of object function, i, at time, t.
o

jcount : Accumulated number of unchanged

value of y.
+
jcount : Accumulated number of increased value

of y.
−
jcount : Accumulated number of decreased value

of y.

ja , jb : Lower bound and upper bound of

variable, j.
++

iL : Set of the decision variables when the

value of a decision variable, jx , is

increased (decreased), the value of object
function, i, is increased (decreased).

−+
iL : Set of the decision variables when the

value of decision variable, jx , is

decreased (increased) the value of object
function, i, is increased (decreased).

o

iL  : Set of decision variables that are not

included in ++
iL  or −+

iL .
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[Algorithm 3.2]
Step 0:
(initiali
zation)

Set o

jcount = 0, +
jcount  = 0, −

jcount  = 0, for

all njxj ,...,1, = and set the value of ja  and

jb . Set c and ε for object function, i. Build

up the list of ++
iL , −+

iL , and o

iL .

Step 1: Go to Step 5 after executing one of the
following steps for njxj ,...,1, = :

1) If 1, −tjx < tjx ,  then go to Step 2.

2) If 1, −tjx > tjx ,  then go to Step 3.

3) If 1, −tjx = tjx ,  then go to Step 4.

According to the object function, i, only one
of the cases listed below is executed.
(case 1) }{ cfA ii ==
Step 2.1.1: If jx ∈ o

iL  then go to Step

2.1.3, otherwise move to Step
2.1.2.

Step 2.1.2: If tiy , = c, then o

jcount  =
o

jcount  + 1.

If tiy , < c and jx ∈  ++
iL  then

+
jcount  = +

jcount  + 1.

If tiy , < c and jx ∈  −+
iL  then

−
jcount  = −

jcount  + 1.

If tiy , > c and jx ∈  ++
iL  then

−
jcount  = −

jcount  + 1.

If tiy , > c and jx ∈  −+
iL  then

+
jcount  = +

jcount  + 1.

Step 2.1.3: If tiy , = c, then o

jcount  =
o

jcount  + 1.

If 1, −tiy  ≤ tiy ,  and tiy ,  < c then
+
jcount  = +

jcount  + 1.

If 1, −tiy  ≤ tiy ,  and tiy ,  > c then
−
jcount  = −

jcount  + 1.

If 1, −tiy  > tiy ,  and tiy ,  < c then
−
jcount  = −

jcount  + 1.

If 1, −tiy  > tiy ,  and tiy ,  > c then
+
jcount  = +

jcount  + 1.

(case 2) }{ cfA ii <=

Step 2:

Step 2.2.1: If jx ∈ o

iL  then go to Step

2.2.3, otherwise go to Step
2.2.2.

Step 2:
680
Step 2.2.2: If tiy ,  < c, then o

jcount  =
o

jcount  + 1.

If tiy ,  ≥ c, and jx  ∈  
++

iL  then
−
jcount  = −

jcount  + 1.

If tiy ,  ≥c and jx  ∈  
−+

iL  then
+
jcount  = +

jcount  + 1.

Step 2.2.3: If tiy ,  < c, then o

jcount  =
o

jcount  + 1.

If 1, −tiy  ≥ tiy ,  and tiy , ≥c then
−
jcount  = −

jcount  + 1.

If 1, −tiy  > tiy ,  and tiy , ≥c then
+
jcount  = +

jcount  + 1.

(case 3) }{ cfA ii >=
Step 2.3.1: If jx ∈ o

iL  then go to Step

2.3.3, otherwise go to Step
2.3.2.

Step 2.3.2: If tiy ,  > c then o

jcount  =
o

jcount  + 1.

If tiy ,  ≤c and jx  ∈  
++

iL  then
−
jcount  = −

jcount  + 1.

If tiy ,  ≤c and jx  ∈  
−+

iL  then
+
jcount  = +

jcount  + 1.

Step 2.3.3: If tiy ,  > c then o

jcount  =
o

jcount  + 1.

If 1, −tiy  ≤ tiy ,  and tiy ,  ≤ c then
+
jcount  = +

jcount  + 1.

If 1, −tiy  > tiy ,  and tiy ,  ≤ c then
−
jcount  = −

jcount  + 1.

According to the object function, i, only one
of the cases listed below is executed.
(case 1) }{ cfA ii ==

Step 3:

Step 3.1.1: If jx ∈ o

iL  then go to Step

3.1.3, otherwise go to Step
3.1.2.
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Step 3.1.2: If tiy ,  = c then o

jcount  =
o

jcount  + 1.

If tiy ,  < c and jx  ∈  
++

iL  then
+
jcount  = +

jcount  + 1.

If tiy ,  < c and jx  ∈  
−+

iL  then
−
jcount  = −

jcount  + 1.

If tiy ,  > c and jx  ∈  
++

iL  then
−
jcount  = −

jcount  + 1.

If tiy ,  > c and jx  ∈  
−+

iL  then
+
jcount  = +

jcount  + 1.

Step 3.1.3: If tiy ,  = c then o

jcount  =
o

jcount  + 1.

If 1, −tiy  ≤ tiy ,  and tiy ,  < c then
+
jcount  = +

jcount  + 1.

If 1, −tiy  ≤ tiy ,  and tiy ,  > c then
−
jcount  = −

jcount  + 1.

If 1, −tiy  > tiy ,  and tiy ,  < c then
−
jcount  = −

jcount  + 1.

If 1, −tiy  > tiy ,  and tiy ,  > c then
−
jcount  = −

jcount  + 1.

(case 2) }{ cfA ii <=
Step 3.2.1: If jx ∈ o

iL  then go to Step

3.2.3, otherwise go to Step
3.2.2.

Step 3.2.2: If tiy ,  < c then o

jcount  =
o

jcount  + 1.

If tiy ,  ≥c and jx  ∈  ++
iL  < c

then −
jcount  = −

jcount  + 1.

If tiy ,  ≥c and jx  ∈  −+
iL  < c

then +
jcount  = +

jcount  + 1.

If 1, −tiy  ≤ tiy ,  and tiy ,  > c then
−
jcount  = −

jcount  + 1.

Step 3.2.3: If tiy ,  < c then o

jcount  =
o

jcount  + 1.

If 1, −tiy  ≤ tiy ,  and tiy ,  ≥c then
+
jcount  = +

jcount  + 1.

If 1, −tiy  > tiy ,  and tiy ,  ≥c then
−
jcount  = −

jcount  + 1.

(case 3) }{ cfA ii >=
681
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Step 3.3.1: If jx ∈ o

iL  then go to Step

3.3.3, otherwise go to Step
3.3.2

Step 3.3.2: If tiy ,  > c then o

jcount  =
o

jcount  + 1.

If tiy ,  ≤ c and jx  ∈  ++
iL  < c

then +
jcount  = +

jcount  + 1.

If tiy ,  ≤ c and jx  ∈  −+
iL  < c

then −
jcount  = −

jcount  + 1.

Step 3.3.3: If tiy ,  > c then o

jcount  =
o

jcount  + 1.

If 1, −tiy  ≤ tiy ,  and tiy ,  ≤ c then
−
jcount  = −

jcount  + 1.

If 1, −tiy  > tiy ,  and tiy ,  ≤ c then
+
jcount  = +

jcount  + 1.

According to the object function, i, only one
of the cases listed below is executed.
(case 1) }{ cfA ii ==
Step 4.1.1: If ε≤− cy ti ,  then o

jcount  =
o

jcount  + 1.

If ε>− cy ti ,  and jx ∈ o

iL

then go to Step 4.1.3,
otherwise go to Step 4.1.2

Step 4.1.2: If jx  ∈  ++
iL  then −

jcount  =
−
jcount  + 1.

If jx  ∈  −+
iL  then +

jcount  =
+
jcount  + 1.

Step 4.1.3: +
jcount  = +

jcount  + 1 with

probability 0.5 or −
jcount  =

−
jcount  + 1 with probability

0.5
(case 2) }{ cfA ii <=

Step 4:

Step 4.2.1: If jx ∈ o

iL  then go to Step

4.2.3, otherwise go to Step
4.2.3
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Step 4.2.2: If tiy ,  < c then o

jcount  =
o

jcount  + 1.

If tiy ,  ≥c and jx ∈ ++
iL  then

−
jcount  = −

jcount  + 1.

If tiy ,  ≥c and jx ∈ −+
iL  then

+
jcount  = +

jcount  + 1.

Step 4.2.3: If tiy ,  < c then o

jcount  =
o

jcount  + 1.

If 1, −tiy  ≤ tiy ,  and tiy ,  ≥c

then +
jcount  = +

jcount  + 1.

If 1, −tiy  > tiy ,  and tiy ,  ≥c

then −
jcount  = −

jcount  + 1.

(case 3) }{ cfA ii >=
Step 4.3.1: If jx ∈ o

iL  then go to Step

4.3.3, otherwise go to Step
4.3.2

Step 4.3.2: If tiy ,  > c then o

jcount  =
o

jcount  + 1.

If tiy ,  ≤ c and jx ∈ ++
iL

then +
jcount  = +

jcount  + 1.

If tiy ,  ≤ c and jx ∈ −+
iL

then −
jcount  = −

jcount  + 1.

Step 4.3.3: If tiy ,  > c then o

jcount  =
o

jcount  + 1.

If 1, −tiy  ≤ tiy ,  and tiy ,  ≤ c

then −
jcount  = −

jcount  + 1.

If 1, −tiy  > tiy ,  and tiy ,  ≤ c

then +
jcount  = +

jcount  + 1.

Step 5: For all njxj ,...,2,1, = ,

],,max[* −+= jj

o

j countcountcountcount ( If

more than one, select randomly)
If += jcountcount*  then

] ),min[( ,1, jjtjtj bxxx ∆+=+

If −= jcountcount*  then

)](,max[ ,1, jtjjtj xxax ∆−=+

3.2 Stopping Algorithm

When the algorithm satisfies the target values 
simulation must be stopped. The algorithm to inspect 
68
he
the

stopping conditions of the proposed procedure is describ
below.

K: The number of recent time intervals to inspect
the stopping conditions. K is a constant and
set by user (K=1, 2, …, n).

*

jx : The values of decision variables visited most

frequantly at current time t and within K time
intervals.

η : The integer value to calculate the

tolerance )( *

jj xx ∆±η  for all njx j  ..., ,2 ,1, =
for setting stopping conditions(η =0, 1, 2,

…,m).

[Algorithm 3.3]
Step 0: Set the integer value of K and η .

Step 1: For all njxj ,...,1, = , the folowing Step 1.1

is conducted and if it is satisfied by all
decision variables, then go to Step 2.
(Step 1.1) Using Algorithm 3.1, *

jx  is

obtained and if the all values of decision
variables are included in [ ]jj xx ∆±η*  in K

time intervals, then go to Step 2. Otherwise,
continue simulation to time interval t.

Step 2: If it is satisfied by the target condition i, then
stop the simulation. Otherwise,
   1) If η  is 0 then stop the algorithm and the

simulation, and conclude that an alternative,
which satisfies the target value, does not
exist.
   2) If η  > 0, then change η  to

]1,0max[ −= ηη  and continue simulation to

next time interval tt ∆+ .

3.3 Evaluation of Objective Functions

In Algorithm 3.1, when t∆  are small, objective functions
values are frequently evaluated and then the algorit
can faster converge to the value of decision variables t
satisfy target values. In this case because the gathe
data are small the evaluation errors of objective functio
are larger than the case of large t∆ . To solve this
problem, we propose the algorithm, which efficientl
estimates objective functions in steady state using 
small data that are obtained by relatively short simulati
run.
  Voss, Haddock, and Willemain (1996) propose th
algorithm that obtains efficiently the value of objectiv
functions in steady state during a short simulation 
transient period using an autoregressive model. Throu
experimentation compared with the other method
2
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unweighted batch means (Law and  Kelton 1995) an
weighted batch means (Bischak, Kelton, and Polloc
1993), the method is superior or similar to the othe
methods with respect to mean error, root mean squa
error, coverage, mean interval length, and etc.
 Therefore, in this paper we propose an algorithm 
estimate the value of objective functions with a
relatively short value of t∆  based on the method
proposed by Voss, Haddock, and Willemain (1996
Because the output data obtained during a short transi
period strong autocorrelation exists between data, t
output process fits very well the autoregressive mod
(Fishman 1978).

The autoregressive model, AR(p), with order, p, could
be expressed by Equation (1) (Fuller 1996).

    ∑ =++=
=

−

p

i
titit tyy

1
0 ,...2,1         , εφφ           (1)

If we assume the average of system respons
converges to only one point, the average in steady sta

)(φµµ = , is expressed by Equation (2).

           1

1
0 }1{][lim)( −

=∞→
∑−==Φ
p

i
it

t
XE φφµ     (2)

And the conditional least square estimate of Φ̂  is obtained
by Equation (3) (Fuller 1996) and the procedures a
explained by the Algorithm 3.4.

             nn vA 1ˆ −=Φ                         (3)

[Algorithm 3.4]

Step 1: Select the maximum value, maxp , of p.

Step 2: Calculate )(2 pS , max0 pp ≤≤ .

Step 3: Calculate FIC(p), max0 pp ≤≤ .

Step 4: Select order, *p minimizing FIC(p).

In this paper we use Yule-Walker method that th

variance of Φ̂  is minimized by the experimentation of
Broerson and Wensink (1993), and the formula is express
by Equation (4).
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y
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pS
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In this paper we use Equation (5) to consider aptne
and efficiency of future data that are not used.

     }2)(ln{)(
1

2 ∑+=
=

p

i
ivpSpFIC                (5)

In theoretical aspects when we use Batch Mean
method, maxp  has the value of (batch size –1). But, in this

paper we set 20max =p  to consider p=15(n≥256) proposed

by Voss, Haddock, and Willemain (1996) and p value used
by Bischak, Kelton, and Pollock (1993)’s Weighted Batch
Means method.

nµ̂ , an estimate of average, )(Φµ , in steady state is

expressed by Equation (6) to consider standard average a
bias correction. The method to obtain average in stea
state is arranged in Algorithm 3.5 and nµ̂  is applied to

Algorithm 3.1, 3.2, and 3.3.
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[Algorithm 3.5]
Step 1: Calculate *p  using Algorithm 3.4.

Step 2: Calculate Φ̂  using Equation (3).
Step 3: Calculate nµ̂  using Equation (6).

4  EXPERIMENTATION

An (s,S) inventory control problem (Law and Kelton 1995)
was selected to evaluate the developed algorithm.

In this experimentation, first (s,S) was set as (40, 60)
and a pilot simulation was conducted with long run o
10,000 months. The obtained average total cost is 125.7
Using the obtained results it was tested to see if the fin
solution could be found near to the obtained solution wit
changing t∆ .

The mathematical model of the explained (s,S)
inventory control system could be expressed as
 

 arg {E[f(X)] ≤c}
 
 where
 

 )]([ XfE : Average inventory cost per unit time

 A: {E[ f(X)] ≤c} =
   {Average cost per unit time ≤125.74}
 ],[ 21 xx : [s, Reorder point, S, Reorder quantity].

The lower bound and the upper bound of reorder poin
s, was set as (10, 50) and the lower bound and the upp
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bound of quantity, S, as (20, 70). Simulation was started
with the initial value of (s,S) as (10, 30). Also, the stopping
condition, K, was set as 10 and the incremental value 
decision variables, s∆  and S∆ , as 1.

The Figure 1 shows the results of the propose
algorithm when the t∆  are 10, 30, and 100. Also, we know
the total cost converges to target value 127. The Table
shows the final results of (s,S) and average inventory costs
obtained when simulation stops with different t∆ .

In the Table 1 when t∆  is 50 we observe that the
average inventory cost converge to 125.20 near to 125.
which is target value, and the obtained value, (39, 59), 
decision variables, (s,S) is approximately near to (40, 60).
When t∆  is 100 we know that (s,S) is determined to be
(39, 59) and the obtained average total cost, 125.62,
approximately near to 125.74.
Figure 1:  Average Total Cost at t∆  in the (s,S) Inventory System
hm
Table 1:  The Results Obtained by the Proposed Algorit
in the (s,S) Inventory System

t∆ (s,S) Average total cost
10 (29, 49) 121.05
30 (32, 52) 122.12
50 (39, 59) 125.20
100 (39, 59) 125.62
684
5 CONCLUSIONS

A discrete simulation optimization method for designing a
complex probabilistic discrete event system was proposed
The proposed algorithm searches the effective and reliabl
alternatives satisfying the target values of the system to b
designed through a single run in a relatively short time
period. Using the proposed algorithm, decision variables
could be obtained the final values satisfying target level
with a single run and a small output data.

But, because the size of t∆  depends on the given
problem and characteristics of decision variables and it
affect on the final result, selection of the suitable value
of t∆  is very important.
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