
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

AN APPROACH FOR FINDING DISCRETE VARIABLE DESIGN ALTERNATIVES
USING A SIMULATION OPTIMIZATION METHOD

Young Hae Lee

Dept. of Industrial Engineering
Hanyang University

Seoul, 133-791
KOREA

Kyoung Jong Park

Institute of Information Technology
Daewoo Info. Systems Co., Ltd.

Kwachun-City, Kyunggi-Do, 427-010
KOREA

Tag Gon Kim

Dept. of Electrical Engineering
KAIST, Taejon 305-701

KOREA

tio
e
p
y
g
t

n
iv
h

 a

p
m
i

s

on
ir
u
i
p
t
r

h
,

n
r
t
a

h
g
 a

ce

f

.
r

of
e
f
t

in

y
n
in
te

m
,

n

ro
e

ABSTRACT

This paper deals with a discrete simulation optimiza
method for designing a complex probabilistic discr
event system. The proposed algorithm in this pa
searches the effective and reliable alternatives satisf
the target values of the system to be designed throu
single run in a relatively short time period. It tries
estimate an autoregressive model, and construct mea
confidence interval for evaluating correctly the object
function obtained by small amount of output data. T
experimental results using the proposed method are
shown.

1 INTRODUCTION

The modern systems become larger and more com
These systems, therefore, could not be solved by si
analytical methods or mathematical methods, wh
require the theoretical assumptions. We must solve
problems by using discrete event simulation as a de
tool of a complex and stochastic discrete event system.

The difficulties and problems in using simulati
optimization method can be summaried as follows. F
the values of object functions and constraints to eval
performance measures of a system could not be obta
by simple calculation of known functions exce
simulation run. Second, because the results of simula
run include stochastic elements in a stochastic disc
event system, an efficient statistical analysis and
stochastic optimization approach are required. Third, w
the type of a simulation is a steady-state simulation
calculate performance measure of an alternative design
steady state we need so many output data and expe
calculation costs when the output data have the prope
of autocorrelation. Fourth, if the search space of
problem under study is large more calculation costs
time is needed.
67
n
te
er
ing
h a
o
and
e
e
lso

lex.
ple
ch
the
ign

st,
ate
ned
t
ion
ete
a

en
to

in a
sive
ties
he
nd

This study deals with a discrete simulation
optimization method for designing a complex probabilistic
discrete event system. An algorithm is proposed, whic
searches the effective and reliable alternatives satisfyin
the target values of the system to be designed through
single run in a relatively short time. It tries to estimate an
autoregressive model, and construct mean and confiden
interval for evaluating correctly the objective function
obtained by small amount of output data.

In this section we discussed general problems o
simulation optimization method, and literature reviews on
simulation optimization method is explained in section 2
In section 3, we describe an algorithm to be proposed fo
searching a feasible solution including the basic concept
the proposed algorithm, the detailed algorithm to adjust th
value of decision variables, and the stopping conditions o
the proposed algorithm. In section 4, in order to tes
availability and efficiency of the proposed algorithm, we
experiment and analyze using an (s,S) inventory model.
Finally, the summaries of researches are described
section 5.

2 LITERATURE REVIEW

Simulation optimization problems have been discussed b
Glynn (1986), Meketon (1987), Jacobson and Schrube
(1989), Safizadeh (1990), Ho and Cao (1983), Rubinste
and Shapiro (1993), and etc. The methods using Fini
Differences which is broadly used in optimization have
disadvantage such that at least n+1 number of simulation
runs is necessary to estimate gradient of a given proble
with n number of parameters (Heidergott 1995). Therefore
in order to solve the problem of multiple replication runs in
simulation optimization, we need to develop simulation
optimization method using a single run. For the single ru
simulation optimization, Perturbation Analysis (Ho and
Cao 1983) and Score Function (Rubinsten and Shapi
1993) were developed, but all of them are focused on th
8

, and Kim

g
a
,

t
,

s
o
n
e

e

a

n
th

o
is
f

e

of

s
re
d
c

f
s

n

s

Lee, Park

cases of continuous decision variables and require th
theoretical assumptions.

For discrete variable simulation optimization, the
methods were studied using simulated annealin
(Ahmed, Alkhamis, and Hasan 1997, Lee and Iwat
1991), stochastic ruler method (Yan and Mukai 1992)
stochastic comparison method (Gong, Ho, and Zha
1992), random walk (Andradottir 1996), nested
partitions method (Shi and Sigurdur 1997),
evolutionary(genetic) algorithm (Pierreval and Tautou
1997), multi-armed bandit method (Barry and Fristed
1985), learning automata (Yakowitz and Lugosi 1990)
and etc. But most of the methods tried to optimize
simulated systems using multiple runs.

Also, in the optimal design of discrete variable
stochastic systems using simulation optimization method
the previous researches did not consider the long length
simulation which must be mentioned, and only focused o
the algorithm of stochastic optimization based on Mont
Carlo simulation.

3 ALGORITHMS

The general process for searching design alternatives in
single run simulation is described in algorithm 3.1.

[Algorithm 3.1]
Step 1: Set objective functions ()(Xfi), decision

variables, njxj ,...,1, = , target values (iA and c),

incremental value of decision variables (jx∆), and time

interval for evaluating objective functions and adjusting
values of decision variables (t∆), and start simulation.

Step 2: During simulation, objective functions with
target values(refer to Algorithm 3.2) are compared and th
values of decision variables are adjusted with jx∆ .

Step 3: If the stopping condition of the algorithm is
satisfied, then the values of decision variables that hav
been most frequently visited are determined as the fin
solution.

Step 4: Simulation is conducted for verification with
the obtained solution and enough run length.

Generally speaking, when t∆ are small, objective
functions values are frequently evaluated and then th
algorithm can faster converge to the value of decisio
variables that satisfy target values. In this case because
gathered data are small the evaluation errors of objectiv
functions are larger than the case of large t∆ . Also much
time to evaluate objective functions and adjust the value
decision variables is needed. Thus, an algorithm
proposed, which effectively estimates the value o
objective functions with relatively short time simulation in
679
e

i

,
f

a

e
l

e

e
e

f

steady state. In Step 2 of the previous Algorithm 3.1, th
value of decision variable, jx , is changed with the

increment of jx∆ during simulation using the algorithm in

section 3.1

3.1 Adjustment of Decision Variables

The basic algorithm is explained here to change value
decision variable, jx , at each t∆ during simulation

according to the compared results of objective function
and target values. The values of objective functions a
observed, which are obtained by simulation output an
either a monotonic increasing function or a monotoni
decreasing function. Using the form of given objective
functions in iA , }]{ },{ },[{ cforcfcf iii <>= and target

value, c, the value of decision variable j at time t-1 and
t, 1, −tjx and tjx , , the value of objective function i at time t-1

and t, 1, −tiy and tiy , are obtained from simulation.

According to the increasing and decreasing information o
decision variables, the value of decision variables i
changed with jx∆ to the direction in which the frequencies

of the accumulative number of none changed decisio
variables are the largest.

The notations and algorithms for adjusting the value
of decision variables can be described as follows:

tjx , : Value of decision variable, j, at time, t.

tiy , : Value of object function, i, at time, t.
o

jcount : Accumulated number of unchanged

value of y.
+
jcount : Accumulated number of increased value

of y.
−
jcount : Accumulated number of decreased value

of y.

ja , jb : Lower bound and upper bound of

variable, j.
++

iL : Set of the decision variables when the

value of a decision variable, jx , is

increased (decreased), the value of object
function, i, is increased (decreased).

−+
iL : Set of the decision variables when the

value of decision variable, jx , is

decreased (increased) the value of object
function, i, is increased (decreased).

o

iL : Set of decision variables that are not

included in ++
iL or −+

iL .

crete Variable Design Alternatives
An Approach for Finding Dis

[Algorithm 3.2]
Step 0:
(initiali
zation)

Set o

jcount = 0, +
jcount = 0, −

jcount = 0, for

all njxj ,...,1, = and set the value of ja and

jb . Set c and ε for object function, i. Build

up the list of ++
iL , −+

iL , and o

iL .

Step 1: Go to Step 5 after executing one of the
following steps for njxj ,...,1, = :

1) If 1, −tjx < tjx , then go to Step 2.

2) If 1, −tjx > tjx , then go to Step 3.

3) If 1, −tjx = tjx , then go to Step 4.

According to the object function, i, only one
of the cases listed below is executed.
(case 1) }{ cfA ii ==
Step 2.1.1: If jx ∈ o

iL then go to Step

2.1.3, otherwise move to Step
2.1.2.

Step 2.1.2: If tiy , = c, then o

jcount =
o

jcount + 1.

If tiy , < c and jx ∈ ++
iL then

+
jcount = +

jcount + 1.

If tiy , < c and jx ∈ −+
iL then

−
jcount = −

jcount + 1.

If tiy , > c and jx ∈ ++
iL then

−
jcount = −

jcount + 1.

If tiy , > c and jx ∈ −+
iL then

+
jcount = +

jcount + 1.

Step 2.1.3: If tiy , = c, then o

jcount =
o

jcount + 1.

If 1, −tiy ≤ tiy , and tiy , < c then
+
jcount = +

jcount + 1.

If 1, −tiy ≤ tiy , and tiy , > c then
−
jcount = −

jcount + 1.

If 1, −tiy > tiy , and tiy , < c then
−
jcount = −

jcount + 1.

If 1, −tiy > tiy , and tiy , > c then
+
jcount = +

jcount + 1.

(case 2) }{ cfA ii <=

Step 2:

Step 2.2.1: If jx ∈ o

iL then go to Step

2.2.3, otherwise go to Step
2.2.2.

Step 2:
680
Step 2.2.2: If tiy , < c, then o

jcount =
o

jcount + 1.

If tiy , ≥ c, and jx ∈
++

iL then
−
jcount = −

jcount + 1.

If tiy , ≥c and jx ∈
−+

iL then
+
jcount = +

jcount + 1.

Step 2.2.3: If tiy , < c, then o

jcount =
o

jcount + 1.

If 1, −tiy ≥ tiy , and tiy , ≥c then
−
jcount = −

jcount + 1.

If 1, −tiy > tiy , and tiy , ≥c then
+
jcount = +

jcount + 1.

(case 3) }{ cfA ii >=
Step 2.3.1: If jx ∈ o

iL then go to Step

2.3.3, otherwise go to Step
2.3.2.

Step 2.3.2: If tiy , > c then o

jcount =
o

jcount + 1.

If tiy , ≤c and jx ∈
++

iL then
−
jcount = −

jcount + 1.

If tiy , ≤c and jx ∈
−+

iL then
+
jcount = +

jcount + 1.

Step 2.3.3: If tiy , > c then o

jcount =
o

jcount + 1.

If 1, −tiy ≤ tiy , and tiy , ≤ c then
+
jcount = +

jcount + 1.

If 1, −tiy > tiy , and tiy , ≤ c then
−
jcount = −

jcount + 1.

According to the object function, i, only one
of the cases listed below is executed.
(case 1) }{ cfA ii ==

Step 3:

Step 3.1.1: If jx ∈ o

iL then go to Step

3.1.3, otherwise go to Step
3.1.2.

Lee, Park,

Step 3.1.2: If tiy , = c then o

jcount =
o

jcount + 1.

If tiy , < c and jx ∈
++

iL then
+
jcount = +

jcount + 1.

If tiy , < c and jx ∈
−+

iL then
−
jcount = −

jcount + 1.

If tiy , > c and jx ∈
++

iL then
−
jcount = −

jcount + 1.

If tiy , > c and jx ∈
−+

iL then
+
jcount = +

jcount + 1.

Step 3.1.3: If tiy , = c then o

jcount =
o

jcount + 1.

If 1, −tiy ≤ tiy , and tiy , < c then
+
jcount = +

jcount + 1.

If 1, −tiy ≤ tiy , and tiy , > c then
−
jcount = −

jcount + 1.

If 1, −tiy > tiy , and tiy , < c then
−
jcount = −

jcount + 1.

If 1, −tiy > tiy , and tiy , > c then
−
jcount = −

jcount + 1.

(case 2) }{ cfA ii <=
Step 3.2.1: If jx ∈ o

iL then go to Step

3.2.3, otherwise go to Step
3.2.2.

Step 3.2.2: If tiy , < c then o

jcount =
o

jcount + 1.

If tiy , ≥c and jx ∈ ++
iL < c

then −
jcount = −

jcount + 1.

If tiy , ≥c and jx ∈ −+
iL < c

then +
jcount = +

jcount + 1.

If 1, −tiy ≤ tiy , and tiy , > c then
−
jcount = −

jcount + 1.

Step 3.2.3: If tiy , < c then o

jcount =
o

jcount + 1.

If 1, −tiy ≤ tiy , and tiy , ≥c then
+
jcount = +

jcount + 1.

If 1, −tiy > tiy , and tiy , ≥c then
−
jcount = −

jcount + 1.

(case 3) }{ cfA ii >=
681
 and Kim

Step 3.3.1: If jx ∈ o

iL then go to Step

3.3.3, otherwise go to Step
3.3.2

Step 3.3.2: If tiy , > c then o

jcount =
o

jcount + 1.

If tiy , ≤ c and jx ∈ ++
iL < c

then +
jcount = +

jcount + 1.

If tiy , ≤ c and jx ∈ −+
iL < c

then −
jcount = −

jcount + 1.

Step 3.3.3: If tiy , > c then o

jcount =
o

jcount + 1.

If 1, −tiy ≤ tiy , and tiy , ≤ c then
−
jcount = −

jcount + 1.

If 1, −tiy > tiy , and tiy , ≤ c then
+
jcount = +

jcount + 1.

According to the object function, i, only one
of the cases listed below is executed.
(case 1) }{ cfA ii ==
Step 4.1.1: If ε≤− cy ti , then o

jcount =
o

jcount + 1.

If ε>− cy ti , and jx ∈ o

iL

then go to Step 4.1.3,
otherwise go to Step 4.1.2

Step 4.1.2: If jx ∈ ++
iL then −

jcount =
−
jcount + 1.

If jx ∈ −+
iL then +

jcount =
+
jcount + 1.

Step 4.1.3: +
jcount = +

jcount + 1 with

probability 0.5 or −
jcount =

−
jcount + 1 with probability

0.5
(case 2) }{ cfA ii <=

Step 4:

Step 4.2.1: If jx ∈ o

iL then go to Step

4.2.3, otherwise go to Step
4.2.3

An Approach for Finding Discrete Variable Design Alternatives

t

ed

hm
hat
red
ns

y
the
on

e
e
of
gh
s,
Step 4.2.2: If tiy , < c then o

jcount =
o

jcount + 1.

If tiy , ≥c and jx ∈ ++
iL then

−
jcount = −

jcount + 1.

If tiy , ≥c and jx ∈ −+
iL then

+
jcount = +

jcount + 1.

Step 4.2.3: If tiy , < c then o

jcount =
o

jcount + 1.

If 1, −tiy ≤ tiy , and tiy , ≥c

then +
jcount = +

jcount + 1.

If 1, −tiy > tiy , and tiy , ≥c

then −
jcount = −

jcount + 1.

(case 3) }{ cfA ii >=
Step 4.3.1: If jx ∈ o

iL then go to Step

4.3.3, otherwise go to Step
4.3.2

Step 4.3.2: If tiy , > c then o

jcount =
o

jcount + 1.

If tiy , ≤ c and jx ∈ ++
iL

then +
jcount = +

jcount + 1.

If tiy , ≤ c and jx ∈ −+
iL

then −
jcount = −

jcount + 1.

Step 4.3.3: If tiy , > c then o

jcount =
o

jcount + 1.

If 1, −tiy ≤ tiy , and tiy , ≤ c

then −
jcount = −

jcount + 1.

If 1, −tiy > tiy , and tiy , ≤ c

then +
jcount = +

jcount + 1.

Step 5: For all njxj ,...,2,1, = ,

],,max[* −+= jj

o

j countcountcountcount (If

more than one, select randomly)
If += jcountcount* then

]),min[(,1, jjtjtj bxxx ∆+=+

If −= jcountcount* then

)](,max[,1, jtjjtj xxax ∆−=+

3.2 Stopping Algorithm

When the algorithm satisfies the target values
simulation must be stopped. The algorithm to inspect
68
he
the

stopping conditions of the proposed procedure is describ
below.

K: The number of recent time intervals to inspect
the stopping conditions. K is a constant and
set by user (K=1, 2, …, n).

*

jx : The values of decision variables visited most

frequantly at current time t and within K time
intervals.

η : The integer value to calculate the

tolerance)(*

jj xx ∆±η for all njx j ..., ,2 ,1, =
for setting stopping conditions(η =0, 1, 2,

…,m).

[Algorithm 3.3]
Step 0: Set the integer value of K and η .

Step 1: For all njxj ,...,1, = , the folowing Step 1.1

is conducted and if it is satisfied by all
decision variables, then go to Step 2.
(Step 1.1) Using Algorithm 3.1, *

jx is

obtained and if the all values of decision
variables are included in []jj xx ∆±η* in K

time intervals, then go to Step 2. Otherwise,
continue simulation to time interval t.

Step 2: If it is satisfied by the target condition i, then
stop the simulation. Otherwise,
 1) If η is 0 then stop the algorithm and the

simulation, and conclude that an alternative,
which satisfies the target value, does not
exist.
 2) If η > 0, then change η to

]1,0max[−= ηη and continue simulation to

next time interval tt ∆+ .

3.3 Evaluation of Objective Functions

In Algorithm 3.1, when t∆ are small, objective functions
values are frequently evaluated and then the algorit
can faster converge to the value of decision variables t
satisfy target values. In this case because the gathe
data are small the evaluation errors of objective functio
are larger than the case of large t∆ . To solve this
problem, we propose the algorithm, which efficientl
estimates objective functions in steady state using
small data that are obtained by relatively short simulati
run.
 Voss, Haddock, and Willemain (1996) propose th
algorithm that obtains efficiently the value of objectiv
functions in steady state during a short simulation
transient period using an autoregressive model. Throu
experimentation compared with the other method
2

Lee, Park, and Kim

t

)
e
h
e

r

e

ss

s

nd
dy

f
4.
al
h

t,
er
unweighted batch means (Law and Kelton 1995) an
weighted batch means (Bischak, Kelton, and Polloc
1993), the method is superior or similar to the othe
methods with respect to mean error, root mean squa
error, coverage, mean interval length, and etc.
 Therefore, in this paper we propose an algorithm
estimate the value of objective functions with a
relatively short value of t∆ based on the method
proposed by Voss, Haddock, and Willemain (1996
Because the output data obtained during a short transi
period strong autocorrelation exists between data, t
output process fits very well the autoregressive mod
(Fishman 1978).

The autoregressive model, AR(p), with order, p, could
be expressed by Equation (1) (Fuller 1996).

 ∑ =++=
=

−

p

i
titit tyy

1
0 ,...2,1 , εφφ (1)

If we assume the average of system respons
converges to only one point, the average in steady sta

)(φµµ = , is expressed by Equation (2).

 1

1
0 }1{][lim)(−

=∞→
∑−==Φ
p

i
it

t
XE φφµ (2)

And the conditional least square estimate of Φ̂ is obtained
by Equation (3) (Fuller 1996) and the procedures a
explained by the Algorithm 3.4.

 nn vA 1ˆ −=Φ (3)

[Algorithm 3.4]

Step 1: Select the maximum value, maxp , of p.

Step 2: Calculate)(2 pS , max0 pp ≤≤ .

Step 3: Calculate FIC(p), max0 pp ≤≤ .

Step 4: Select order, *p minimizing FIC(p).

In this paper we use Yule-Walker method that th

variance of Φ̂ is minimized by the experimentation of
Broerson and Wensink (1993), and the formula is express
by Equation (4).

nnn

in

y
n

pS

y
n

pS

i

p

i
i

n

t
t

n

t

p

i
it

1

)2(

)1ln(
1

ln)}(ln{

)1(
1

)(

11

22

1 1

22

≅
+
−=

∑ −+

∑=

∑ ∏ −=

==

= =

ν

ν

ν

(4)
683
d
k
r
re

o

.
nt
e
l

es
te,

e

ed

In this paper we use Equation (5) to consider aptne
and efficiency of future data that are not used.

 }2)(ln{)(
1

2 ∑+=
=

p

i
ivpSpFIC (5)

In theoretical aspects when we use Batch Mean
method, maxp has the value of (batch size –1). But, in this

paper we set 20max =p to consider p=15(n≥256) proposed

by Voss, Haddock, and Willemain (1996) and p value used
by Bischak, Kelton, and Pollock (1993)’s Weighted Batch
Means method.

nµ̂ , an estimate of average,)(Φµ , in steady state is

expressed by Equation (6) to consider standard average a
bias correction. The method to obtain average in stea
state is arranged in Algorithm 3.5 and nµ̂ is applied to

Algorithm 3.1, 3.2, and 3.3.

 ∑−−

 ∑−∑∑
+=

=

+−=+−==

− p

i
i

n

int
t

p

ipt
t

p

i
i

pnn

pn

yy
Y

1

111

ˆ1)(

ˆ

ˆ
φ

φ
µ (6)

[Algorithm 3.5]
Step 1: Calculate *p using Algorithm 3.4.

Step 2: Calculate Φ̂ using Equation (3).
Step 3: Calculate nµ̂ using Equation (6).

4 EXPERIMENTATION

An (s,S) inventory control problem (Law and Kelton 1995)
was selected to evaluate the developed algorithm.

In this experimentation, first (s,S) was set as (40, 60)
and a pilot simulation was conducted with long run o
10,000 months. The obtained average total cost is 125.7
Using the obtained results it was tested to see if the fin
solution could be found near to the obtained solution wit
changing t∆ .

The mathematical model of the explained (s,S)
inventory control system could be expressed as

 arg {E[f(X)] ≤c}

 where

)]([XfE : Average inventory cost per unit time

 A: {E[f(X)] ≤c} =
 {Average cost per unit time ≤125.74}
],[21 xx : [s, Reorder point, S, Reorder quantity].

The lower bound and the upper bound of reorder poin
s, was set as (10, 50) and the lower bound and the upp

An Approach for Finding Discrete Variable Design Alternatives

of

d

 1

74
of

 is

.
e
e

bound of quantity, S, as (20, 70). Simulation was started
with the initial value of (s,S) as (10, 30). Also, the stopping
condition, K, was set as 10 and the incremental value
decision variables, s∆ and S∆ , as 1.

The Figure 1 shows the results of the propose
algorithm when the t∆ are 10, 30, and 100. Also, we know
the total cost converges to target value 127. The Table
shows the final results of (s,S) and average inventory costs
obtained when simulation stops with different t∆ .

In the Table 1 when t∆ is 50 we observe that the
average inventory cost converge to 125.20 near to 125.
which is target value, and the obtained value, (39, 59),
decision variables, (s,S) is approximately near to (40, 60).
When t∆ is 100 we know that (s,S) is determined to be
(39, 59) and the obtained average total cost, 125.62,
approximately near to 125.74.
Figure 1: Average Total Cost at t∆ in the (s,S) Inventory System
hm
Table 1: The Results Obtained by the Proposed Algorit
in the (s,S) Inventory System

t∆ (s,S) Average total cost
10 (29, 49) 121.05
30 (32, 52) 122.12
50 (39, 59) 125.20
100 (39, 59) 125.62
684
5 CONCLUSIONS

A discrete simulation optimization method for designing a
complex probabilistic discrete event system was proposed
The proposed algorithm searches the effective and reliabl
alternatives satisfying the target values of the system to b
designed through a single run in a relatively short time
period. Using the proposed algorithm, decision variables
could be obtained the final values satisfying target level
with a single run and a small output data.

But, because the size of t∆ depends on the given
problem and characteristics of decision variables and it
affect on the final result, selection of the suitable value
of t∆ is very important.
REFERENCES

Ahmed, M.A., T. M. Alkhamis, and M. Hasan. 1997.
Optimizing discrete stochastic systems using
simulated annealing and simulation. Computers &
Industrial Engineering 32: 823-836.

Andradottir, S. 1996. A global search method for discrete
stochastic optimization. SIAM Journal on
Optimization 6: 513-530.

Barry, D.A., and B. Fristedt. 1985. Bandit problems.
London: Chapman and Hall.

Bischak, D. P., W. D. Kelton, and S. M. Pollock. 1993.
Weighted batch means for confidence intervals in
steady-state simulations. Management Science 39:
1002-1019.

Broerson, P. M., and H. E. Wensink. 1993. On finite
sample theory for autoregressive model order
selection. IEEE Transactions on Signal Processing 41:
194-204.

Fishman, 1978. G. S. Principles of Discrete Event
Simulation. New York: John Wiley and Sons.

Fuller, W. A. 1996. Introduction to statistical time series.
New York: John Wiley and Sons.

Glynn, P. W. 1986. Optimization of stochastic systems. In
Proceedings of 1986 Winter Simulation Conference,
52-59.

Gong, W. B., Y. C. Ho, and W. Zhai. 1992. Stochastic
comparison algorithm for discrete optimization with
estimation. In Proceedings of the 31st IEEE
Conference on Decision and Control, 795-800.

Heidergott, B. 1995. Sensitivity analysis of a
manufacturing workstation using perturbation analysis
techniques. International Journal of Production
Research 3: 611-622.

Lee, Park, and Kim

Ho, Y. C., and X. R. Cao. 1983. Perturbation analysis and
optimization of queueing networks. Journal of
Optimum Theory and Application 4: 559-582.

Jacobson, S. H., and L. W. Schruben. 1989. Techniques for
simulation response optimization. Operations
Research Letters 8: 1-9.

Law, A. M., and W. D. Kelton. 1995. Simulation Modeling
and Analysis, McGraw-Hill.

Lee,Y. H., and K. Iwata. 1991. Part ordering through
simulation-optimization in a FMS. International
Journal of Production Research 29: 1309-1323.

Meketon, M. S. 1987. Optimization in simulation: a survey
of recent results. In Proceedings of 1987 Winter
Simulation Conference, 58-67, 1987.

Pierreval, H., and L. Tautou. 1997. Using evolutionary
algorithms and simulation for the optimization of
manufacturing systems. IIE Transactions 29: 181-189.

Rubinstein, R. Y., and A. Shapiro. 1993. Discrete event
systems, New York: John Wiley & Sons.

Safizadeh, M. H. 1990. Optimization in simulation: current
issues and the future outlook. Naval Research
Logistics 37: 807-825.

Shi, L., and O. Sigurdur. 1997. Nested partitions method
for stochastic optimization. Technical Report,
Department of Industrial Engineering, University of
Wisconsin-Madison.

Voss, P. A., J. Haddock, and T. R. Willemain. 1996.
Estimating steady state mean from short transient
simulations. In Proceedings of the 1996 Winter
Simulation Conference, 222-229.

Yakowitz, S., and E. Lugosi. 1990. Random search in the
presence of noise with application to machine
learning. SIAM Journal on Scientific Statistical
Computing 11: 702-712.

Yan, D., and H. Mukai. 1992. Stochastic discrete
optimization. SIAM Journal on Control and
Optimization 30: 594-612.

AUTHOR BIOGRAPHIES

YOUNG HAE LEE is a Professor in the Department of
Industrial Engineering, Hanyang University, Korea, and a
vice president of the Korean Society for Simulation. He
received his B.Sc. from Korea University, and M.Sc. and
Ph.D. from University of Illinois at Chicago in 1983 and
1986. He spent a sabbatical year at Osaka University,
1990-1991, and Purdue University, 1997-1998. His areas
of interest are Simulation Optimization, Simulation Output
Analysis, and Simulation in Manufacturing and Logistics.
He is a senior member of IIE, INFORMS and a member
SCS.

KYOUNG JONG PARK is an Assistant Manager of
Institute of Information Technology, Daewoo Information
Systems Co., Ltd., Korea. He obtained his B.Sc., M.Sc.,

and Ph.D. from the Department of Industrial Engineering,
Hanyang University, Korea. His research interests are
Simulation Output Analysis, Simulation Optimization, and
Supply Chain Management.

KIM TAG GON is a Professor in the Department of
Electrical Engineering, KAIST (Korea Advanced Institute
of Science and Technology), Korea. He received Ph.D
degree in Computer Engineering from University of
Arizona in 1988. He has been an Assistant Professor in
ECE Department of University of Kansas between 1989
and 1991. Since Fall, 1991 he has been with EE
Department of KAIST, where he teaches and performs
research on theory and applications of discrete event
systems modeling and simulation. He is an Associate
Editor of Simulation, Trans. of Society for Computer
Simulation, and an Editor of International Journal in
Intelligent Control and Systems. He is a senior member of
IEEE and SCS, and a member of ACM and Eta Kappa Nu.

685

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

