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ABSTRACT Furthermore, we derive conditions for asymptotic conver-
gence of the algorithm and provide practical guidelines
We investigate a new approach for simulation-based opti- for how to conduct the adaptive sampling in terms of the
mization that draws on two recent stochastic optimization computational effort needed for each iteration.
methods: an adaptive sampling approach called the nested The remainder of this paper is organized as follows. In
partitions method and ordinal optimization. An ordinal Section 2 we define the problem and discuss the optimization
comparison perspective is used to show that the nested par-methodology applied. In Section 3 we present convergence
titions method converges globally under weak conditions. results for this method, and finally, Section 4 contains some
Furthermore, we use those results to determine a lower concluding remarks.
bound for the required sampling effort in each iteration,
and show that global convergence requires relatively litle 2 OPTIMIZATION METHODOLOGY
simulation effort in each iteration.
In this paper we are concerned with optimizing a perfor-
1 INTRODUCTION mance function/ : ® — R over a finite feasible regio®;
that is,
In system optimization it is often desirable to optimize the )
performance of a system where the solution parameters are min J(©), @)
discrete and the outcomes are uncertain. This means that o )
there is no analytical expression relating the discrete deci- Wherel®| < oo. For simplicity of presentation, we assume
sion parameters to the corresponding expected performancethat there is some unique solutiég),, € © that solves this
of the system. Such stochastic discrete optimization prob- Problem, thatis,/ (Oopr) < J (©), for all 6 € ©\ {6 }.
lems have received considerable attention in recent years, " PracticeJ(6) is often the expected performance of a
and methods proposed for this problem include, for exam- COMPlex system given some underlying solution parameters
ple, the stochastic rulermethod (Yan and Mukai, 1992; 6, and there may be no analytical expressmn.avanable to
Alrefaei and Andradittir, 1997), the method of Andradtir relate this expepted_ performance to the .solut|on parame-
(1995), thestochastic comparisomethod (Gong, Ho, and  t€rs. In such situations/(¢) must be estimated from a
Zhai, 1992) ordinal optimization(Ho, Sreenivas, and Vak- ~ Simulation sample performande, (6), wherer is the sim-
ili, 1992), thestochastic branch-and-bour@lorkin, Pflug, ulation time. We assume that regenerative simulation is

and Ruszczigski, 1996), and theested partitions(NP) used to estimate the system performance, thdtlis, is a
method (Shi andlafs-son. 1998a b). Under certain con- regenerative process and the problem is that of simulation-

ditions, all of these methods have been shown to converge based optimization with discrete decision parameters. Such
almost surely to an optimal solution. For recent reviews of Simulation-based optimization has numerous applications.
simu-lation-based optimization methods the reader can for HOWEVer, in practice it is very computationally expensive

example consult Carson and Maria (1997) and Anéitéd to obtain accurate steady-state simulation estimates of the
(1998). performance of a complex system, and it is hence often

In this paper we investigate the NP method from the N€cessary to content with a short simulation that results in
perspective of ordinal comparison, which enables us to gain NOISier estimates; thatismay be very small and, (6) may

insights into the convergence of the NP method and proves N€nce only be a rough estimate &(¢) for eacht € ©.

that the ordinal nature of the method is indeed beneficial. 't Nas been observed that when dealing with such noisy
estimates it is beneficial to focus on the ordinal rather than
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cardinal values of the solutions (Ho, Sreenivas, and Vak-
ili, 1992), and we show that due to the ordinal nature of
the NP method it may indeed converge despite very noisy
simulation estimates. First, however, we describe the NP
method itself.

2.1 The Nested Partitions Method

The basic idea of the NP method is simple. In théh
iteration there is a region (k) € © that is considered the
most promising In the first iteration nothing is assumed
to be known about where good solutions are, so the entire
solution spacer(1l) = © is taken as the most promising
region. The most promising region is thgrartitioned
into M) subregions, wheré/,,, may depend on the
subseto (k) but not the iteration. What remains of the
solution space®\ o (k), is aggregated into one region called
the surrounding region. Clearly the NP method shifts the
focus from individual solutions to sets of solutions, and
the following definitions, that identify the most important
classes of such sets, will be convenient throughout the
analysis.

Definition 1 A set constructed using a fixed parti-
tioning strategy is called aalid region The collection of
all valid regions is denoted b¥. Singleton regions are of
special interest, and we Ie£g ¢ ¥ denote the collection
of all such valid regions. Finally, we leE, C ¥ denote
all the ‘good’ subregions, that isy € X, if and only if
Oopr € 0.

It will also be convenient to be able to identify the valid
region which was partitioned to obtain the current most
promising region, which motivates the next two definitions.

Definition 2 If a valid regiono € X is formed
by partitioning a valid regionp € X, theno is called a
subregionof regionn, and regiony is called asuperregion
of regiono.

Definition 3 We define theuperregion function :
¥ — X as follows. Letr € £\ ©. Defines(o) =n € Z,
ifand only ifo c nandifo C& C nthenE =noré =o.

For completeness we definé®) = ©.
It will also be necessary to keep track of distance

between valid regions, so we define two concepts, the depth

of a region, which essentially is its distance from the entire
solution space®, and a metric that defines the distance
between any two valid regions.

Definition 4 The singleton regions ilg, are called
regions ofmaximum depth More generally, we define the
depth d : ¥ — Ng, of any valid region iteratively witf®
having depth zero, subregions &f having depth one, and
so forth.
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Definition 5 We letm(-, )y : ¥ x ¥ — R be a
metric given the partitioning strateg¥, defined by

m(n1, n2)x = r,Qizn (d(n1) —d(m)) + (d(n2) —d(n)),

n1Sn, 1SN
2

and call it thepartitioning metric

We note that the depth of a regigne X is its distance
from the entire feasible regidf, thatis,d(n) = m(®, n)x.
Furthermore, the performance of the NP method turns out
to depend on how the patrtitioning is performed, and we can
use this metric to define the ideal case.

Definition 6 A partitioning strategyx is calledop-
timalif and only if the global optimuma,,; has the following
property: For all n1, n2 € ¥ such thatd(n1) = d(n2) and
m(Gopr, M)y < M(Oopt, N2) %5 then

J(O) < J($), VO € n1, Vo € n2. (3)

Returning to the procedure of the NP method, then given
a partitioning ofo (k), at thek-th iterationM, ), + 1 disjoint
subsets that cover the feasible region are considered. Each
of these regions is sampled using sormadom sampling
scheme, resulting in a sé,,, of sample points. The
samples are then used to estimate ph@mising indexfor
each region. This index is a set performance function
I : ¥ — R, that determines which region becomes the
most promising region in the next iteration and the estimate
I (0j(k)) = I (Do,r)) depends only on the set of sample
points. If one ofthe subregions is found to be best, this region
becomes the most promising region. If the surrounding
region is found to be best, the methioalcktrackgo a larger
region. To choose this larger region a fixed backtracking
rule is used.

Definition 7 Let j be the index corresponding to
the best region found in the-th iteration.

Ji = arg rr}infw,- (k)) @)

Based onjy, either move to a subregion or backtrack to
the superregion of the current most promising region. That

is, let

if ji < My + 1,
otherwise.

o (k),

5
s (o(k)), ©)

o(k+1)={

where the function : ¥ — X is as in Definition 3 above.
The new most promising region(k + 1) is then par-
titioned and sampled in a similar fashion. This generates a
sequence of set partitions, with each partition nested within
the last. We assume that the partitioning is continued until
eventually all the points in the feasible region correspond
to a singleton region, and we let the estimate of the best
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solution be the singleton region that has been considered
the most promising the most often.

Definition 8  Let N;(o) be the number of times
regiono € X has been considered the most promising region
by thek-th iteration. The estimate of the best solution is

(6)

Gopr (k) = arg max\y (o),
oeXg

the most frequently visited singleton region by thé¢h
iteration.

We note again that the basic idea of the NP algorithm
is to shift the focus from the solution space itself to a

being compared to another bad regigne  \ ,, then it
is sufficient that

[(0g) < I(o), ®)

that is, if the rank is preserved then the correct valid region
is selected. The advantage of this being sufficient is that
the estimated rank of a random variable may converge to
its true rank at an exponential rate even if the cardinal
values converge at a much slower rate (Dai, 1996). The
implication is that it is not necessary to accurately estimate
J(9) for eachd € D, to obtain a sufficiently good estimate
of the promising index. Therefore, for evesy € ¥ and

sequence of subsets of the solution space. These subsets areorresponding set of sample poiris, we let

sampled with variable density and a promising index for each
subset is estimated. The ordinal values of these estimates
determine how the algorithm proceeds in the next step.
It is clear from equation (4) that accurately estimating the
promising index is not critical. Only the ordinal values affect
how the NP algorithm proceeds. If subregiop, € X,
contains the true global optimum, then it is sufficient that
I (05, (®) <1(0j(k)), Yj # jop. If this holds then the
subregion containing the global optimum is identified. We
conclude that if the rank is preserved then nothing is gained
from more accurate estimates.

2.2 An Ordinal Promising Index

It is clear from the description of the NP method that a
critical elementis the selection and estimation of a promising
index. Indeed, the estimated values of this index determine,
in each iteration, how the sampling is concentrated in the
next iteration. In its simplest form the estimated promising
index can be taken as a summary statistic for the sampling
information (Shi andlafsson, 1998a). We can for example
define the promising index function as

I(c) =minJ (), o € =. (7)

feo

For a givenregiow € X and a set of sample poiri®, C o,
we need to obtain an estimatés) of the promising index
value I (o). This estimate must be based on the sample
performancel,(9) for each sample poit € D,, but the
problem is that an accurate estimate of the performance
is very expensive. If the performance is estimated using
simulation it is well known that the estimafee) converges
to J(0) at a rate that is at the moﬁ(%) in the total
simulation timer. This in turn implies that the estimate
f(o) converges tal (o) at a rate that is at least as slow.
However, recall that if it is desirable to move into a good
regiono, € X, whereX, is as in Definition 1, and this is
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[(0) = min L;(6). 9

(o) oo 1(6) 9)
SinceL,(0) is obtained using regenerative simulation, and
such estimates are strongly consistent, we have that

[(c) = min J(©), w.p.1.
0e€D,

So, in the long-run, ifmineepag J(O) < mingepgb J(0)
theno, will be selected. However, it is also known that this
convergence occurs rather slowly. On the other hand, as
we pointed out above we do not need accurate estimates of
the cardinal values and we will show that if the estimated
promising index (9) is used then, for certain systems, the
probability of equation (8) holding converges to a sufficiently
large value at an exponential rate.

3 CONVERGENCE ANALYSIS

By noting how the NP algorithm moves from one region
in ¥ to the next, based only on the current sampling in-
formation, it is clear that the algorithm generates a Markov
chain{o (k)}2; with state spac&. Furthermore, it is not
difficult to show that this Markov chain has a unigue station-
ary distribution. To prove asymptotic convergence of the
method, we show that given certain regularity conditions,
the stationary probability of the singletan,; = {6,,:} is
greater than that of any other singleton region and the NP
algorithm converges to this maximum stationary probability
singleton Shi andlafsson (1998a,b).

3.1 Asymptotic Convergence

We begin by stating the asymptotic convergence result pre-
cisely.
Theorem 1 Assume that

Pli(o) =i@p]|zPli(e)=Tw@n]. (o)
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Vo, € X4,0, € X\ X,. Then the NP method converges
with probability one to the global optimum,,; = {6},
that is, ask — oo then
Gopt (k) = oopr, w.p.L. (1))

Proof: We will only sketch a proof here and refer to
Shi andOlafsson (1998b) for full analysis of the stochastic
NP method. We start by observing th@t(k)}7>,; is an
irreducible positive recurrent Markov chain. Therefore, it
has a unique stationary distributian and it is well known
that with probability one, ag — oo,

— (o), Yo € X,

Ni(o)
k

whereN; (o) counts, as before, the number of times &
is visited. Since, by Definition 8 the NP method estimates
the best solution as

50pt (k) = arggrgggd\/k (o)

it can be seen that with probability one las> oo,

Gopt (k) — arggrggx:r (0).
0

and in general, the same result holds for any region on the
‘path’ betweeno,,, and an arbitrary) € Zo \ {0 }. We
conclude thab,,, is a singleton region that maximizes the
stationary probability and the theorem holds.

It remains to justify that equation (10) may indeed be
satisfied then applying the method in practice, and how (10)
relates to the implementation parameters of the method, in
particular the partitioning and sampling. We approach this
via the perspective of ordinal comparisons.

3.2 Ordinal Comparison

To show analytically that using ordinal comparison is bene-
ficial we use the following theorem from Dai (1996), which
shows that (9) converges rapidly when used to estimate the
promising index.

Theorem2 LetD € © and let®;, = DN G be
the good solutions and le®, = D \ ©, denote the bad
solutions. We assume théX, # ¢ and ®, # . Then the
probability of the estimated best solutiondr, being better
than the estimated best solution @), converges to one at
an exponential rate.

P |:9r2(i~)2 L,(©) = min L:(G)] =1-0("), (12

. . . and
Hence, the algorithm converges to the singleton region that

maximizes the stationary distribution. Now to show that
this singleton region is indeet},,; = {6, }, first note that
the Markov chain is reversible and we hence have that for
anyn € Xo,

PK(an-ng) (n’ O-opt) 7-[(;7) = PK(U,O'opt) (Oopl’ n) T (Oopl) ’

wherexk (1, o,p;) is the number of transitions it takes to go
from 5 to o,,; and vice versa. Hence, if the(n, o,,/)-
step transition probability from to o, is larger than the
Kk (1, 04pr)-Step transition probability from to o,,; to n for

all n € %o\ {ogp: }, then

Oopt = arg max;r(n)
neXo

and the theorem is proven.

To see why this holds, we look at the superregion of
the optimum,s (o0,¢). By equation (10) it is clear that
the probability of moving to thes,,, is larger than the
probability of backtracking ta (s (op/)).

P [ 0op) < 1(©\ 5 (o0p) ]
P[1(©\ s (0op)) = T (o0p)]
P (s (00pt) » 5 (5 (90pr))) »

P (s (Uopl) J ‘70171)

v
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P [enggl Li(6) > grg([)rl Lz(e)i| =0 (e7™). (13)
Proof: See Theorem 4.5 in Dai (1996).
We immediately obtain the following theorem.
Theorem 3 Assume that two regions, € X, and
op € T\ X, are compared, where, contains the global
optimum buts;, does not. LeD,, denote the set of sample
points fromo,, and similarlyD,, denote the set of sample
points fromo;,. Then

P[i(ag) < i(ab)] min J() < min J(e)]

P
Ge’D,,g

+ 0 (e7),

€Ll

(14)

wheret is the simulation time.
Proof: By conditioning on the best solution sampled
being from the good region, that is,

E(rg €l

min J(6) < mén J(9)],

a-|
0eD,
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this follows directly from Theorem 4:

Plity < )] =P[0m1i)n Li(®) < min Lz(é)}

g €

P[ min L;(0) < min L;@®) A:|~ P[A]
6eD 0Dy,

Egg

+ min L;(®) < min L;(®)
6D,

P
0eD, op

og

(1—0(e))-P[A]+ O (e™)-(1— P[A]

=P [ min J(6) < min J(G):| + 0 (e7).
6eD, 6eD,

Egg

Aci| - (1-P[AD

€Ll

This proves the theorem.

In the k-th iteration of the NP method exactly one
of the subregions sampled, say-(k) € X,, contains the
global optimum. This subregion is compared with all of the
other regions, and will be selectediifo j«(k)) < I(o;(k)),

Vk = 1,2,..,M(o(k)) + 1. It follows that the method

is inherently ordinal and by Theorem 3 the probability
of moving towardso (k) in the next iteration converges
exponentially fast to a probability that depends only on which
solutions were randomly selected in the current iteration.
In other words, if we define the probability of selecting
the best solution from the right region & (o;+(k)) =

P I:mingepaj*<k) J(@©) < mingepﬂj(“ J(©), Vj# j*] ,then
Theorem 3 states that

P [f(oj*(k)) < i(o;(k)). Vk=1.2, ... M(o(k)) + 1]

= P*(0j+(k)) + O (e™*'),

wherer is as before the simulation time. The probability
P*(0j«(k)) can be made large by partitioning such that many
good solutions fall in the same regions or by increasing the
sampling effort in each iteration. This probability depends
on comparing multiple regions, but to simplify the analysis
we assume without loss of generality that we only compare
two regionso, € X, ando, € X\ X;. Accordingly, we
define thesuccess probability

min J(0) < emll)n J(Q)}, (15)

P*(0,,0p) =P
(0%, o) |:9 e €Dy,
forallo, € X, 0, € £\ X. Forthe remainder of the paper
we focus on howP* (o,, 03) depends on the partitioning
strategy and the sampling effort, and how it can be made
sufficiently large.
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3.3 Partitioning and Sampling

To better understand the relationship between the partitioning
and the required sampling effort, we start by looking at the
ideal case.

Theorem 4  Let the assumptions and definitions of
0y € Xg,0p € X\ I, be as in Theorem 3. IE is an
optimal partition then

P [i(ag) < i(a,,)] =1+ 0 (™), (16)
wheret is the simulation time.

Proof: By Definition 5 we have thain(o,;, 0o)s <
m(0ept, 0p)x, SO by Definition 6 of an optimal partition

J(©0) < J(¢), VO € 04, ¢ € 0p.

Therefore,

E()'g E()‘b

min J(0) < mén J(e)] =1

P[
0eD,

so the theorem follows directly from Theorem 3 above.
We note that Theorem 3 and Theorem 4 provide

new insights into when the NP method converges to the
global optimum. In particular, Theorem 3 implies that if
P*(0g,05) > 3 for all o, € B, 0 € T\ I, then the
global convergence condition (10) will be satisfied at an
exponential rate in terms of the simulation effort used for
evaluating each solution. By Theorem 6 this clearly holds
for optimal partitioning. In practice, however, optimal par-
titioning is never realized, and it is therefore of interest
to determine how good the partitioning needs to be. It
is also clear that as the partitioning becomes worse, more
sample effort may be needed from each region. To mea-
sure the quality of a partitioning strateg@y we define the
non-overlap sefunction, ¥ : ¥, — ® by

(o) =1{0€0,:J0) <JW). V¥ € O\ap}, (17)
o, € X,. This function counts, for each good region €
¥, how many of the solutions in the good region have better
expected performance than all of the solutions outside this
region, that is, the non-overlap in expected performance.
A high value indicates that it may be easy to differentiate
between the the good region and other regions, and vice
versa for low values. By definition oE, we have that
Oopr € W(0,) SOV (0,) # P forall o, € %,. Itis also clear
that if X is optimal then by Definition 6J(0) < J(y) for
all 0 € og, 9 € ®\ 0g, SOV¥(0g) = 0, for all o, € X.
Therefore, the size of this se¥ (o,)| € {1, 2, ..., |o,|} for
all o € X, is a measure of the qualit. We now obtain
the following theorem.
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Theorem 5  Let the assumptions and definitions of
og € Tg, 05 € £\E,beasinTheorem5. Leto,) = Dy, |
be the number of sample points fram € X,. Define

r(og) = W to be the percentage overlap, and
assume that

1
- log(3) ’
log(r (o))
and that uniform sampling is used. Then the global con-

vergence condition (10) is satisfied at an exponential rate,
that is,

n(og) (18)

Pliwy) < ion] = % +0(e™), (19

wheret is the simulation time.

Proof: It is clear that if one of the solutions i (c,)
is selected irID,,g then the best solution im,g is better
than the best solution if®,,. That is,

P [minge% J(9) < Mingep,, J(e)]
> P [W(og) N Dy, # ]
=1-P[¥(0y) N Dy, =]

1 <|ag|—|wg>|)"("g”

‘{Tg‘

where the last equation follows from the uniform sampling
strategy. On the other hand, by the assumption (18) we

have
(0g)
<|0g|—|\1f(ag)| n(og _ r(ag)n(ag)
|0g|
log(3)
< r(og) P9
log(3)
— (e'OG(rwg)))mw”%»
—  log®)
. 1
= 3
)

)

NI =

[min J(©) < min 1(9):| >

e og 0 ’D,,h

which, combined with Theorem 3, proves the theorem.
This theorem illustrates the relationship between the

partitioning and the sampling effort needed. If the par-

titioning is poor, that is|W(o,)| small for at least some

og € Iy, then more sample effort is need, and vice versa.
In particular, if ¥ (o,)| > @ for all o, € X,, then (19) is
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satisfied even if we use only one sample solution from each
region. Moreover, Theorem 5 illustrates just how important
a good partitioning strategy is, because the lower bound
(18) on the number of sample solutions needed converges
to one at an exponential rate pB(c,)| goes to% from
below. This is illustrated in Figure 1 where the minimum
required number of sample points to obtain a given suc-
cess probabilityP* (o, 03) € {0.25,0.50, 0.75} is plotted
against the percentage overlap

log| — W (o)

€ [0.50, 0.95],
|0g|

V(Ug) =

that is |¥(o,)| € [0.05,0.50]. The opposite is also true,
increasing the sampling effort in each iteration leads to
exponential improvement in the success probability as is
illustrated in Figure 2 for four different partitioning quality
levelsr(og) € {0.5,0.7, 0.9, 0.99}.

We conclude that when optimizing certain systems using
regenerative simulation, ordinal rather than cardinal opti-
mization is indeed beneficial. Furthermore, this translates
into weak convergence conditions for the NP algorithm,
and relatively little simulation effort being needed in each
iteration.

4 CONCLUSIONS

We have analyzed a new simulation-based optimization al-
gorithm that draws from the paradigm of ordinal optimiza-
tion and a recently proposed adaptive sampling algorithm
called the nested partitions (NP) method. The new algo-
rithm falls into the NP method framework, which guarantees
global convergence under certain conditions, and the ordi-
nal optimization perspective is used to show that for certain
problems the method also has certain exponential conver-
gence rate characteristics. We derived new conditions under
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Figure 2: Probability of Correct Selection
which asymptotic convergence holds and provided practi-
cal guidelines for determining the sampling effort in each

iteration.

5 ACKNOWLEDGEMENT

Estimation. InProceedings ofthe 31stIEEE Conference
on Decision and Control795-800.

Ho, Y.-C., R.S. Sreenivas, and P. Vakili. 1992. Ordinal Op-
timization of DEDS.Discrete Event Dynamic Systems:

~ Theory and Applications2, 61-88.

Olafsson, S. and L. Shi. 1998. Stopping Criterion for a
Simulation-Based Optimization Method. Proceed-
ings of the 1998 Winter Simulation Confereped. D.J.
Medeiros, E.F. Watson, J.S. Carson, and M.S. Mani-
vannan, 743-750. Institute of Electrical and Electronics
Engineers. Piscataway, New Jersey.

Shi, L. and S.Olafsson. 1997. An integrated framework
for deterministic and stochastic optimization. mmo-
ceedings of the 1997 Winter Simulation Conference
ed. S. Andradttir, K.J. Healy, D.H. Withers, and B.L.
Nelson, 352-357. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Shi, L and SOlafsson. 1998a. Nested Partitions Method for
Global Optimization.Operations Researclio appear.
Shi, L and S.Olafsson. 1998b. Nested Partitions Method
for Stochastic Optimization. Working Paper, 98-115,
Department of Industrial and Manufacturing Systems

Engineering, lowa State University.

This research was supported in part by the National Science Tang, Z.B. 1994. Adaptive Partitioned Random Search to

Foundation under grant DMI-9713647.
REFERENCES

Alrefaei, M.H., and S. Andrattir. 1997. Accelerating
the convergence of the stochastic ruler method. In
Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradttir, K.J. Healy, D.H. Withers, and B.L.
Nelson, 352-357. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Andracbttir, S. 1995. A method for discrete stochastic
optimization. Management Sciencgl: 1946-1961.

Andradbttir, S. 1998. A review of simulation optimization
techniques. IProceedings of the 1998 Winter Simula-
tion Conferenceed. D.J. Medeiros, E.F. Watson, J.S.
Carson, and M.S. Manivannan, 151-158. Institute of
Electrical and Electronics Engineers. Piscataway, New
Jersey.

Carson, Y. and A. Maria. 1997. Simulation optimization:
methods and applications. Proceedings of the 1997
Winter Simulation Conferenced. S. Andradittir, K.J.
Healy, D.H. Withers, and B.L. Nelson, 118-126. Insti-
tute of Electrical and Electronics Engineers, Piscataway,
New Jersey.

Dai, L. 1996. Convergence Properties of Ordinal Com-
parison in the Simulation of Discrete Event Dynamic
Systems. Journal of Optimization Theory and Appli-
cations 91, 363-388

Gong, W.-B., Y.-C. Ho, and W. Zhai. 1992. Stochastic
Comparison Algorithm for Discrete Optimization with

672

Global Optimization.[EEE Transactions on Automatic
Control, 39, 2235-2244.

Yan, D. and H. Mukai. 1992. Stochastic Discrete Opti-
mization. SIAM Journal Control and Optimizatior30,
594-612.

AUTHOR BIOGRAPHIES

SIGURDUR OLAFSSON is an assistant professor in
the Department of Industrial and Manufacturing Systems
Engineering at lowa State University. He received a
B.S. in Mathematics from the University of Iceland in
1995, and an M.S. and a Ph.D. in Industrial Engineering
from the University of Wisconsin - Madison in 1996 and
1998, respectively. His research interests include applied
probability, stochastic optimization, and simulation. He is
a member of IIE and INFORMS.

LEYUAN SHI is an Assistant Professor in the De-
partment of Industrial Engineering at the University
of Wisconsin-Madison. She holds a B.S. degree in
Mathematics from Nanjing Normal University, China
(1982), an M.S. degree in Applied Mathematics from
Tsinghua University, China (1985), and an M.S. and a
Ph.D. degrees in Applied Mathematics from Harvard
University (1990,1992). Her research interests include
modeling, analysis, and optimization of discrete event
systems, discrete-event simulation, and sensitivity analysis.



	MAIN MENU
	PREVIOUS MENU
	---------------------------------------
	Search CD-ROM
	Search Results
	Print

