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ABSTRACT

We investigate a new approach for simulation-based op
mization that draws on two recent stochastic optimizatio
methods: an adaptive sampling approach called the nes
partitions method and ordinal optimization. An ordina
comparison perspective is used to show that the nested p
titions method converges globally under weak condition
Furthermore, we use those results to determine a low
bound for the required sampling effort in each iteration
and show that global convergence requires relatively litt
simulation effort in each iteration.

1 INTRODUCTION

In system optimization it is often desirable to optimize th
performance of a system where the solution parameters
discrete and the outcomes are uncertain. This means t
there is no analytical expression relating the discrete de
sion parameters to the corresponding expected performan
of the system. Such stochastic discrete optimization pro
lems have received considerable attention in recent yea
and methods proposed for this problem include, for exam
ple, the stochastic rulermethod (Yan and Mukai, 1992;
Alrefaei and Andrad́ottir, 1997), the method of Andradóttir
(1995), thestochastic comparisonmethod (Gong, Ho, and
Zhai, 1992),ordinal optimization(Ho, Sreenivas, and Vak-
ili, 1992), thestochastic branch-and-bound(Norkin, Pflug,
and Ruszczýnski, 1996), and thenested partitions(NP)
method (Shi and́Olafs-son, 1998a,b). Under certain con
ditions, all of these methods have been shown to conver
almost surely to an optimal solution. For recent reviews o
simu-lation-based optimization methods the reader can f
example consult Carson and Maria (1997) and Andradóttir
(1998).

In this paper we investigate the NP method from th
perspective of ordinal comparison, which enables us to ga
insights into the convergence of the NP method and prov
that the ordinal nature of the method is indeed beneficia
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Furthermore, we derive conditions for asymptotic conve
gence of the algorithm and provide practical guidelin
for how to conduct the adaptive sampling in terms of t
computational effort needed for each iteration.

The remainder of this paper is organized as follows.
Section 2 we define the problem and discuss the optimiza
methodology applied. In Section 3 we present converge
results for this method, and finally, Section 4 contains so
concluding remarks.

2 OPTIMIZATION METHODOLOGY

In this paper we are concerned with optimizing a perfo
mance functionJ : 2 → R over a finite feasible region2;
that is,

min
θ∈2 J(θ), (1)

where|2| < ∞. For simplicity of presentation, we assum
that there is some unique solutionθopt ∈ 2 that solves this
problem, that is,J

(
θopt

)
< J (θ), for all θ ∈ 2 \ {

θopt
}
.

In practiceJ (θ) is often the expected performance of
complex system given some underlying solution paramet
θ , and there may be no analytical expression available
relate this expected performance to the solution param
ters. In such situations,J (θ) must be estimated from a
simulation sample performanceLt(θ), wheret is the sim-
ulation time. We assume that regenerative simulation
used to estimate the system performance, that is,{Lt } is a
regenerative process and the problem is that of simulati
based optimization with discrete decision parameters. S
simulation-based optimization has numerous applicatio
However, in practice it is very computationally expensiv
to obtain accurate steady-state simulation estimates of
performance of a complex system, and it is hence of
necessary to content with a short simulation that results
noisier estimates; that is,t may be very small andLt(θ)may
hence only be a rough estimate ofJ (θ) for eachθ ∈ 2.
It has been observed that when dealing with such no
estimates it is beneficial to focus on the ordinal rather th
6
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cardinal values of the solutions (Ho, Sreenivas, and Va
ili, 1992), and we show that due to the ordinal nature o
the NP method it may indeed converge despite very noi
simulation estimates. First, however, we describe the N
method itself.

2.1 The Nested Partitions Method

The basic idea of the NP method is simple. In thek-th
iteration there is a regionσ(k) ⊆ 2 that is considered the
most promising. In the first iteration nothing is assumed
to be known about where good solutions are, so the ent
solution spaceσ(1) = 2 is taken as the most promising
region. The most promising region is thenpartitioned
into Mσ(k) subregions, whereMσ(k) may depend on the
subsetσ(k) but not the iteration. What remains of the
solution space,2\σ(k), is aggregated into one region called
the surrounding region. Clearly the NP method shifts th
focus from individual solutions to sets of solutions, an
the following definitions, that identify the most importan
classes of such sets, will be convenient throughout t
analysis.

Definition 1 A set constructed using a fixed parti-
tioning strategy is called avalid region. The collection of
all valid regions is denoted by6. Singleton regions are of
special interest, and we let60 ⊂ 6 denote the collection
of all such valid regions. Finally, we let6g ⊂ 6 denote
all the ‘good’ subregions, that is,σ ∈ 6g if and only if
θopt ∈ σ .

It will also be convenient to be able to identify the valid
region which was partitioned to obtain the current mo
promising region, which motivates the next two definitions

Definition 2 If a valid region σ ∈ 6 is formed
by partitioning a valid regionη ∈ 6, then σ is called a
subregionof regionη, and regionη is called asuperregion
of regionσ .

Definition 3 We define thesuperregion functions :
6 → 6 as follows. Letσ ∈ 6 \2. Defines(σ ) = η ∈ 6,
if and only ifσ ⊂ η and ifσ ⊆ ξ ⊆ η thenξ = η or ξ = σ .
For completeness we defines(2) = 2.

It will also be necessary to keep track of distanc
between valid regions, so we define two concepts, the de
of a region, which essentially is its distance from the entir
solution space2, and a metric that defines the distanc
between any two valid regions.

Definition 4 The singleton regions in60, are called
regions ofmaximum depth. More generally, we define the
depth, d : 6 → N0, of any valid region iteratively with2
having depth zero, subregions of2 having depth one, and
so forth.
til
nd
st
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Definition 5 We letm(·, ·)6 : 6 × 6 → R be a
metric given the partitioning strategy6, defined by

m(η1, η2)6 = min
η∈6

η1⊆η, η2⊆η
(d(η1)− d(η))+ (d(η2)− d(η)),

(2)
and call it thepartitioning metric.

We note that the depth of a regionη ∈ 6 is its distance
from the entire feasible region2, that is,d(η) = m(2, η)6 .
Furthermore, the performance of the NP method turns o
to depend on how the partitioning is performed, and we c
use this metric to define the ideal case.

Definition 6 A partitioning strategy6 is calledop-
timal if and only if the global optimumσopt has the following
property: For all η1, η2 ∈ 6 such thatd(η1) = d(η2) and
m(σopt , η1)6 < m(σopt , η2)6 , then

J (θ) < J (φ), ∀θ ∈ η1, ∀φ ∈ η2. (3)

Returning to the procedure of the NP method, then giv
a partitioning ofσ(k), at thek-th iterationMσ(k)+1 disjoint
subsets that cover the feasible region are considered. E
of these regions is sampled using somerandom sampling
scheme, resulting in a setDσj (k) of sample points. The
samples are then used to estimate thepromising indexfor
each region. This index is a set performance functio
I : 6 → R, that determines which region becomes th
most promising region in the next iteration and the estima
Î

(
σj (k)

) = Î
(Dσj (k)

)
depends only on the set of sampl

points. If one of the subregions is found to be best, this regi
becomes the most promising region. If the surroundin
region is found to be best, the methodbacktracksto a larger
region. To choose this larger region a fixed backtrackin
rule is used.

Definition 7 Let ĵk be the index corresponding to
the best region found in thek-th iteration.

ĵk = arg min
j
Î (σj (k)) (4)

Based onĵk, either move to a subregion or backtrack to
the superregion of the current most promising region. Th
is, let

σ(k + 1) =
{
σ
ĵk
(k), if ĵk < Mσ(k) + 1,

s (σ (k)) , otherwise.
(5)

where the functions : 6 → 6 is as in Definition 3 above.
The new most promising regionσ(k + 1) is then par-

titioned and sampled in a similar fashion. This generate
sequence of set partitions, with each partition nested with
the last. We assume that the partitioning is continued un
eventually all the points in the feasible region correspo
to a singleton region, and we let the estimate of the be
7
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solution be the singleton region that has been consid
the most promising the most often.

Definition 8 Let Nk(σ ) be the number of time
regionσ ∈ 6 has been considered the most promising reg
by thek-th iteration. The estimate of the best solution i

σ̂opt (k) = arg max
σ∈60

Nk(σ ), (6)

the most frequently visited singleton region by thek-th
iteration.

We note again that the basic idea of the NP algorit
is to shift the focus from the solution space itself to
sequence of subsets of the solution space. These subse
sampled with variable density and a promising index for e
subset is estimated. The ordinal values of these estim
determine how the algorithm proceeds in the next s
It is clear from equation (4) that accurately estimating
promising index is not critical. Only the ordinal values affe
how the NP algorithm proceeds. If subregionσjopt ∈ 6g
contains the true global optimum, then it is sufficient th
Î

(
σjopt (k)

)
< Î

(
σj (k)

)
, ∀j 6= jopt . If this holds then the

subregion containing the global optimum is identified. W
conclude that if the rank is preserved then nothing is gai
from more accurate estimates.

2.2 An Ordinal Promising Index

It is clear from the description of the NP method tha
critical element is the selection and estimation of a promis
index. Indeed, the estimated values of this index determ
in each iteration, how the sampling is concentrated in
next iteration. In its simplest form the estimated promis
index can be taken as a summary statistic for the samp
information (Shi and́Olafsson, 1998a). We can for examp
define the promising index function as

I (σ ) = min
θ∈σ J (θ), σ ∈ 6. (7)

For a given regionσ ∈ 6 and a set of sample pointsDσ ⊆ σ ,
we need to obtain an estimateÎ (σ ) of the promising index
value I (σ ). This estimate must be based on the sam
performanceLt(θ) for each sample pointθ ∈ Dσ , but the
problem is that an accurate estimate of the performa
is very expensive. If the performance is estimated us
simulation it is well known that the estimatêJ (θ) converges
to J (θ) at a rate that is at the mostO( 1√

t
) in the total

simulation timet . This in turn implies that the estimat
Î (σ ) converges toI (σ ) at a rate that is at least as slo
However, recall that if it is desirable to move into a go
regionσg ∈ 6g, where6g is as in Definition 1, and this is
66
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being compared to another bad regionσb ∈ 6 \6g, then it
is sufficient that

Î (σg) < Î (σb), (8)

that is, if the rank is preserved then the correct valid region
is selected. The advantage of this being sufficient is that
the estimated rank of a random variable may converge to
its true rank at an exponential rate even if the cardinal
values converge at a much slower rate (Dai, 1996). The
implication is that it is not necessary to accurately estimate
J (θ) for eachθ ∈ Dσ to obtain a sufficiently good estimate
of the promising index. Therefore, for everyσ ∈ 6 and
corresponding set of sample pointsDσ , we let

Î (σ ) = min
θ∈Dσ

Lt (θ). (9)

SinceLt(θ) is obtained using regenerative simulation, and
such estimates are strongly consistent, we have that

Î (σ ) → min
θ∈Dσ

J (θ), w.p.1.

So, in the long-run, ifminθ∈Dσg
J (θ) < minθ∈Dσb

J (θ)

thenσg will be selected. However, it is also known that this
convergence occurs rather slowly. On the other hand, a
we pointed out above we do not need accurate estimates o
the cardinal values and we will show that if the estimated
promising index (9) is used then, for certain systems, the
probability of equation (8) holding converges to a sufficiently
large value at an exponential rate.

3 CONVERGENCE ANALYSIS

By noting how the NP algorithm moves from one region
in 6 to the next, based only on the current sampling in-
formation, it is clear that the algorithm generates a Markov
chain{σ(k)}∞k=1 with state space6. Furthermore, it is not
difficult to show that this Markov chain has a unique station-
ary distribution. To prove asymptotic convergence of the
method, we show that given certain regularity conditions,
the stationary probability of the singletonσopt = {θopt } is
greater than that of any other singleton region and the NP
algorithm converges to this maximum stationary probability
singleton Shi and́Olafsson (1998a,b).

3.1 Asymptotic Convergence

We begin by stating the asymptotic convergence result pre
cisely.

Theorem 1 Assume that

P
[
Î

(
σg

) ≤ Î (σb)
]

≥ P
[
Î

(
σg

) ≥ Î (σb)
]
, (10)
8
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∀σg ∈ 6g, σb ∈ 6 \ 6g. Then the NP method converges
with probability one to the global optimumσopt = {

θopt
}
,

that is, ask → ∞ then

σ̂opt (k) → σopt , w.p.1. (11)

Proof: We will only sketch a proof here and refer to
Shi andÓlafsson (1998b) for full analysis of the stochastic
NP method. We start by observing that{σ(k)}∞k=1 is an
irreducible positive recurrent Markov chain. Therefore, i
has a unique stationary distributionπ , and it is well known
that with probability one, ask → ∞,

Nk(σ )

k
→ π(σ), ∀σ ∈ 6,

whereNk(σ ) counts, as before, the number of timesσ ∈ 6
is visited. Since, by Definition 8 the NP method estimate
the best solution as

σ̂opt (k) = arg max
σ∈60

Nk(σ )

it can be seen that with probability one ask → ∞,

σ̂opt (k) → arg max
σ∈60

π(σ).

Hence, the algorithm converges to the singleton region th
maximizes the stationary distribution. Now to show tha
this singleton region is indeedσopt = {

θopt
}
, first note that

the Markov chain is reversible and we hence have that fo
any η ∈ 60,

Pκ(η,σopt )
(
η, σopt

)
π(η) = Pκ(η,σopt )

(
σopt , η

)
π

(
σopt

)
,

whereκ(η, σopt ) is the number of transitions it takes to go
from η to σopt and vice versa. Hence, if theκ(η, σopt )-
step transition probability fromη to σopt is larger than the
κ(η, σopt )-step transition probability fromη to σopt to η for
all η ∈ 60 \ {

σopt
}
, then

σopt = arg max
η∈60

π(η)

and the theorem is proven.
To see why this holds, we look at the superregion o

the optimum,s
(
σopt

)
. By equation (10) it is clear that

the probability of moving to theσopt is larger than the
probability of backtracking tos

(
s

(
σopt

))
,

P
(
s

(
σopt

)
, σopt

) = P
[
Î

(
σopt

) ≤ Î
(
2 \ s (

σopt
))]

≥ P
[
Î

(
2 \ s (

σopt
)) ≤ Î

(
σopt

)]
= P

(
s

(
σopt

)
, s

(
s

(
σopt

)))
,

669
t

and in general, the same result holds for any region on
‘path’ betweenσopt and an arbitraryη ∈ 60 \ {

σopt
}
. We

conclude thatσopt is a singleton region that maximizes th
stationary probability and the theorem holds.

It remains to justify that equation (10) may indeed b
satisfied then applying the method in practice, and how (
relates to the implementation parameters of the method
particular the partitioning and sampling. We approach t
via the perspective of ordinal comparisons.

3.2 Ordinal Comparison

To show analytically that using ordinal comparison is ben
ficial we use the following theorem from Dai (1996), whic
shows that (9) converges rapidly when used to estimate
promising index.

Theorem 2 Let D ⊆ 2 and let2g = D ∩ G be
the good solutions and let2b = D \ 2b denote the bad
solutions. We assume that2g 6= ∅ and2b 6= ∅. Then the
probability of the estimated best solution in2g being better
than the estimated best solution in2b converges to one at
an exponential rate.

P

[
min
θ∈2g

Lt (θ) ≤ min
θ∈2b

Lt (θ)

]
= 1 −O

(
e−αt

)
, (12)

and

P

[
min
θ∈2g

Lt (θ) > min
θ∈2b

Lt (θ)

]
= O

(
e−αt

)
. (13)

Proof: See Theorem 4.5 in Dai (1996).
We immediately obtain the following theorem.
Theorem 3 Assume that two regionsσg ∈ 6g and

σb ∈ 6 \ 6g are compared, whereσg contains the global
optimum butσb does not. LetDσg denote the set of sample
points fromσg, and similarlyDσb denote the set of sample
points fromσb. Then

P
[
Î (σg) ≤ Î (σb)

]
= P

[
min
θ∈Dσg

J (θ) < min
θ∈Dσb

J (θ)

]

+O
(
e−αt

)
, (14)

wheret is the simulation time.
Proof: By conditioning on the best solution sample

being from the good region, that is,

A =
[

min
θ∈Dσg

J (θ) < min
θ∈Dσb

J (θ)

]
,
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this follows directly from Theorem 4:

P
[
Î (σg) ≤ Î (σb)

]
= P

[
min
θ∈Dσg

Lt (θ) ≤ min
θ∈Dσb

Lt (θ)

]

= P

[
min
θ∈Dσg

Lt (θ) ≤ min
θ∈Dσb

Lt (θ)

∣∣∣∣A
]

· P [A]

+ P

[
min
θ∈Dσg

Lt (θ) ≤ min
θ∈Dσb

Lt (θ)

∣∣∣∣Ac
]

· (1 − P [A])

= (
1 −O

(
e−αt

)) · P [A] + O
(
e−αt

) · (1 − P [A])

= P

[
min
θ∈Dσg

J (θ) < min
θ∈Dσb

J (θ)

]
+O

(
e−αt

)
.

This proves the theorem.
In the k-th iteration of the NP method exactly on

of the subregions sampled, sayσj∗(k) ∈ 6g, contains the
global optimum. This subregion is compared with all of th
other regions, and will be selected ifÎ (σj∗(k)) ≤ Î (σj (k)),

∀k = 1, 2, ...,M(σ(k)) + 1. It follows that the method
is inherently ordinal and by Theorem 3 the probabili
of moving towardsσj∗(k) in the next iteration converges
exponentially fast to a probability that depends only on whi
solutions were randomly selected in the current iteratio
In other words, if we define the probability of selectin
the best solution from the right region asP ∗ (

σj∗(k)
) =

P
[
minθ∈Dσj∗ (k) J (θ) < minθ∈Dσj (k)

J (θ), ∀j 6= j∗]
, then

Theorem 3 states that

P
[
Î (σj∗(k)) ≤ Î (σj (k)), ∀k = 1, 2, ...,M(σ(k))+ 1

]

= P ∗(σj∗(k))+O
(
e−αt

)
,

where t is as before the simulation time. The probabili
P ∗(σj∗(k)) can be made large by partitioning such that ma
good solutions fall in the same regions or by increasing
sampling effort in each iteration. This probability depen
on comparing multiple regions, but to simplify the analys
we assume without loss of generality that we only comp
two regionsσg ∈ 6g and σg ∈ 6 \ 6g. Accordingly, we
define thesuccess probability

P ∗ (
σg, σb

) = P

[
min
θ∈Dσg

J (θ) < min
θ∈Dσb

J (θ)

]
, (15)

for all σg ∈ 6g, σg ∈ 6\6g. For the remainder of the pape
we focus on howP ∗ (

σg, σb
)

depends on the partitioning
strategy and the sampling effort, and how it can be ma
sufficiently large.
67
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3.3 Partitioning and Sampling

To better understand the relationship between the partition
and the required sampling effort, we start by looking at t
ideal case.

Theorem 4 Let the assumptions and definitions o
σg ∈ 6g, σb ∈ 6 \ 6g be as in Theorem 3. If6 is an
optimal partition then

P
[
Î (σg) ≤ Î (σb)

]
= 1 +O

(
e−αt

)
, (16)

wheret is the simulation time.
Proof: By Definition 5 we have thatm(σopt , σg)6 <

m(σopt , σb)6 , so by Definition 6 of an optimal partition

J (θ) < J (φ), ∀θ ∈ σg, φ ∈ σb.

Therefore,

P

[
min
θ∈Dσg

J (θ) < min
θ∈Dσb

J (θ)

]
= 1

so the theorem follows directly from Theorem 3 above.
We note that Theorem 3 and Theorem 4 provi

new insights into when the NP method converges to
global optimum. In particular, Theorem 3 implies that
P ∗ (

σg, σb
)
> 1

2 for all σg ∈ 6g, σb ∈ 6 \ 6g, then the
global convergence condition (10) will be satisfied at
exponential rate in terms of the simulation effort used f
evaluating each solution. By Theorem 6 this clearly hol
for optimal partitioning. In practice, however, optimal pa
titioning is never realized, and it is therefore of intere
to determine how good the partitioning needs to be.
is also clear that as the partitioning becomes worse, m
sample effort may be needed from each region. To m
sure the quality of a partitioning strategy6 we define the
non-overlap setfunction,9 : 6g → 2 by

9(σg) = {
θ ∈ σg : J (θ) < J (ψ),∀ψ ∈ 2 \ σg

}
, (17)

σg ∈ 6g. This function counts, for each good regionσg ∈
6g, how many of the solutions in the good region have bet
expected performance than all of the solutions outside t
region, that is, the non-overlap in expected performan
A high value indicates that it may be easy to differentia
between the the good region and other regions, and v
versa for low values. By definition of6g we have that
θopt ∈ 9(σg) so9(σg) 6= ∅ for all σg ∈ 6g. It is also clear
that if 6 is optimal then by Definition 6,J (θ) < J (ψ) for
all θ ∈ σg, ψ ∈ 2 \ σg, so9(σg) = σg for all σg ∈ 6g.
Therefore, the size of this set|9(σg)| ∈ {1, 2, ..., |σg|} for
all σ ∈ 6g is a measure of the quality6. We now obtain
the following theorem.
0
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Theorem 5 Let the assumptions and definitions o
σg ∈ 6g, σb ∈ 6\6g be as in Theorem 5. Letn(σg) = |Dσg |
be the number of sample points fromσg ∈ 6g. Define

r(σg) = |σg |−|9(σg)|
|σg | to be the percentage overlap, and

assume that

n(σg) ≥ log(1
2)

log(r(σg))
, (18)

and that uniform sampling is used. Then the global con
vergence condition (10) is satisfied at an exponential rat
that is,

P
[
Î (σg) ≤ Î (σb)

]
≥ 1

2
+O

(
e−αt

)
, (19)

wheret is the simulation time.
Proof: It is clear that if one of the solutions in9(σg)

is selected inDσg then the best solution inDσg is better
than the best solution inDσb . That is,

P
[
minθ∈Dσg

J (θ) < minθ∈Dσb
J (θ)

]
≥ P

[
9(σg) ∩ Dσg 6= ∅]

= 1 − P
[
9(σg) ∩ Dσg = ∅]

= 1 −
( |σg |−|9(σg)|

|σg |
)n(σg)

,

where the last equation follows from the uniform samplin
strategy. On the other hand, by the assumption (18) w
have

( |σg| − |9(σg)|
|σg|

)n(σg)
= r(σg)

n(σg)

≤ r(σg)

log( 1
2 )

log(r(σg))

=
(
elog(r(σg))

) log( 1
2 )

log(r(σg))

= elog( 1
2 )

= 1

2
,

so [
min
θ∈Dσg

J (θ) < min
θ∈Dσb

J (θ)

]
≥ 1

2
,

which, combined with Theorem 3, proves the theorem.
This theorem illustrates the relationship between th

partitioning and the sampling effort needed. If the pa
titioning is poor, that is|9(σg)| small for at least some
σg ∈ 6g, then more sample effort is need, and vice vers

In particular, if |9(σg)| ≥ |σg |
2 for all σg ∈ 6g, then (19) is
671
satisfied even if we use only one sample solution from ea
region. Moreover, Theorem 5 illustrates just how importa
a good partitioning strategy is, because the lower bou
(18) on the number of sample solutions needed conver
to one at an exponential rate as|9(σg)| goes to |σg |

2 from
below. This is illustrated in Figure 1 where the minimu
required number of sample points to obtain a given su
cess probabilityP ∗ (

σg, σb
) ∈ {0.25, 0.50, 0.75} is plotted

against the percentage overlap

r(σg) = |σg| − |9(σg)|
|σg| ∈ [0.50, 0.95],

that is |9(σg)| ∈ [0.05, 0.50]. The opposite is also true
increasing the sampling effort in each iteration leads
exponential improvement in the success probability as
illustrated in Figure 2 for four different partitioning quality
levels r(σg) ∈ {0.5, 0.7, 0.9, 0.99}.

We conclude that when optimizing certain systems us
regenerative simulation, ordinal rather than cardinal op
mization is indeed beneficial. Furthermore, this transla
into weak convergence conditions for the NP algorith
and relatively little simulation effort being needed in eac
iteration.

4 CONCLUSIONS

We have analyzed a new simulation-based optimization
gorithm that draws from the paradigm of ordinal optimiz
tion and a recently proposed adaptive sampling algorit
called the nested partitions (NP) method. The new alg
rithm falls into the NP method framework, which guarante
global convergence under certain conditions, and the o
nal optimization perspective is used to show that for cert
problems the method also has certain exponential con
gence rate characteristics. We derived new conditions un
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Figure 1:  Sample Effort Needed In Each Iteration
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which asymptotic convergence holds and provided prac
cal guidelines for determining the sampling effort in eac
iteration.
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