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ABSTRACT

This paper shows which statistical techniques can be use
validate simulation models, depending on which real-life da
are available. Concerning this availability, three situations a
distinguished (i) no data, (ii) only output data, and (iii) bot
input and output data. In case (i) - no real data - the analy
can still experiment with the simulation model to obtai
simulated data; such an experiment should be guided by
statistical theory on the design of experiments. In case (i
only output data - real and simulated output data can 
compared through the well-known two-sample Studen
statistic or certain other statistics. In case (iii) - input an
output data - trace-driven simulation becomes possible, 
validation should not proceed in the popular way (make
scatter plot with real and simulated outputs, fit a line, and t
whether that line has unit slope and passes through 
origin); alternative regression and bootstrap procedures 
presented. Several case studies are summarized, to illus
the three types of situations.

1 INTRODUCTION

This paper gives a survey on how to validate simulatio
models through the application of statistical techniques, such
that the type of technique actually applied depends on 
availability of data on the real system. Regarding this data
availability, I distinguish three situations: 

(i) no real-life data are available,
(ii) there is only data on the real output (not the

corresponding input or scenario),
(iii) besides the output data, the corresponding

input or trace is also known, which is used to
perform so-called trace driven or correlated
inspection simulation (see Law and Kelton
1991, p. 316).
od
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What, however, does ‘validation’ mean? A whole boo
could be written on the philosophical and practical issu
involved in validation (see, for example, the monograph b
Knepell, and Arangno 1993)! For this survey, however,
define validation as determining whether the simulation
model is an acceptable representation of the real syste
given the purpose of the simulation model (again see La
and Kelton 1991).

The literature on validation is abundant: see the w
(http://manta.cs.vt.edu/biblio/), and the detailed surveys 
Beck et al. (1997), Kleijnen (1995b), and Sargent (1996).
that literature, however, the focus in not on the role of da
availability in the choice of statistical tests! This contributio
has such a focus; it is a revision of Kleijnen (1999).

So I concentrate on validation that uses mathematical
statistics. After all, simulation means experimentation (albe
with a model instead of the real system), and an
experimentation calls for statistical analysis, preceded 
statistical design. Obviously, such a statistical analysis
only part of the whole validation process (other parts a
graphical summaries, animation for ‘face validity’, etc.; man
types of validation are used and proposed in practice a
theory; see the references at the end of this contributio
However, if mathematical statistics is used, then the corr
statistics should be used!

Which type of statistical procedure is correct obvious
depends on the kind of data that are available for analys
Briefly, my main conclusions will turn out to be as follows.

Case (i): Even if real data are missing, there is st
expert knowledge. (For example, we all are experts in waiting
at supermarkets, so we know that if more customers arr
per hour, then waiting times increase - unless more cash
become active.) However, this knowledge is qualitative; to
obtain quantitative knowledge, a simulation model 
developed (i.e., the sign or direction of the effect is know
not its magnitude). If the simulation model’s input/outpu
(I/O) behavior violates this qualitative knowledge, the mod
should be seriously questioned: are there programming a
conceptual errors? In §2 I shall present a systematic meth
7
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for selecting conditions or scenarios as input for t
simulation model, namely, design of experiments or DOE.
practice; simulation errors have indeed been detected in 
way. 

Case (ii): If data on the real output are available, then 
can apply the classical two-sample Student t statisti
provided the data are approximately normally distributed.
case of non-normality we can use distribution-free tests
bootstrapping. See §3.

Case (iii): In trace-driven simulation we can apply 
particular kind of regression analysis (compute t
differences and sums of real and simulated outputs; reg
these differences on the sums, and test for zero intercept
zero slope). In case of non-normality, however, bootstrapp
of the difference between the average simulated and 
outputs gives best results (prespecified type I er
probability û and high power). See §4.

2 NO REAL DATA AVAILABLE: DOE

How realistic is it to assume that there is no data on the 
system being simulated? Indeed, in some applications, s
data are either completely missing or scarce. Examples
data on nuclear war (fortunately, no data, except for outda
figures on Hiroshima and Nagasaki), nuclear accide
(limited data: Chernobyl, Three Miles Island), globa
warming or greenhouse effect (few data; see Kleijnen, V
Ham, and Rotmans 1992, and Jansen and De Vries 199

If no data on the real system are available, then stro
validation claims are impossible. Yet the analysts should
least perform sensitivity analysis (or what-if analysis).
define sensitivity analysis as the systematic investigation o
the reaction of the simulation responses to extreme values of
the model's input or to drastic changes in the model's
structure. For example, what happens to the customers' m
waiting time when their arrival rate doubles; what happen
the priority rule is changed by introducing ‘fast lanes’? (Th
literature does not provide a standard definition of sensitiv
analysis; some authors consider only marginal changes
continuous inputs.)

I use the DOE term factor to denote a parameter, a
input variable, or a module of a simulation model. In th
supermarket example, a parameter is the arrival or ser
rate; an input variable is the number of cashiers; a mod
may be the submodel for the priority rules (First-In-First-O
or FIFO, priority for customers with less than - say - te
items).

Sensitivity analysis can support validation: such 
analysis shows whether factors have effects that agree 
experts' prior qualitative knowledge (for example, fast
service gives lower mean waiting time). Admittedly, i
practice not all simulation models have effects with know
signs; yet, many models do have factors with known signs
the case studies below will demonstrate).
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Sensitivity analysis further shows which factors ar
important. If possible, information on these factors should b
collected, for validation purposes (availability of such dat
enables trace-driven simulation; see §4). If the significa
factors are controllable by the users, then sensitivity analys
shows how to change these factors to optimize the re
system (see Kleijnen and Pala 1999 for an application). 

The importance of sensitivity analysis in validation is
also emphasized by Fossett et al. (1991), who present th
military case studies, and Nayani and Mollaghasemi (1998
who present a semiconductor case study.

Sensitivity analysis of a simulation model requires a s
of simulation runs. By definition, during a simulation run, al
factors remain constant; simulated time increases, and in
stochastic simulation model a stream of pseudorando
numbers is generated. Factors do change from run to run; t
is, each factor has at least two levels or 'values' in th
experiment as a whole. The factor may be qualitative, as the
priority rules exemplified. A detailed discussion of quali-
tative factors and various measurement scales is given
Kleijnen (1987, pp. 138-142).

There are several techniques for sensitivity analysi
Most practitioners change one factor at a time, and think that
this is the scientific way to perform what-if analysis. Actually
it is easy to prove mathematically that - compared wit
DOE’s resolution-3 designs - this method gives less accura
estimates of a factor’s first-order effect (called ‘main effect
in ANOVA, Analysis Of Variance). Moreover, changing one
factor at a time does not enable estimation of ‘interaction
among factors: what happens if two or more factors chan
simultaneously? DOE’s resolution-4 and resolution-5 design
enable the estimation of two-factor interactions, as we sh
see next (the remainder of this section is based on Kleijn
1998).

DOE’s central problem is how to select a limited set o
combinations of factor levels to be observed, from the larg
number of conceivable combinations. An example is th
ecological simulation case-study with 281 parameters 
Bettonvil and Kleijnen (1997); obviously the number of
combinations is at least 2281 (which is a huge number,
exceeding 1084). An example with fewer factors (less than,
say, fifteen) may be a supermarket simulation. In a simulatio
context, I define DOE as selecting the combinations of factor
levels that will be actually simulated when experimentin
with the simulation model. A popular type of design is th
so-called 2k - p design: k factors are changed in the
experiment; each factor has two levels; only a fractio
(namely 2- p with p = 0, 1, ...) of the 2k combinations is
actually simulated. Depending on the size of that fraction, th
resolution of the design is 3, 4, 5 , ... : unbiased estimators
main effects only, sums of two-factor interactions, individua
two-factor interactions, ...

After selecting the combinations of factor levels, the
simulation program is executed or 'run'. Next the resultin

8
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I/O data of the simulation experiment are analyzed, apply
ANOVA or regression analysis. This analysis estimates the
importance of the individual factors (sensitivity analysis
that is, statistically significant factors may be considered
be important (the usual caveat about type I and type II err
applies; also see the next section, §3). In the simulation fi
such a regression model is called a metamodel, since it is a
model of the I/O behavior of the underlying simulatio
model; see Friedman (1996), Kleijnen (1987). (Some call t
metamodel a response surface, a repromodel, or a com
model.)

Typically, this metamodel uses one of the followin
three polynomial approximations.

(i) A first-order polynomial, which consists of an
overall or grand mean ù0 and k main effects
(say) ùj with j = 1, ... , k.

(ii) A first-order polynomial augmented with
interactions between pairs of factors (two-
factor interactions)  with  = j + 1, ..., k.ùj; j ô j ô

(iii) A second-order polynomial, which adds purely
quadratic effects  to (ii).ùj; j

Obviously, the first-degree polynomial in (i) misse
interactions, and has constant marginal effects. Extending
second-order polynomial in (iii) to a third-order polynomia
would be more difficult to interpret; it would also need man
more simulation runs to estimate its many parameters .ù
a second-order polynomial may be a good compromi
depending on the goal of the metamodel. Anyhow, 
important practical question is: How should analysts selec
particular degree for the polynomial approximation, and ho
should they validate the resulting metamodel?

To answer this question, some analysts use the w
known multiple correlation coefficient R2. For example,
Kleijnen (1995a) fits second-order polynomials, which giv
multiple correlation coefficients that - for the four scenario
simulated - range between 0.96 and 0.98 (also see below

More refined selection procedures and tests u
sequential DOE combined with cross-validation and Rao’s
test; see Kleijnen and Sargent (1999) and Kleijnen, Che
and Feelders (1998).

A case study that does explicitly demonstrate the role
DOE and regression analysis in validation, is the ecologi
simulation in Bettonvil and Kleijnen (1997) and Kleijnen
Van Ham, and Rotmans (1992). The regression metamo
in the latter article helped to detect a serious error in 
simulation model: one of the original modules should be sp
into two modules. Both publications further show that som
factors are more important than the ecological expe
originally expected; this 'surprise' gives additional insig
into the simulation model.

Another case study is the sonar simulation in Kleijne
(1995a). This simulation model consists of several modu
649
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(submodels). There are no data for the modules ‘inside’ 
model (these modules are not at the input or output bound
of the model). For each such module, a second-or
polynomial is specified as metamodel. To estimate a seco
order polynomial, Kleijnen (1995a) uses a central composite
design, as analysts often do. This design combines a 2k - p

design with a one-factor-at-a-time design, plus one ‘centr
combination, which is at the center of the experimental ar
For two modules the following results are found.

For one module, the naval experts suggest that its t
factors have specific signs (namely ù2 > 0, ù3 < 0, ù2, 3 < 0).
Indeed do the corresponding estimates turn out to have th
signs. So this module has the correct I/O transformation, 
its validity does not seem questionable. Of course, it can
be claimed that its validity has been proven statistically!

The other module has six factors, and the cent
composite design has as many as 77 factor combination
turns out that one of these six factors has no signific
effects at all: no main effect, no interactions with the oth
five factors, no quadratic effect. These results agree with
experts' qualitative knowledge. So the validity of this modu
is not questioned either.

These case studies illustrate that DOE with its regress
analysis treats the simulation model as a black box: the
simulation model's I/O is observed, and the factor effects
the metamodel are estimated. An advantage is that DOE
be applied to all simulation models, either deterministic 
stochastic, discreteevent or continuous (a disadvantage is
DOE cannot exploit the specific structure of a give
simulation model).

DOE assumes that the area of experimentation is giv
A valid simulation model, however, requires that the inpu
be restricted to a certain domain of factor combinations. T
domain corresponds with the experimental frame in Zeigler
(1976); also see Trybula (1994).

Related to sensitivity analysis is risk analysis or
uncertainty analysis. Risk analysis also runs a simulatio
model for various combinations of factor levels. Ris
analysis is performed because the input parameter value
the simulation model are not accurately known; therefore r
analysis samples from a prespecified (joint) probabil
distribution for these parameters. This sampling uses 
Monte Carlo technique (sometimes refined to Lat
hypercube sampling or LHS; see Helton et al. 1997). 
typically, its number of combinations is much larger than 
sensitivity analysis using DOE.

I think that the basic difference between sensitivi
analysis and risk analysis is that the latter tries to answer
question: what is the probability of a disaster? That disaster
may be a nuclear accident, an ecological collapse, a finan
mis-investment, etc. These disasters are unique events,
whereas the case studies above concern repetitive ev
(e.g., average customer waiting time, mine detecti
probability). Consequently, validation in risk analysis is ve
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difficult; see Jansen and De Vries (1998). A better term ma
be credibility; also see Fossett, Harrison, Weintrob, and Gas
(1991) and Hodges (1991).

I would further add that from a risk analysis viewpoint,
DOE selects extreme combinations of factor values that ha
very low probability of realization. Risk analysis, however,
samples from the whole domain of possible combination
according to the prespecified input distribution.

Risk analysts try to improve the underlying model’s
credibility by applying certain statistical techniques. For
example, they apply regression analysis to detect whic
factors have significant effects; next - using their exper
knowledge - they try to explain why these factors ar
important. An example is the following case study.

To obtain permission for nuclear waste disposal in th
waste-isolation pilot-plant (WIPP) near Carlsbad, New
Mexico (NM), a simulation model was developed at Sandi
National Laboratories (SNL) in Albuquerque (NM). The
Environmental Protection Agency (EPA) will give
permission to start using the WIPP, only if the simulation
model is accepted as credible - and the model’s output sho
an acceptable risk. Details on statistical techniques are giv
by Helton et al.(1997) and Kleijnen and Helton (1999).

3 REAL OUTPUT DATA: CLASSIC TESTS

How realistic is it to assume that there is data on the outpu
not the input - of the real system? Let us return to the ca
study on the search for mines by means of sonar, reported
Kleijnen (1995a). In this case study it is impossible to
measure the environment - namely, the temperature and 
salinity of the sea water that affect sonar performance - at 
times and places. To obtain real output data on the detecti
of mines, the navy has one team deposit mines on the s
bottom; next another team searches for these mines 
general, the military conducts field tests; likewise, private
companies build pilot plants to obtain data). In general, if th
real-world scenarios are not measured, then only the outpu
of the real and the simulated systems can be compared.

Note that in some situations the analysts are ‘drown b
the numbers’; examples are data on supermarket sales and
telecommunication operations. In general, data are abunda
if systems are electronically monitored; examples are point
of sale systems (POSS) and electronic data interchan
(EDI). Another example is the milk robot simulation in
Halachmi et al. (1999): cows are monitored electronicall
(also see the next section, §4).

Let us return to the supermarket example. Suppose th
the real output (say) x is the 90% quantile of the individual
(autocorrelated) waiting times  of the customers servedwt
per day in the real system (the manager is assumed to 
interested in ‘excessive’ waiting times, not in the mea
waiting time; neither is she interested in the whole time pat
generated by the simulation run). Likewise, the simulate
650
tn ø m ÷ 2 ö

(x̄ ÷ ȳ) ÷ µd

[(n ÷ 1)s2
x ø (m ÷ 1)s2

y ]1/2

[(n ø m ÷ 2)nm]1/2

(n ø m)1/2
.
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output (say) y is the 90% quantile of the individual
(autocorrelated) waiting times  of the customers served pervt
day in the simulated system. Suppose further that n days are
observed in the real system, and m days are simulated. This
yields , waiting time of customer t on day i with i = 1,wi; t
..., n in the real system. Analogously we have  with j =vj; t
1, ..., m. This gives xi, the 90% quantile of   and yj, thewi; t
90% quantile of . Assume that each real or simulated dvj; t
gives an independent and identically distributed (i.i.d
observation (no seasonality; only busy Saturdays a
measured).

The ideal simulation model would have a statistica
distribution function for its output (say)  that is identicaFy
to the distribution for the real system  (also see NayaFx
and Mollaghasemi 1998, and Rao, Owen, and Goldsm
1998) In practice, however, the manager is not interested
the whole distribution , but only in particularFx
characteristics, the most popular being the mean, E(x)

. For example, the 90% quantile varies from day to daµx

but its expected value is taken as the criterion to manage 
supermarket. (In the next section we shall see how both 
mean and the variance of x can be taken into account when
validating a simulation model. However, if the purpose of th

simulation is to help manage , then  =  maE(x) var(x) )2
x

be ignored.)
Define the mean difference  =  -  Then the nµd µx µy

and m observations on the real and the simulated syste

respectively give the classic estimators , , , and  x̄ ȳ s2
x s2

y

the means and variances of x and y. These estimators yield
two-sample Student’s t statistic with n + m - 2 degrees of
freedom:

Obviously, the null-hypothesis is that simulated and re
means are equal; that is, H0:  = 0. The power of this testµd

increases, as in Equation (1)  increases (bigg-µd-
differences are easier to detect), n or m increases (more days
simulated or measured), or  or  decreases (less no)x )y

more customers per day or lower traffic rate). 
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Note that defining  means  = +  -dö x ÷ y )2
d )2

x )2
y

2  so the analysts may try to create a positive line'x; y)x)y

correlation between x and y - see  - through the use of'x; y

trace-driven simulation: see the next section (§4).
A type II error is likely to be committed if only a few

days are simulated or there is much noise: an importa
difference (H0:  >> 0) may go undetected (non--µd-
significant t). A type I error is also possible: if very many
data are available, then an unimportant difference betwe
the simulated and the real responses (H0:  = ñ) can give-µd-
a significant t-value.

Unfortunately, the test in Equation (1) assumes that t
outputs x and y are normal (Gaussian) besides i.i.d., denote
as n.i.i.d.. Simulation models, however,  may give non
normal outputs. The t statistic is known to be not ver
sensitive to nonnormality. Nevertheless, outputs such 
estimated quantiles may show serious non-normality.

Let us briefly return to the sonar case study. Th
application gives a binary response variable: detect or miss
a mine. The m simulation runs give a binomial variable with
parameters m and (say) p, the detection probability.
Analogously, the field test gives a binomial variable wit
parameters n and q. To test the null-hypothesis of equa
simulated and real probabilities (H0: p = q), Kleijnen (1995a)
uses the t-statistic as an approximate test. Another case-stu
that applies this t-test is the traffic simulation by Rao et al.
(1998).

An alternative to the t test is Johnson's modified Student
statistic, which includes an estimator for the skewness of th
output distribution; see Johnson (1978) and Kleijne
Kloppenburg, and Meeuwsen (1986).

Another alternative is the class of distribution-free tests
(such as the rank test); see Conover (1971). Jackknifing is
also a robust technique, which requires only slightly mo
computer time for the analysis of the simulation output; s
Efron and Tibshirani (1993). In practice, however, thes
alternatives are rarely applied - unfortunately. An applicatio
of a distribution-free (Kolmogorov-Smirnov) test is given b
Rao et al. (1998).

One more alternative statistical technique i
bootstrapping, which is a type of Monte Carlo simulation;
see Efron and Tibshirani (1993). We shall return t
bootstrapping, in the next section. 

4 REAL I/O DATA: TRACE-DRIVEN

Comparing data on the real and the simulated systems ma
more sense if both systems are observed under similar
scenarios; for example, a busy day at the real supermark
should be compared with a busy day at the simulated sto
More specifically, in queueing systems such a supermark
651
r

nt

en

e
d
-
y
as

s

dy

e
,

e
e
e
n

kes

et
re.
ts

input data consists of customers’ arrival times and cashie
service times, whereas output data concerns custom
waiting times. Trace-driven simulation means that t
analysts feed real input data into the simulation program
historical order. After running the simulation program, the
analysts compare the time series of simulated output with
historical time series of real output. But how should th
make this comparison? What is wrong with the followin
naive analysis of trace-driven simulation?

Make a scatter plot with (say) x and y - real and
simulated outputs that use the same input. Fit a l

, and test whether  = 1 and  = 0; sey ö ù0 ø ù1x ù1 ù0

Figure 1 taken from the case study in Kozempel, Tomasu
and Craig (1995). (This validation procedure is als
recommended by Van der Zouwen and Van Dijkum 1998

Figure 1: Example of Wrong Validation of Trace -drive
Simulation (Source: Kozempel et al. 1995, p. 232)

It is easy to prove that this analysis tends to reject a va
simulation model too often. Indeed, suppose the simulat
model is valid in the sense that the real and the simula
outputs have the same mean  =  (= ) and the saµx µy µ

variance  =  (= ) . Suppose further that this mean)2
x )2

y )2

positive (  > 0) - as is the usual case in queueiµ
simulations - and that the simulation model is not perfe
(  < 1). In general, for the linear regression mod'xy

 we have  = / and   = -y ö ù0 ø ù1x ù1 'xy)y )x ù0 µy

. Hence, a valid simulation model gives 0 <  < ù1 µx ù1

and 0 <  < . So if the analysts test whether  = 1 and ù0 µ ù1 ù0

= 0, then they are likely to reject the valid simulation mode
This is indeed what happens in Lysyk (1989): he fin

an estimated slope significantly smaller than unity and 
intercept significantly positive. Since he expects a unit slo
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and a zero intercept, he tries to explain this phenome
away. Figure 1 also suggests  > 0 and  < 1 (we canù0 ù1

give the actual estimates since we do not have the orig
numbers in Figure 1 available). More examples will follo
below.

A novel validation test for trace-driven simulation i
derived by Kleijnen, Bettonvil, and Van Groenendaal (199
1998). They compute not only the n differences di (also see
Equation 1 with n = m), but also the n sums (say) qi = xi + yi.
Next they fit a line  =  to these n pairsd õ0 ø õ1q

( ). Then they formulate the null-hypothesis H0::  =di, qi õ0

0 and  = 0. Obviously, this (joint, composite) hypothesõ1

implies = 0 or = . Moreover, assuming normaliµd µx µy

for x and y, it is easy to prove that  = 0 implies equõ1

variances:  = . To test this joint hypothesis:, standard)2
x )2

y
regression software (which applies an F test) can be use

Kleijnen et al. (1998) apply both the naive and the no
regression analyses to single server systems with Pois
arrival and service times (Markov systems with one serv
M/M/1). This gives the following conclusions.

(i) The naive test rejects a truly valid simulation
model substantially more often than the novel
test does.

(ii) The naive test shows ‘perverse’ behavior in a
certain domain; that is, the worse the
simulation model is (in that domain), the higher
is its probability of acceptance.

(iii) The novel test does not reject a valid
simulation model too often (that is, it rejects
with probability û), provided the outputs are
transformed logarithmically to realize
normality

Besides this academic M/M/1 study, there is a case st
that applies both the naive and the novel regression anal
namely the milk robot simulation in Halachmi et al. (1999
Again, the naive test rejects the simulation model much m
often than the novel test does. Obviously, it is unkno
whether this simulation model is valid or not: it is a real ca
study - unlike the academic study by Kleijnen et al. (1996,
1998).

Both the naive and the novel analyses assume n.i
(real and simulated) outputs. Kleijnen, Cheng, and Betton
(1999), however, consider the validation of simulatio
models with non-normal outputs. They study several tes
statistics, using bootstrapping. They conclude that actu
the simplest test is best: bootstrapping the difference betw
the average simulated and real responses gives the co
65
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type I error probability and has good power. They discuss
detail how to bootstrap the real and the simulated outputs

5 CONCLUSIONS

In practice, validation has many forms, but I focused o
validation through mathematical statistics. Statistica
validation may use various tests, depending on the type
data available for the real system. I discussed the followi
three situations.

(i) No Real Data

Even if there is no data on the input or output of the re
system, the analysts can still generate simulated data. More
specifically, the analysts should perform sensitivity analys
to find out whether the simulation model contradict
qualitative, expert knowledge. If the simulation‘s
input/output (I/O) behavior violates this knowledge, th
model should be seriously searched for programming a
conceptual errors. This sensitivity analysis should be guid
by DOE including regression metamodels; an inferio
approach changes only one factor at a time.

(ii) Only Data on Real Output

If there is data on the output of the real system, the means
real and simulated output distributions may be compar
through the two-sample Student t test. Alternatives are
Johnson's modified t statistic (estimating the skewness of th
output distribution), distribution-free statistics, and
bootstrapping.

(iii)  I/O Data on Real System

Real input data enable trace-driven simulation. Th
validation of this type of simulation, however, should not us
a scatter plot with real and simulated outputs, testing wheth
the fitted line has unit slope and zero intercept. Instead, tw
alternatives were discussed. Alternative #1 regress
differences on sums; this analysis applies if the outputs a
n.i.i.d. Alternative #2 uses bootstrapping of a simpl
validation statistic based on differences; this provide
acceptable type I and II errors.

To demonstrate the applicability of the various statistic
methods, I summarized several case studies. Neverthele
because validation involves the art of modeling and th
philosophy of science, validation will remain controversia
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