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ABSTRACT

Linear recurrences modulo 2 with long periods have been
widely used for contructing (pseudo)random number gener-
ators. Here, we use them for quasi-Monte Carlo integration
over the unit hypercube. Any stochastic simulation fits this

framework. The idea is to choose a recurrence with a short
period length and to estimate the integral by the average
value of the integrand over all vectors of successive output
values produced by the small generator. We examine ran-
domizations of this scheme, discuss criteria for selecting

form random points ovef0, 1)’. Then, E[Q,] = n and
Var [Q,] = 02/n, provided thato2 = o F2(u)du —
wu? < oo, in which case one has the central limit theorem:
V(@ — w)/o = N(0,1), SO|E,| = 0,(c/+/n) (regard-
less oft) and this error can be estimated via either the
central limit theorem, or large deviations theory, or some
other probabilistic method (Bratley, Fox, and Schrage 1987;
Fishman 1996; Law and Kelton 1991).

Generating the point®, requiresnt random numbers
(assuming that is a finite constant) and common wisdom
says that the period length of the random number generator

the parameters, and provide examples. This approach canysed for that purpose should be several orders of magnitude

be viewed as a polynomial version of lattice rules.

1 MONTE CARLO VS QUASI-MONTE CARLO

1.1 The Monte Carlo Method

The aim of most stochastic simulations is to estimate a
mathematical expectation, and this can be put into the
framework of estimating the integral of a functighover
thez-dimensional unit hypercul®, 1)’, namely

M=/ fwdu.
[0.1)"

Randomness in simulations is indeed generated from a

sequence of i.i.dU (0, 1) (pseudo)random variables, i.e., a

random pointirf0, 1)! if r uniforms are generated. Wheis

random, one can view the number of dimensions as infinite,

with only a finite subset of the random numbers being used.
The usual estimator of is the average value gf over

a point setP, = {ugp, ..., U,_1} C [0, 1),

1)

1 n—1
m=;§ﬂw. )

The integration error i, = Q, — n. In the traditional
Monte Carlo (MC) method,P, is a set ofn i.i.d. uni-
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larger tharmr (e.g., LEcuyer 1998).

What we suggest here is the opposite: Take a small
random number generator which has onlgtates, and let
P, be the set of all vectors af successive output values
produced by the generator, from all its initial states (i.e.,
over all of its cycles). If the generator is designed so that
P, covers the unit hypercube more evenly than random
points, it appears plausible thé&, could become a better
approximation ofu than theQ,, obtained by random points.
The idea is not new: The lattice rules proposed by Korobov
(1959) are in fact a special case. The idea was also discussed
by Niederreiter (1986).

1.2 Quasi-Monte Carlo

Placing the pointsP, more evenlythan at random is the
basic idea of so-calledjuasi-Monte Carlomethods. A
precise meaning can be given to “more evenly” by defining
a measure ofliscrepancybetween the discrete distribution
determined by the points @f, and the uniform distribution
over[0, 1)’. The point seP, is said to havéow-discrepancy
if its discrepancy measure is significantly smaller than that
of a typical random point set.

There are several ways of defining a discrepancy, many
of them leading to an error bound of the form

[Enl < V(f)D(Py)

forall f e F, 3)



L'Ecuyer and Lemieux

where F is a Banach space of functiong with norm
-1, V(f) = |l f — nll measures the variability of, and
D(P,) is the discrepancy oP, (see, e.g., Hellekalek 1998;
Hickernell 1998b; Niederreiter 1992). Whdn(P,) is the
widely-used rectangular star discrepaigi( P,), defined in
terms of rectangular boxes with one corner at the origin (e.g.,
Niederreiter 1992), (3) is the well-known Koksma-Hlawka
inequality. A popularway of constructing point sets with low
discrepancyD} (P,) is by constructing so-called, m, s)-
nets, for whichD}(P,) = O(n~1(Inn)'~1) (Larcher 1998;
Niederreiter 1992; Niederreiter and Xing 1998). Then, if
V(f) < oo, the error bound converges at the deterministic
rate O(n~1(Inn)'~1), which is asymptotically better than
the probabilistic rate0,(n~%/2) of the MC method.

This is nice in principle, but the worst-case bounds
given by the Koksma-Hlawka inequality are (almost always)
practically useless, becaugk, (P,) and (especiallyV ( f)
are too hard to compute and, more importantly, the error
bound is typically several orders of magnitude larger than
the true error and (especially for largg much too large
to be of any use. This does not mean that QMC does
not work, only that the error should be estimated by other
tools than the Koksma-Hlawka inequality. An alternative
is to randomizeP,, saym times, independently, so that
its discrepancy remains low while tha corresponding
replicates ofQ, are i.i.d. unbiased estimators gaf

1.3 Outline

In Section 2, we overview one way of constructing a point
set P, by taking all vectors of successive values produced
by a linear congruential generator (LCG) and shifting all
these points by a common uniform random point, modulo 1.
Such aP, is a Korobov lattice rule (Sloan and Joe 1994). In
Section 3, we look at what happens if we replace the LCG
by a linear feedback shift register (LFSR) (or Tausworthe)
generator. This gives lattice rules in a polynomial space.
Explicit expressions for the error and for the variance of the
randomized estimator are given in terms of the coefficients
of a Walsh series expansion gf. Based on a functional
ANOVA decomposition of Var [E,], we introduce, in Sec-
tion 4, selection criteria for the LFSR parameters which
take into account the quality of certain low-dimensional
projections. These criteria are somewhat related to (but
different from) those defining &, m, s)-net. These same
criteria could also be used for selecting (pseudo)random
number generators. We give specific examples of small
LFSR generators that satisfy these criteria. Larcher (see

Larcher 1998 and the references cited there) has also studiedf

polynomial lattice rules ovelF, using Walsh expansions,
but from a different viewpoint: His interest was mainly in
(t, m, s)-net properties and Koksma-Hlawka error bound.
In Section 5, we use our LFSR point sets for one simulation
example.
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2 RANDOMLY SHIFTED LATTICE RULES

Consider an LCG defined by the linear recurrence

x;i = (ax;j_1) modn, u; = x;/n,

for some integersO < a < n. Let P, = {u =
(uo, ..., u;—1) : xo € Z,}, whereZ, = {0,...,n — 1},
the set of allz-dimensional vectors of successive output
values produced by the LCG over all of its cycles. TRjs
is the intersection of a latticé,; with the unit hypercube
[0, 1)'. In the context of QMC, such &, is called aKo-
robov rule If n is a prime andz is primitive modulon,
the LCG has one cycle of length— 1 and one cycle of
length 1 (the absorbing state 0), so it is easy to enumerate
P, by going through the nontrivial cycle and adding the
pointu = (0, ..., 0).

Write the Fourier expansion of as

fu) = Z f(hyexp2r+/—1h-u),

hez'

with Fourier coefficients
f(h) = / f(u) exp(—27+/—1h - u)du.
[0,1)

The integration error with the lattice rule is then (Hickernell
1996; Sloan and Joe 1994)

E, = Z f(h)

0#heL}

(4)

(assuming that this series converges absolutely) whgee

{heZ':k-hezZforallk e L} is thedual lattice toL,.
This E, is hard to compute in practice, but its mean

square can be estimated by the following technique, called

a Cranley-Patterson rotation (Cranley and Patterson 1976).

GenerateU uniformly over [0, 1)’ and replace each;

in P, by G; = (u; + U) mod 1 (where the “modulo 1"

reduction is coordinate-wise). The skt is thus replaced

by P, = {{o, ..., U,_1}, andQ, andE, by 0, andE,. One

can show (Lemieux and L'Ecuyer 1999b) thatE,] = 0

and

Var [E,] = Z |f ()2

0+#heLy

®)

Equations (4) and (5) suggest a discrepancy measure of the
orm

D)= Y wh) or D)= sup wh), (6)
O#heL? OheLy
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where the (arbitrary) weights (h) decrease with the size of
h in a way that corresponds to how we think the Fourier co-
efficientsf (h) decrease (see, e.g., Entacher, Hellekalek, and
L'Ecuyer 1999; Hickernell 1998a; Lemieux and L'Ecuyer
1999a for examples).

To estimate the error, compute i.i.d. copies ofQ,
with the sameP, (usingm independent uniform shifts))

wherer; = k; —g;. Let
Up = U1 ®---DQujn

L
= Z((xl,ns+i—1 +--+ x],ns+i—l) mod 2> 27i~
i=1

and compute their sample variance, which is an unbiased If each P;(z) is a primitive trinomial and if thek;’s are

estimator of Var [0, ] = Var [E,].
3 LATTICERULES INARING OF POLYNOMIALS
OVER IF2

3.1 LFSR Generators

We consider the linear recurrence

Xn (arxp—_1+ -+ axx,_x) mod 2 @)
of order k > 1, wherea; = 1 anda; < {0, 1} for eachj.
This sequence is purely periodic and the period length of
its longest cycle i2¢ — 1 if and only if its characteristic

polynomial

k
P()=-) a ®)
i=0

(whereap = —1) is a primitive polynomial ovellF,, the
Galois field with 2 elements (Lidl and Niederreiter 1986).
Tausworthe-type linear feedback shift register (LFSR) gen-
erators evolve according to (7) and produce the output

L
Up = ans—i-i—lz_l
i=1

at stepn, where the parametessaandL are positive integers.
Tezuka and L'Ecuyer (1991) and L'Ecuyer (1996) give an
efficient algorithm for implementing this generator when
P(z) is a trinomial, P (z) = z¥ —z7 — 1, and the parameters
satisfy the condition® < 2¢ <k <L and0<s <k —q.
Since trinomial-based generators of this type are unsat-
isfactory from the theoretical viewpoint (Lindholm 1968),
Tezuka and L'Ecuyer (1991) proposed composite LFSR
generators defined as follows. TalleLFSR generators
that satisfy the above conditions, th¢éh one having the
characteristic polynomiaP; (z) = ki —z4i —1, so it obeys

©)

Xji = (Xji-r; +Xji-k;) Mmod 2
L

Ujn = ans_/+i—12_la
i=1
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relatively prime,{u,} is also an LFSR generatof with pe-
riod lengthp = (222 —1)... (2% — 1), and (reducible)
characteristic polynomiaP (z) = P1(z) - - - Py (z) of degree

k = k1+---+ky. Specific sets of parameters, as well as im-
plementations in the C language, are provided by L'Ecuyer
(1996, 1999). The parameters given there arekfor 88
and are for MC (the cardinality of, is 2¢). For QMC,

we need smaller values @&f ranging (say) from about 10
to 25.

3.2 Equidistribution

For a pointseP, in [0, 1)’ and an arbitrary set of dimensions
I ={i1,...,ig} € {1,...,1}, let P,(I) be the projection
of P, over thed-dimensional subspace determined/byf
we partition the interval0, 1) into 2¢ segments of length
27¢, this partitions theZ-dimensional unit hypercube into
24t cubic boxes of equal size. IP, has cardinality2,
we say thatP, (1) is d-distributed to¢ bits of accuracyor
(d, £)-equidistributed if each box of the partition contains
exactly 2=4¢ points of P,(I). This means that if we look
at the first¢ bits of each coordinate of the points 8§ (1),
each of the2?¢ possibled¢-bit strings appears exactly the
same number of times. Of course, this can happen only
if d¢ < k. To verify the equidistribution, one can write a
system of linear equations that express th@éeits as a
function of thek bits of the initial state of the recurrence,
(x0, ..., xx—1): One hasi-distribution to¢ bits of accuracy
if and only if the matrix of this linear transformation has
full rank, d¢.

L'Ecuyer (1996, 1999) computed tables of combined
LFSR generators for whicl®, (1) is d-distributed to¢ bits
of accuracy for eacti of the form{1, ..., d} and for each
(d, £) such thatd¢ < k, and¢ < L, whereL = 32 or
64 (the word size). He called such generatoraximally
equidistributed(ME).

Arelated property is that of &, m, s)-net” (a(q, k, t)-
net, in our notation), where one considers all the partitions of
[0, 1) into rectangular boxes of dimensioRs’t, ..., 2~
(not only cubic boxes), such thdt + --- + ¢, = k — ¢
for some integel. In our notation,P, is a (g, k, t)-net
in base 2 if for each of these partitions, each box of the
partition contains exactl®? points. See Niederreiter (1992)
or Owen (1998) for further details. f = 0, this implies
the ME property. Thégq, k, t)-net property is much harder
to check than the ME property, especially wheis large
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andg is small, because it involves a much larger number of
partitions, i.e., building and computing the rank of a much
larger number of matrices.

We propose as a compromise, in Section 4, criteriabased
on enriched versions of the ME property, and motivated by
a variance decomposition given in Section 3.5.

The point setsP, that correspond to LFSR generators
aredimension-stationarglLemieux and L'Ecuyer 1999b), in
the sense thak, ({i1, ..., iy}) = P,({i1+J, ..., iy +j}) for
alliq,...,iyandjsuchthatl <iy <--- <i, <tandl<
Jj < t—i,. This property is conveniently exploited to reduce
the number of set$ for which the quality of the projection
P,(I) must be examined: It suffices to consider those for
which i1 = 1. This property does not hold in general,
e.g., for common(g, k, t)-net constructions withy > 0,
the projectionsP, ({i1, ..., iy}) andP,({i1+j,...,iv+j})
often differ in quality.

3.3 Polynomial Representation and General LFSR
Implementation

The LFSR generators can be interpreted as linear congru-
ential generators in a space of polynomials. To see this, we
define a one-to-one mapping between the state SEéccEf

the recurrence (7) and the spdgg[z]/(P) of polynomials

of degree less thak with coefficients inlF2: To the state

sn = (Xn, ..., Xptk—1), We associate the polynomial
k .
pn(z) = Z Cn,jzk_] (10)
j=1
where
Cn1 1 0 0 Xn
Cn,2 ay 1 0 Xn+1
! = . . " mod 2
Cnk ag—1 a 1 Xntk—1
(11)
We then have (see, e.g., L'Ecuyer 1994)
Pn(2) = zpn-1(2) mod (P(2), 2), (12)

where “mod(P(z), 2)" means the remainder of the poly-
nomial division by P (z), with the operations on the coeffi-
cients performed ifF2. In other words, we have an LCG
in IF2[z]/(P), with modulusP(z) and multiplierz.

In the remainder of the paper, we restrict our attention
to the implementation (9) and consider the point Bet=
(U= (uo,...,u;—1) : so € IF5}. The polynomial LCG
(12) has a lattice structure similar to that of the usual
LCG (Couture, L'Ecuyer, and Tezuka 1993; Tezuka 1995;
Couture and L'Ecuyer 1999). In the case of (9), thel
lattice is the spaceC; of multivariate polynomials(z) =
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(h1(2). .., hi(2), whereh; (z) = Y4 hi j2/, hi j € IFa,

¢ € IN, and such thad"!_; 4, ()2~ mod (P(z),2) =

0. In a deliberate abuse of notation, we identify each
polynomialh(z) with the integer vectoh = (hy, ..., k),
whereh; = Zﬁ;% hi,jZ-" € IN, so £ can also be viewed
as a space of integer vectdns This dual lattice plays a
role in providing error and variance expressions similar to
(4) and (5), as we soon explain.

3.4 Walsh Expansion
For any multivariate polynomidl = h(z) defined as above,

andforu = (ug, ..., u,) whereu; = 3",y ui ;277 €0,1)
andu; ; # 1 for infinitely many j, detine

t o0
h®u= Zzhi’jflui’j mod 2
i=1j=1

The Walsh expansion in based f : [0, 1)) — R is then
(e.g., Beauchamp 1984):

fy =Y fhy=phey, (13)
helN?’
with coefficients
fhy = / FU)(=D)"qu, (14)
[0,1)!

Each term in (13) represents a piecewise-constant periodic
function of u with frequencyh; along theith axis and
amplitude f(h). Each vectorh is a bit selector which
picks a finite number of bits from the binary expansion
of (u1,...,us). Intuitively, the h’'s for which ||h|. =
maxi<;<; #; is small are more important because they test
the most significant bits of tha;. The following results
are not hard to prove, and they also apply to the projections
P, (I) (with obvious adaptations).

Proposition 1 One has

n—1
T %
_pheu; _ [ n Ifheﬁlt,
Z( ) {O otherwise.
j=0
Proposition 2 (Couture, LEcuyer, and Tezuka

1993.) The point sef, is ¢-distributed to¢ bits of accuracy
if and only if £} contains no vectoh = (h1,...,h;) #0
such that0 < h; < 2¢ for eachi, i.e., if and only if
the shortest nonzero vectdr in £} has length|h| =
sup.; -, [h;] > 2% (with the sup norm).

As pointed out to us by R. Couture, the counterpart of
the Cranley-Patterson rotation for polynomial lattice rules
over IF; (i.e., LFSR point sets) is to generate a single
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uniform random variabléJ in [0, 1)’ and replaceP, by

P, = {lo,...,0,_1}, Wwherel; = u; ® U, the bitwise
exclusive-or of the binary expansions of the coordinates of
u; andU. We define the random variablés, andE, as in
Section 2, but with this new,. Note that this randomization

of P, is much simpler than the scrambling proposed by Owen

where (forl # ¢) 012 is the variance off;(U), and the
coefficientf,(h) of the Walsh expansion of; is O unless
h satisfies:h; # 0 if and only if j € 1.

For typical simulation models, a large fraction of the
variance is accounted for by a relatively small number of
sets/, in the sense that, - ; o7 is nears? for some class

(1997b) for nets, and possesses essentially the same variancer of cardinality much less tha@’. The most important

properties (the details will appear in a forthcoming paper
by Couture, L'Ecuyer, and Lemieux).

Proposition 3 One hasE[E,] = 0 and, similar to
(4) and (5), the integration error withP, and the variance
with P, can be written as

E,= Y f (15)
0#he L}
if this series converges absolutely, and
Var [E,)= ) |f(% (16)

0#£heLf

if f is square-integrable.

This suggests discrepancy measures of the form (6),
with L} replaced byL}. The weight should be chosen in
accordance with our knowledge (or intuition) of how the
Walsh coefficients are likely to behave as a functiorhof
Again, we can maken independent shifts and compute a
confidence interval fop from them i.i.d. copies ofQ,.

3.5 Functional ANOVA Decomposition

We now decompose the variance Bf, in terms of the
projections determined by the subsétef {1, ..., ¢}. This

will motivate discrepancy measures based on the quality of
these projections. The ANOVA decomposition of Hoeffding
(e.g., Owen 1998) is

fw= > fiw,

I1S{1,....1}

where f;(U) = fr(ua, ..., u;) depends only ofu;, i € I},
/‘[0,1)2, fi) fr(v)dudv = 0 for all I # J, fe(u) = u,
and f[o,l)t frwdu = 0 for I # ¢, where¢ denotes the
empty set. Foo > O, Z\”fv f1(-) is the least mean square
approximation off (-) by a sum ofv-dimensional (or less)
functions. The variance decomposes as

6% = \Var[E,]

2. of

I1S{1,....1}

Yo > 1My

IC{L,...,t} Ohe Ll
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sets/ are often those that contain successive indices, or a
small number of indices that are not too far apart. This
suggests discrepancy measures of the form (6), where the
sum (or sup) is over a class of vectdrshat correspond

to these types of sete We propose such measures in the
next section.

4 SPECIFIC CRITERIA AND PARAMETER SETS

Let £ (I) denote the projection of} over the subspace
determined by, and let2" () be the length of the shortest
nonzero vectoh in £} (I). We want¢*(I) to be large. If
|I| = j thene*(I) < |k/j]. We then define

A, s) = (17)

Jax [Lk/j) —€*(D].

d,s

whereS(d, s) = {I = {i1,...,i;}:i1 =1, and either each
i; <sand|I| <d, orI contains only consecutive indiges
We say that the point s&®, is ME(d, s) if A(d,s) =0,
i.e., ifitis ME and if for each/ C {1, ..., s} of cardinality
no more thant, the projectionp, (1) is also ME. Note that
ME(1, k) is the same as ME.

Inrecent papers (Owen 1997a; Larcher 1998; Hickernell
1999), it has been pointed out that the quality criterion
q for (g, k, r)-nets should be generalized to a vector of
parametersgy);cq1.2,....;; that would measure the quality
of each projectionP,(I) of the net, or at least a certain
number of these projections. Thegere definedinasimilar
way to g, but with the restriction that eadh defining the
rectangular boxes for which the equidistribution property
is checked must be at least 1 whgne I and we have
g = max; q;. Sincek — |I|+1—¢*(I) is an upper bound
ong; for our LFSR point sets, the criterion we propose can
be seen as a way to construgt, , ¢)-nets for whichg;
can be bounded individually whenevkee S(d, t), because
£*(I) is known in this case.

We performed exhaustive searches over all combined
LFSR generators with either two or three components whose
characteristic polynomials are primitive trinomials with rel-
atively prime degrees, and which satisfy the implementation
conditions mentioned in Section 3.1, to find the best ones
with respect taA (3, 10), which also turned out to be the best
ones with respect ta (4, 10). We give the search results in
Table 1, in which$, , is such thatA (d, u) = maxi<y<g 8v.4,
ands, u = MmaX, ¢, . [Lk/j] —€*(D)], wherej = |I] and

S’(v,u) ={I ={i1,....i;} 1 i1 = 1, and eitheri; < u
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and|/| = v > 1 or I contains only consecutive indices, if Table 2: Estimated Variance Reduction Factors

v = 1}. Most of the generators in the table are ME(2,10) s ‘ n K=90 K =100 K =110
and the smallest value df for which we could find an naive estimator

ME(3,10) generator wak = 19. 10 | 1024 420 210 62

4096 3200 1600 730

Table 1. Best Combined LFSRs with théjrio 16384 22000 11000 1800

k | (k,q,s) | 8110 8210 8310 8410 | A4, 10 65536 | 55000 13000 2300

10| (7,1,3) 0 0 2 2 2 60 | 1024 78 55 9.3

(3,1,2) 4096 200 88 7.4

12 | (5,2,3) 0 0 2 2 2 16384 1100 180 41

(4,1,2) 65536 1000 200 41
(3,1,1) ACV estimator

14 | (9,4,3) 0 0 2 2 2 10 | 1024 17 17 45

(5,2,2) 4096 64 22 7.4

16 | (11,2,7)| 2 0 0 2 2 16384 122 22 12

(5,2,2) 65536 74 29 18

19 (10,34)| O 0 0 2 2 60 | 1024 16 8.0 2.2

(9,4,2) 4096 16 8.4 2.7

16384 14 11 1.6

65536 30 9.5 3.1

5 A NUMERICAL EXAMPLE

For a numerical illustration, we consider the pricing of an
asian option on the arithmetic average, for a single asset.
We assume the Black-Scholes model for the evolution of
the asset value, with risk-free appreciation rateolatility

o, strike priceK, and expiration timel'. The average is
over the values at theobservation point§ —¢r+1,...,T.

the function £ is zero on most of the domaii®, 1)’ and
thus, the good equidistribution of LFSR point sets is not
very useful. In this situationimportance samplindgs an
appropriate variance reduction technique, as discussed by
Glasserman, Heidelberger, and Shahabuddin (1999).
Notice that the generator used fbr= 16 is not ME:
Among ME generators for this value &f the best value

To simulate each observation of the selling price, one needs 0f A(4,10) that could be obtained was 3 and was given
¢ normal random variables. To reduce the variance, one can by @ bad projection in dimension 3 (i.&3 10 = 3). This

use the selling price of the option on tgeometricaverage

as a control variable, as well as antithetic variates. Details
about this model can be found in Lemieux and L'Ecuyer
(1998).

In Table 2, we give the estimated variance reduction
factors (with respect to MC) obtained by the randomly-
scrambled LFSR point sets (as in Section 3.4) given in
Table 1. The parameters of the option &) = 100
r =1In1.09, ¢ = 0.2and 7T = 120 We use 100 ran-
domizationsU to estimate the variance. When the control
variable and antithetic variates are used, we call this the
ACV estimator. Otherwise, we have thmaive estimator.
For Monte Carlo, we used the same total sample 50
(for a fair comparison).

For this problem, the LFSR point sets from Table
1 reduce the variance by factors ranging approximately
between 2 and 50000 compared to MC. As expected, the
reduction factors usually increase withand decrease with
t. The improvement over MC is more important with the
naive estimators than with the ACV ones: This had been
noted previously by Lemieux and L'Ecuyer (1998) and
Lemieux and L'Ecuyer (1999a). Also, the reduction factors
decrease witlK: The explaination is that whek is large,
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generator turned out to be quite bad for the asian option
problem, giving sometimes estimators with more variance
than MC. The one from Table 1 definitely gives better

estimators than the ME one and this shows that looking at
projections over non-consecutive indices is important for
this type of application.

The results obtained in this example are quite promis-
ing given the simplicity of the method and the fact that
it is faster than MC. They also compare favorably with
results obtained by randomly-shifted LCGs chosen with an
equivalent criterion.
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