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Universit́e de Montŕeal, C.P. 6128, Succ. Centre-Ville

Montréal, H3C 3J7, CANADA

:

e
;

or
de

ll

,
t

v
ed

g

t

y

ABSTRACT

Linear recurrences modulo 2 with long periods have bee
widely used for contructing (pseudo)random number gener
ators. Here, we use them for quasi-Monte Carlo integratio
over the unit hypercube. Any stochastic simulation fits this
framework. The idea is to choose a recurrence with a sho
period length and to estimate the integral by the averag
value of the integrand over all vectors of successive outpu
values produced by the small generator. We examine ran
domizations of this scheme, discuss criteria for selecting
the parameters, and provide examples. This approach c
be viewed as a polynomial version of lattice rules.

1 MONTE CARLO VS QUASI-MONTE CARLO

1.1 The Monte Carlo Method

The aim of most stochastic simulations is to estimate a
mathematical expectation, and this can be put into th
framework of estimating the integral of a functionf over
thet-dimensional unit hypercube[0, 1)t , namely

µ =
∫

[0,1)t

f (u)du. (1)

Randomness in simulations is indeed generated from
sequence of i.i.d.U(0, 1) (pseudo)random variables, i.e., a
random point in[0, 1)t if t uniforms are generated. Whent is
random, one can view the number of dimensions as infinite
with only a finite subset of the random numbers being used

The usual estimator ofµ is the average value off over
a point setPn = {u0, . . . , un−1} ⊂ [0, 1)t ,

Qn = 1

n

n−1∑
i=0

f (ui ). (2)

The integration error isEn = Qn − µ. In the traditional
Monte Carlo (MC) method,Pn is a set ofn i.i.d. uni-
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form random points over[0, 1)t . Then, E[Qn] = µ and
Var [Qn] = σ 2/n, provided thatσ 2 = ∫

[0,1)s f 2(u)du −
µ2 < ∞, in which case one has the central limit theorem√

n(Qn − µ)/σ ⇒ N(0, 1), so|En| = Op(σ/
√

n) (regard-
less of t) and this error can be estimated via either the
central limit theorem, or large deviations theory, or som
other probabilistic method (Bratley, Fox, and Schrage 1987
Fishman 1996; Law and Kelton 1991).

Generating the pointsPn requiresnt random numbers
(assuming thatt is a finite constant) and common wisdom
says that the period length of the random number generat
used for that purpose should be several orders of magnitu
larger thannt (e.g., L’Ecuyer 1998).

What we suggest here is the opposite: Take a sma
random number generator which has onlyn states, and let
Pn be the set of all vectors oft successive output values
produced by the generator, from all its initial states (i.e.
over all of its cycles). If the generator is designed so tha
Pn covers the unit hypercube more evenly than random
points, it appears plausible thatQn could become a better
approximation ofµ than theQn obtained by random points.
The idea is not new: The lattice rules proposed by Korobo
(1959) are in fact a special case. The idea was also discuss
by Niederreiter (1986).

1.2 Quasi-Monte Carlo

Placing the pointsPn more evenlythan at random is the
basic idea of so-calledquasi-Monte Carlomethods. A
precise meaning can be given to “more evenly” by definin
a measure ofdiscrepancybetween the discrete distribution
determined by the points ofPn and the uniform distribution
over[0, 1)t . The point setPn is said to havelow-discrepancy
if its discrepancy measure is significantly smaller than tha
of a typical random point set.

There are several ways of defining a discrepancy, man
of them leading to an error bound of the form

|En| ≤ V (f )D(Pn) for all f ∈ F, (3)
2
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where F is a Banach space of functionsf with norm
‖ · ‖, V (f ) = ‖f − µ‖ measures the variability off , and
D(Pn) is the discrepancy ofPn (see, e.g., Hellekalek 1998
Hickernell 1998b; Niederreiter 1992). WhenD(Pn) is the
widely-used rectangular star discrepancyD∗

n(Pn), defined in
terms of rectangular boxes with one corner at the origin (e
Niederreiter 1992), (3) is the well-known Koksma-Hlaw
inequality. A popular way of constructing point sets with lo
discrepancyD∗

n(Pn) is by constructing so-called(t, m, s)-
nets, for whichD∗

n(Pn) = O(n−1(ln n)t−1) (Larcher 1998;
Niederreiter 1992; Niederreiter and Xing 1998). Then,
V (f ) < ∞, the error bound converges at the determinis
rate O(n−1(ln n)t−1), which is asymptotically better tha
the probabilistic rateOp(n−1/2) of the MC method.

This is nice in principle, but the worst-case boun
given by the Koksma-Hlawka inequality are (almost alwa
practically useless, becauseDn(Pn) and (especially)V (f )

are too hard to compute and, more importantly, the e
bound is typically several orders of magnitude larger th
the true error and (especially for larget) much too large
to be of any use. This does not mean that QMC d
not work, only that the error should be estimated by ot
tools than the Koksma-Hlawka inequality. An alternati
is to randomizePn, say m times, independently, so tha
its discrepancy remains low while them corresponding
replicates ofQn are i.i.d. unbiased estimators ofµ.

1.3 Outline

In Section 2, we overview one way of constructing a po
setPn by taking all vectors of successive values produc
by a linear congruential generator (LCG) and shifting
these points by a common uniform random point, modulo
Such aPn is a Korobov lattice rule (Sloan and Joe 1994).
Section 3, we look at what happens if we replace the L
by a linear feedback shift register (LFSR) (or Tauswort
generator. This gives lattice rules in a polynomial spa
Explicit expressions for the error and for the variance of
randomized estimator are given in terms of the coefficie
of a Walsh series expansion off . Based on a functiona
ANOVA decomposition of Var [En], we introduce, in Sec-
tion 4, selection criteria for the LFSR parameters wh
take into account the quality of certain low-dimension
projections. These criteria are somewhat related to
different from) those defining a(t, m, s)-net. These same
criteria could also be used for selecting (pseudo)rand
number generators. We give specific examples of sm
LFSR generators that satisfy these criteria. Larcher (
Larcher 1998 and the references cited there) has also stu
polynomial lattice rules overIF2 using Walsh expansions
but from a different viewpoint: His interest was mainly
(t, m, s)-net properties and Koksma-Hlawka error boun
In Section 5, we use our LFSR point sets for one simulat
example.
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2 RANDOMLY SHIFTED LATTICE RULES

Consider an LCG defined by the linear recurrence

xi = (axi−1) mod n, ui = xi/n,

for some integers0 < a < n. Let Pn = {u =
(u0, . . . , ut−1) : x0 ∈ ZZn}, where ZZn = {0, . . . , n − 1},
the set of allt-dimensional vectors of successive output
values produced by the LCG over all of its cycles. ThisPn

is the intersection of a latticeLt with the unit hypercube
[0, 1)t . In the context of QMC, such aPn is called aKo-
robov rule. If n is a prime anda is primitive modulon,
the LCG has one cycle of lengthn − 1 and one cycle of
length 1 (the absorbing state 0), so it is easy to enumerat
Pn by going through the nontrivial cycle and adding the
point u = (0, . . . , 0).

Write the Fourier expansion off as

f (u) =
∑
h∈ZZt

f̂ (h) exp(2π
√−1h · u),

with Fourier coefficients

f̂ (h) =
∫

[0,1)t

f (u) exp(−2π
√−1h · u)du.

The integration error with the lattice rule is then (Hickernell
1996; Sloan and Joe 1994)

En =
∑

06=h∈L∗
t

f̂ (h) (4)

(assuming that this series converges absolutely) whereL∗
t =

{h ∈ ZZt : k · h ∈ ZZ for all k ∈ Lt } is thedual lattice toLt .
This En is hard to compute in practice, but its mean

square can be estimated by the following technique, calle
a Cranley-Patterson rotation (Cranley and Patterson 1976
GenerateU uniformly over [0, 1)t and replace eachui

in Pn by ũi = (ui + U) mod 1 (where the “modulo 1”
reduction is coordinate-wise). The setPn is thus replaced
by P̃n = {ũ0, . . . , ũn−1}, andQn andEn byQ̃n andẼn. One
can show (Lemieux and L’Ecuyer 1999b) thatE[Ẽn] = 0
and

Var [Ẽn] =
∑

06=h∈L∗
t

|f̂ (h)|2. (5)

Equations (4) and (5) suggest a discrepancy measure of th
form

D(Pn) =
∑

06=h∈L∗
t

w(h) or D(Pn) = sup
06=h∈L∗

t

w(h), (6)
33
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where the (arbitrary) weightsw(h) decrease with the size of
h in a way that corresponds to how we think the Fourier co
efficientsf̂ (h) decrease (see, e.g., Entacher, Hellekalek, an
L’Ecuyer 1999; Hickernell 1998a; Lemieux and L’Ecuyer
1999a for examples).

To estimate the error, computem i.i.d. copies ofQ̃n

with the samePn (usingm independent uniform shiftsU)
and compute their sample variance, which is an unbias
estimator of Var [Q̃n] = Var [Ẽn].

3 LATTICE RULES IN A RING OF POLYNOMIALS
OVER IF2

3.1 LFSR Generators

We consider the linear recurrence

xn = (a1xn−1 + · · · + akxn−k) mod 2 (7)

of order k > 1, whereak = 1 and aj ∈ {0, 1} for eachj .
This sequence is purely periodic and the period length o
its longest cycle is2k − 1 if and only if its characteristic
polynomial

P (z) = −
k∑

i=0

aiz
k−i (8)

(wherea0 = −1) is a primitive polynomial overIF2, the
Galois field with 2 elements (Lidl and Niederreiter 1986)
Tausworthe-type linear feedback shift register (LFSR) gen
erators evolve according to (7) and produce the output

un =
L∑

i=1

xns+i−12−i (9)

at stepn, where the parameterss andL are positive integers.
Tezuka and L’Ecuyer (1991) and L’Ecuyer (1996) give an
efficient algorithm for implementing this generator when
P (z) is a trinomial,P (z) = zk − zq −1, and the parameters
satisfy the conditions0 < 2q < k ≤ L and0 < s < k − q.

Since trinomial-based generators of this type are unsa
isfactory from the theoretical viewpoint (Lindholm 1968),
Tezuka and L’Ecuyer (1991) proposed composite LFS
generators defined as follows. TakeJ LFSR generators
that satisfy the above conditions, thej th one having the
characteristic polynomialPj (z) = zkj − zqj −1, so it obeys

xj,i = (xj,i−rj
+ xj,i−kj

) mod 2,

uj,n =
L∑

i=1

xnsj +i−12−i ,
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whererj = kj − qj . Let

un = u1,n ⊕ · · · ⊕ uJ,n

=
L∑

i=1

((x1,ns+i−1 + · · · + xJ,ns+i−1) mod 2) 2−i .

If each Pj (z) is a primitive trinomial and if thekj ’s are
relatively prime,{un} is also an LFSR generator with pe-
riod length ρ = (2k1 − 1) · · · (2kJ − 1), and (reducible)
characteristic polynomialP (z) = P1(z) · · · PJ (z) of degree
k = k1+· · ·+kJ . Specific sets of parameters, as well as im-
plementations in the C language, are provided by L’Ecuye
(1996, 1999). The parameters given there are fork ≥ 88
and are for MC (the cardinality ofPn is 2k). For QMC,
we need smaller values ofk, ranging (say) from about 10
to 25.

3.2 Equidistribution

For a point setPn in [0, 1)t and an arbitrary set of dimensions
I = {i1, . . . , id} ⊆ {1, . . . , t}, let Pn(I) be the projection
of Pn over thed-dimensional subspace determined byI . If
we partition the interval[0, 1) into 2` segments of length
2−`, this partitions thed-dimensional unit hypercube into
2d` cubic boxes of equal size. IfPn has cardinality2k,
we say thatPn(I) is d-distributed to` bits of accuracy, or
(d, `)-equidistributed, if each box of the partition contains
exactly2k−d` points ofPn(I). This means that if we look
at the first` bits of each coordinate of the points ofPn(I),
each of the2d` possibled`-bit strings appears exactly the
same number of times. Of course, this can happen onl
if d` ≤ k. To verify the equidistribution, one can write a
system of linear equations that express thesed` bits as a
function of thek bits of the initial state of the recurrence,
(x0, . . . , xk−1): One hasd-distribution to` bits of accuracy
if and only if the matrix of this linear transformation has
full rank, d`.

L’Ecuyer (1996, 1999) computed tables of combined
LFSR generators for whichPn(I) is d-distributed to` bits
of accuracy for eachI of the form{1, . . . , d} and for each
(d, `) such thatd` ≤ k, and ` ≤ L, where L = 32 or
64 (the word size). He called such generatorsmaximally
equidistributed(ME).

A related property is that of a “(t, m, s)-net” (a(q, k, t)-
net, in our notation), where one considers all the partitions o
[0, 1)t into rectangular boxes of dimensions2−`1, . . . , 2−`t

(not only cubic boxes), such that`1 + · · · + `t = k − q

for some integerq. In our notation,Pn is a (q, k, t)-net
in base 2 if for each of these partitions, each box of the
partition contains exactly2q points. See Niederreiter (1992)
or Owen (1998) for further details. Ifq = 0, this implies
the ME property. The(q, k, t)-net property is much harder
to check than the ME property, especially whenk is large
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andq is small, because it involves a much larger number o
partitions, i.e., building and computing the rank of a much
larger number of matrices.

We propose as a compromise, in Section 4, criteria bas
on enriched versions of the ME property, and motivated b
a variance decomposition given in Section 3.5.

The point setsPn that correspond to LFSR generators
aredimension-stationary(Lemieux and L’Ecuyer 1999b), in
the sense thatPn({i1, . . . , iv}) = Pn({i1+j, . . . , iv +j}) for
all i1, . . . , iv andj such that1 ≤ i1 < · · · < iv ≤ t and1 ≤
j ≤ t −iv. This property is conveniently exploited to reduce
the number of setsI for which the quality of the projection
Pn(I) must be examined: It suffices to consider those fo
which i1 = 1. This property does not hold in general,
e.g., for common(q, k, t)-net constructions withq > 0,
the projectionsPn({i1, . . . , iv}) andPn({i1+j, . . . , iv +j})
often differ in quality.

3.3 Polynomial Representation and General LFSR
Implementation

The LFSR generators can be interpreted as linear congr
ential generators in a space of polynomials. To see this, w
define a one-to-one mapping between the state spaceIFk

2 of
the recurrence (7) and the spaceIF2[z]/(P ) of polynomials
of degree less thank with coefficients inIF2: To the state
sn = (xn, . . . , xn+k−1), we associate the polynomial

pn(z) =
k∑

j=1

cn,j zk−j (10)

where




cn,1
cn,2

...

cn,k


 =




1 0 . . . 0
a1 1 . . . 0
...

. . .
...

ak−1 . . . a1 1







xn

xn+1
...

xn+k−1


 mod 2.

(11)
We then have (see, e.g., L’Ecuyer 1994)

pn(z) = zpn−1(z) mod (P (z), 2), (12)

where “mod(P (z), 2)” means the remainder of the poly-
nomial division byP (z), with the operations on the coeffi-
cients performed inIF2. In other words, we have an LCG
in IF2[z]/(P ), with modulusP (z) and multiplierz.

In the remainder of the paper, we restrict our attentio
to the implementation (9) and consider the point setPn =
{u = (u0, . . . , ut−1) : s0 ∈ IFk

2}. The polynomial LCG
(12) has a lattice structure similar to that of the usua
LCG (Couture, L’Ecuyer, and Tezuka 1993; Tezuka 1995
Couture and L’Ecuyer 1999). In the case of (9), thedual
lattice is the spaceL∗

t of multivariate polynomialsh(z) =
63
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(h1(z), . . . , ht (z)), wherehi(z) = ∑`−1
j=0 hi,j zj , hi,j ∈ IF2,

` ∈ IN, and such that
∑t

i=1 hi(z)z
(i−1)s mod (P (z), 2) =

0. In a deliberate abuse of notation, we identify each
polynomial h(z) with the integer vectorh = (h1, . . . , ht ),
wherehi = ∑`−1

j=0 hi,j 2j ∈ IN, so L∗
t can also be viewed

as a space of integer vectorsh. This dual lattice plays a
role in providing error and variance expressions similar to
(4) and (5), as we soon explain.

3.4 Walsh Expansion

For any multivariate polynomialh = h(z) defined as above,
and foru = (u1, . . . , ut ) whereui = ∑

j≥1 ui,j 2−j ∈ [0, 1)

andui,j 6= 1 for infinitely manyj , define

h ⊗ u =
t∑

i=1

∞∑
j=1

hi,j−1ui,j mod 2.

The Walsh expansion in base 2of f : [0, 1)t → IR is then
(e.g., Beauchamp 1984):

f (u) =
∑

h∈IN t

f̃ (h)(−1)h⊗u, (13)

with coefficients

f̃ (h) =
∫

[0,1)t

f (u)(−1)h⊗udu. (14)

Each term in (13) represents a piecewise-constant period
function of u with frequencyhi along the ith axis and
amplitude f̃ (h). Each vectorh is a bit selector, which
picks a finite number of bits from the binary expansion
of (u1, . . . , ut ). Intuitively, the h’s for which ‖h‖∞ =
max1≤i≤t hi is small are more important because they tes
the most significant bits of theuj . The following results
are not hard to prove, and they also apply to the projection
Pn(I) (with obvious adaptations).

Proposition 1 One has

n−1∑
j=0

(−1)h⊗uj =
{

n if h ∈ L∗
t ,

0 otherwise.

Proposition 2 (Couture, L’Ecuyer, and Tezuka
1993.) The point setPn is t-distributed tò bits of accuracy
if and only if L∗

t contains no vectorh = (h1, . . . , ht ) 6= 0
such that0 ≤ hi < 2` for each i, i.e., if and only if
the shortest nonzero vectorh in L∗

t has length‖h‖∞ =
sup1≤i≤t |hi | ≥ 2` (with the sup norm).

As pointed out to us by R. Couture, the counterpart o
the Cranley-Patterson rotation for polynomial lattice rules
over IF2 (i.e., LFSR point sets) is to generate a single
5
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uniform random variableU in [0, 1)t and replacePn by
P̃n = {ũ0, . . . , ũn−1}, where ũi = ui ⊕ U, the bitwise
exclusive-or of the binary expansions of the coordinates
ui andU. We define the random variables̃Qn andẼn as in
Section 2, but with this new̃Pn. Note that this randomization
of Pn is much simpler than the scrambling proposed by Ow
(1997b) for nets, and possesses essentially the same vari
properties (the details will appear in a forthcoming pap
by Couture, L’Ecuyer, and Lemieux).

Proposition 3 One hasE[Ẽn] = 0 and, similar to
(4) and (5), the integration error withPn and the variance
with P̃n can be written as

En =
∑

06=h∈L∗
t

f̃ (h) (15)

if this series converges absolutely, and

Var [Ẽn] =
∑

06=h∈L∗
t

|f̃ (h)|2. (16)

if f is square-integrable.
This suggests discrepancy measures of the form (

with L∗
t replaced byL∗

t . The weight should be chosen in
accordance with our knowledge (or intuition) of how th
Walsh coefficients are likely to behave as a function ofh.
Again, we can makem independent shifts and compute
confidence interval forµ from them i.i.d. copies ofQ̃n.

3.5 Functional ANOVA Decomposition

We now decompose the variance ofẼn in terms of the
projections determined by the subsetsI of {1, . . . , t}. This
will motivate discrepancy measures based on the quality
these projections. The ANOVA decomposition of Hoeffdin
(e.g., Owen 1998) is

f (u) =
∑

I⊆{1,...,t}
fI (u),

wherefI (u) = fI (u1, . . . , ut ) depends only on{ui, i ∈ I },∫
[0,1)2t fI (u)fJ (v)dudv = 0 for all I 6= J , fφ(u) ≡ µ,

and
∫
[0,1)t fI (u)du = 0 for I 6= φ, whereφ denotes the

empty set. Forv > 0,
∑

|I |≤v fI (·) is the least mean square
approximation off (·) by a sum ofv-dimensional (or less)
functions. The variance decomposes as

σ 2 = Var [Ẽn]
=

∑
I⊆{1,...,t}

σ 2
I

=
∑

I⊆{1,...,t}

∑
06=h∈L∗

t

|f̃I (h)|2
63
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where (for I 6= φ) σ 2
I is the variance offI (U), and the

coefficientf̃I (h) of the Walsh expansion offI is 0 unless
h satisfies:hj 6= 0 if and only if j ∈ I .

For typical simulation models, a large fraction of the
variance is accounted for by a relatively small number o
setsI , in the sense that

∑
I⊆J σ 2

I is nearσ 2 for some class
J of cardinality much less than2t . The most important
setsI are often those that contain successive indices, or
small number of indices that are not too far apart. Thi
suggests discrepancy measures of the form (6), where
sum (or sup) is over a class of vectorsh that correspond
to these types of setsI . We propose such measures in the
next section.

4 SPECIFIC CRITERIA AND PARAMETER SETS

Let L∗
t (I ) denote the projection ofL∗

t over the subspace
determined byI , and let2`∗(I ) be the length of the shortest
nonzero vectorh in L∗

t (I ). We want`∗(I ) to be large. If
|I | = j then`∗(I ) ≤ bk/jc. We then define

1(d, s) = max
I∈S(d,s)

[bk/jc − `∗(I )
]

. (17)

whereS(d, s) = {I = {i1, . . . , ij } : i1 = 1, and either each
ij ≤ s and|I | ≤ d, or I contains only consecutive indices}.
We say that the point setPn is ME(d, s) if 1(d, s) = 0,
i.e., if it is ME and if for eachI ⊆ {1, . . . , s} of cardinality
no more thand, the projectionPn(I) is also ME. Note that
ME(1, k) is the same as ME.

In recent papers (Owen 1997a; Larcher 1998; Hickerne
1999), it has been pointed out that the quality criterio
q for (q, k, t)-nets should be generalized to a vector o
parameters(qI )I⊆{1,2,...,t} that would measure the quality
of each projectionPn(I) of the net, or at least a certain
number of these projections. TheseqI are defined in a similar
way to q, but with the restriction that eachlj defining the
rectangular boxes for which the equidistribution propert
is checked must be at least 1 whenj ∈ I and we have
q = maxI qI . Sincek − |I | + 1− `∗(I ) is an upper bound
on qI for our LFSR point sets, the criterion we propose ca
be seen as a way to construct(q, k, t)-nets for whichqI

can be bounded individually wheneverI ∈ S(d, t), because
`∗(I ) is known in this case.

We performed exhaustive searches over all combine
LFSR generators with either two or three components who
characteristic polynomials are primitive trinomials with rel-
atively prime degrees, and which satisfy the implementatio
conditions mentioned in Section 3.1, to find the best one
with respect to1(3, 10), which also turned out to be the best
ones with respect to1(4, 10). We give the search results in
Table 1, in whichδv,u is such that1(d, u) = max1≤v≤d δv,u,
andδv,u = max

I∈S
′
(v,u)

[bk/jc − `∗(I )
]
, wherej = |I | and

S
′
(v, u) = {I = {i1, . . . , ij } : i1 = 1, and eitherij ≤ u
6
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and |I | = v > 1 or I contains only consecutive indices,
v = 1}. Most of the generators in the table are ME(2,1
and the smallest value ofk for which we could find an
ME(3,10) generator wask = 19.

Table 1:  Best Combined LFSRs with theirδv,10

k (k, q, s) δ1,10 δ2,10 δ3,10 δ4,10 1(4, 10)

10 (7,1,3) 0 0 2 2 2
(3,1,2)

12 (5,2,3) 0 0 2 2 2
(4,1,2)
(3,1,1)

14 (9,4,3) 0 0 2 2 2
(5,2,2)

16 (11,2,7) 2 0 0 2 2
(5,2,2)

19 (10,3,4) 0 0 0 2 2
(9,4,2)

5 A NUMERICAL EXAMPLE

For a numerical illustration, we consider the pricing of a
asian option on the arithmetic average, for a single as
We assume the Black-Scholes model for the evolution
the asset value, with risk-free appreciation rater, volatility
σ , strike priceK, and expiration timeT . The average is
over the values at thet observation pointsT − t +1, . . . , T .
To simulate each observation of the selling price, one ne
t normal random variables. To reduce the variance, one
use the selling price of the option on thegeometricaverage
as a control variable, as well as antithetic variates. Det
about this model can be found in Lemieux and L’Ecuy
(1998).

In Table 2, we give the estimated variance reducti
factors (with respect to MC) obtained by the randoml
scrambled LFSR point sets (as in Section 3.4) given
Table 1. The parameters of the option areS(0) = 100,
r = ln 1.09, σ = 0.2 and T = 120. We use 100 ran-
domizationsU to estimate the variance. When the contr
variable and antithetic variates are used, we call this
ACV estimator. Otherwise, we have thenaive estimator.
For Monte Carlo, we used the same total sample size100n
(for a fair comparison).

For this problem, the LFSR point sets from Tab
1 reduce the variance by factors ranging approximat
between 2 and 50000 compared to MC. As expected,
reduction factors usually increase withn and decrease with
t . The improvement over MC is more important with th
naive estimators than with the ACV ones: This had be
noted previously by Lemieux and L’Ecuyer (1998) an
Lemieux and L’Ecuyer (1999a). Also, the reduction facto
decrease withK: The explaination is that whenK is large,
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Table 2:  Estimated Variance Reduction Factors
s n K = 90 K = 100 K = 110

naive estimator
10 1024 420 210 62

4096 3200 1600 730
16384 22000 11000 1800
65536 55000 13000 2300

60 1024 78 55 9.3
4096 200 88 7.4
16384 1100 180 41
65536 1000 200 41

ACV estimator
10 1024 17 17 4.5

4096 64 22 7.4
16384 122 22 12
65536 74 29 18

60 1024 16 8.0 2.2
4096 16 8.4 2.7
16384 14 11 1.6
65536 30 9.5 3.1

the functionf is zero on most of the domain[0, 1)t and
thus, the good equidistribution of LFSR point sets is no
very useful. In this situation,importance samplingis an
appropriate variance reduction technique, as discussed
Glasserman, Heidelberger, and Shahabuddin (1999).

Notice that the generator used fork = 16 is not ME:
Among ME generators for this value ofk, the best value
of 1(4, 10) that could be obtained was 3 and was given
by a bad projection in dimension 3 (i.e.,δ3,10 = 3). This
generator turned out to be quite bad for the asian optio
problem, giving sometimes estimators with more varianc
than MC. The one from Table 1 definitely gives bette
estimators than the ME one and this shows that looking
projections over non-consecutive indices is important fo
this type of application.

The results obtained in this example are quite promis
ing given the simplicity of the method and the fact tha
it is faster than MC. They also compare favorably with
results obtained by randomly-shifted LCGs chosen with a
equivalent criterion.
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obtained theE. W. R. Steaciegrant from the Natural Sci-
ences and Engineering Research Council of Canada for t
period 1995–97. His main research interests are rando
number generation, efficiency improvement via variance
reduction, sensitivity analysis and optimization of discrete
event stochastic systems, and discrete-event simulation
general. He is an Area Editor for theACM Transac-
tions on Modeling and Computer Simulation. More details
at: http://www.iro.umontreal.ca/˜lecuyer ,
where several of his recent research articles are availab
on-line.

CHRISTIANE LEMIEUX is currently a Ph.D. stu-
dent in the “D́epartement d’Informatique et de Recherche
Opérationnelle”, at the University of Montréal. She works
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