
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

MONKEYS, GAMBLING, AND RETURN TIMES:
ASSESSING PSEUDORANDOMNESS

Stefan Wegenkittl

Department of Mathematics
University of Salzburg

A 5026 Salzburg, AUSTRIA

s

p

c

e

m
n

h

a
l

r

s

-
n
-
is
r
l
2,

o

y

t

ABSTRACT

We present a general construction kit for empirical test
of pseudorandom number generators which comprises
wide range of well-known standard tests. Within our setu
we identify two important families of tests and check for
connections between them. This leads us to quiery th
existence of universal tests which claim to be able to dete
any possible defect of a generator.

1 INTRODUCTION

Whereas the art of constructing pseudorandom numb
generators (PRNGs, see Knuth 1997, L’Ecuyer 1994, an
Hellekalek 1998a for overviews) is that of carefully hiding
the deterministic nature of the afterwards presumed rando
numbers, the art of empirical testing is to find the hidde
correlations and to analyze their impact on simulation stud
ies and Monte Carlo algorithms. Following Marsaglia and
Zaman (1993), a good PRNG produces an output whic
does not differ significantly from that of a (memoryless and
fair) monkey hitting keys on a numeric keyboard.

Theoretical tests (Hellekalek 1998b, Niederreiter 1992
1995) - as they are often provided by the authors of
PRNG themselves - usually ensure the quality of the samp
space which is the set of all possible realizations that ca
be obtained from the generator. We are left to empirica
testing - in which the PRNG is treated as a black box - fo
gaining confidence in that thesampleswill suit the needs of
our application. Here, we try to remodel important feature
of the target application in a test statistic and to seek fo
any “non-monkeyness” in the corresponding test results.

The huge amount of empirical tests presented in lit
erature in various setups and styles (see Bratley, Fox, a
Schrage 1983, Knuth 1997, and L’Ecuyer 1992 for sur
veys, and Altman 1988, Bernhofen et. al. 1996, DeMatte
and Pagnutti 1995, Dudewicz et. al. 1995, Eichenaue
Herrmann, Herrmann, and Wegenkittl 1997, Entacher, Uh
and Wegenkittl 1998, Ferrenberg, Landau, and Wong 199
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Marsaglia 1985, and Vattulainen, Ala-Nissila, and Kankaala
1994, 1995 for examples) makes it difficult to rate on the
differences and redundancies within these batteries. We
present a construction kit which unifies many well-known
approaches in a general setup in Section 2 and analyze tw
important families of tests in Sections 3 and 4. We will see
that these families are strongly connected by the notion of
entropy. We consider a scale ranging from highly specific to
rather universal tests in Section 5 and examine the necessit
of both types of tests.

2 CONSTRUCTION OF TESTS

The construction kit in Figure 1 exhibits the major building
blocks of empirical testing procedures. From top downwards
we have two input modules, the PRNG and the monkey, three
feature extraction modules and a comparison module. The
latter,C, is used to measure the extent of “non-monkeyness”
of the PRNG with respect to the selected features. The tes
rejects the generator if the observed behavior is very unlikely
to occur when replacing it by the monkey. As to the middle
modules, we have

• a keyboard deviceK for turning the pseudo-
random numbers (PRNs) into letters from a
finite alphabetA, #A = α, such as bit cutting
mechanisms, even-odd-testing, or coin-throw
simulation. Under the monkey hypothesis,
the sequence of letters is assumed to be an
i.i.d. uniform random sequence onA∞ with
each lettera ∈ A having a fixed probabilityπa .

• a finite state automatonA with state spaceS =
{1, . . . , m} which makes transitions according
to the input letters,

• and an observation unitO for reporting statis-
tics on the state automata such as the number
of visits in each state, see Section 3, or the
return time to a certain state, see Section 4.
5
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Figure 1: Construction Kit for Empirical Tests

The number of letters that is generated during a te
is called sample sizeN . Depending on whether the ratio
m/N is small or large, we distinguish the dense and spar
case, respectively. Well known examples are:

• the serial test (Good 1953, Knuth 1997) in
dimensions (also called chi-square test or rel-
ative frequency test): this test compares the
relative number of visits to the expected num-
ber of visits in each state of the automaton. It
assumes independence of the successive states
under the monkey hypothesis, see Section 3
for the dense case, and the tests in L’Ecuyer,
Simard, and Wegenkittl (1998) for the sparse
case.

• the overlapping serial test (also called overlap-
ping M-tuple test in Marsaglia 1985), which
is computed from overlappings-tuples of suc-
cessive letters, see again Section 3.

• more general serial tests (see Cressie and
Read 1984 and the so-called monkey tests
in Marsaglia and Zaman 1993) whereO
counts e.g. the number of states never vis-
ited (also called empty-cells test), or colli-
sions (more than one visit in a state). Some of
these tests are more powerful when the sparse
case (m >> N ) is considered, see L’Ecuyer,
Simard, and Wegenkittl (1998) for the corre-
sponding distributions and results.

• return time tests (see Choe and Kim 1999,
and Maurer 1992), where the observation unit
measures the time between two visits in a
certain state, see Section 4.

Many other tests proposed in literature - such as the run a
poker test and some of the tests based on random walks - c
be reformulated in terms of the general scheme for serial tes
considered in Section 3 or in terms of return times to certa
states, see Section 4. In order to perform significance testi
it is necessary to have a combination of units which allow
626
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the derivation of the asymptotic distribution or moments
under the monkey hypothesis. Often, the test is performe
several times and a second level test is used to rate
the results, see Knuth (1997), Chap. 3.3, and Leeb an
Wegenkittl (1997).

3 SERIAL TESTS FOR MARKOV CHAINS

Consider a keyboardK for the finite alphabetA = {1, . . . , α}
with cardinality α and an automaton unitA with state
spaceS = {1, . . . , m}. The transitions inA shall only
depend on the incoming letters and on the current stat
but not on the time when the letter is received. Under th
monkey hypothesis, we may analyze the random sequen
of states,X = (X0, X1, . . . , XN−1), Xl ∈ S, assumed by
A as a Markov chain. Each entrypij in the transition
matrix IP = (pij )(i,j)∈S2, pij = P [Xl = j |Xl−1 = i],
1 ≤ l ≤ N − 1, denotes the probability of going from one
state to another and equals the sum of allπa of letters that
yield the corresponding transition inA. We will restrict
ourselves to the case of irreducible and aperiodic chain
(S, IP) in the following so that we get the ergodicity ofX and
a unique stable distributionP = (p1, . . . , pm), P · IP = P,
for free. We also assume that the initial stateX0 has
distributionP so thatX becomes a stationary sequence. In
the dense case, the effect of an arbitrary initial distributio
wears off exponentially so that we can neglect its influenc
in the following.

In a serial test, the observation unitO counts the num-
ber of visits in each state of the chain and reports th
vector of relative frequencies,̂P(N) = (P̂

(N)
1 , . . . , P̂

(N)
m ),

P̂
(N)
i = 1/N · #{0 ≤ l ≤ N − 1 : Xl = i}. Clearly, the

expectationE[P̂(N)] equals the stable distributionP. The
matrix of variances and covariancesV [P̂(N)] can, owing to
the stationarity, be writtenV [P̂(N)] = 6 for a fixed matrix
6. Both, P and 6, can be computed fromIP numerically
for modestm, see Wegenkittl (1998, 1999b). We will see
below, that the numerical computations can be omitted for
fairly large class of automataA for which theoretical results
are available. The Central Limit Theorem for Markov chains
yields asymptotic normality,

√
N(P̂(N) −P) ≈ N(0, 6), for

largeN .
As to the comparison unitC, we might compute a weak

inverse6 of 6, i.e., a matrix satisfying666 = 6, and
use the quadratic formI = (P̂(N) − P) · 6 · (P̂(N) − P)∗,
where the∗ denotes the transposed vector. A more gener
statistic considered in Wegenkittl (1998, 1999a, 1999b) i
the modified generalizedφ-divergenceĨ6,ϕ,q , which we
cite in a slightly simplified version:

Let the function ϕ, [0, ∞) → (−∞, ∞] have
continuous second derivatives on some nonempty interv
(1 − δ, 1 + δ) ⊂ [0, ∞) with ϕ(1) = ϕ′(1) = 0 and



Monkeys, Gambling, and Return

l

ϕ′′ := ϕ′′(1) 6= 0. Further let6
(l) = (σ

(l)
ij )(i,j)∈S2, 1 ≤ l ≤

q, be a family ofm × m real matrices. Put

φϕ(x, y) := 2ϕ

(
x + y

2

)
− ϕ(x) + ϕ(y)

2
,

and define the modified generalizedφ-divergence

Ĩ6,ϕ,q(P̂(N), P) =

= 2n

q∑
l=1

1

ϕ′′
m∑

i,j=1

σ
(l)
ij PiPj φϕ

(
P̂

(N)
i

Pi

,
P̂

(N)
j

Pj

)
.

On the conditions that
√

n
(

P̂(N) − P
)

d→ N(∅, 6) for a

covariance matrix6, and that6 := ∑q

l=1 6
(l)

is a weak
inverse of6, 666 = 6, this statistic is asymptotically
distributed chi-square withR(6) degrees of freedom,

Ĩ6,ϕ,q(P̂(N), P)
d→ χ2

R(6) asN → ∞.

In the dense caseN >> m, combiningK , A, andO
with an appropriately parameterized̃I6,ϕ,q statistic in the
C unit, we get an empirical significance test with level
of significance approximately equal toτ for the monkey
hypothesis by rejecting values ofĨ6,ϕ,q which differ from

the expectedR(6) by more thanε, where P [|χ2
R(6) −

R(6)| ≥ ε] = τ . Note, that sinceε is calculated from the
asymptotic distribution of the test statistic, it gives reasonable
approximation ofτ only for large enough sample sizes.
The following subsections discuss instances of the genera
scheme.

3.1 Counting S-Letter Words

We fix a dimensions ≥ 1 and consider two automata,A-n
(“n”onoverlapping) andA-o (“o”verlapping) with state space
S = As of cardinalitym = αs each. Denote a statea ∈ S

by a = (a1, . . . , as), ai ∈ A. A-n makes a transition from
a to b = (b1, . . . , bs) if it receives thes-letter wordb. A-o
makes a transition froma to b = (a2, . . . , as, b) if it receives
the (single) letterb ∈ A. The current state thus reflects
the lasts incoming letters in both units. It is clear, how to
write down the corresponding transition matricesIP-n and
IP-o, say. The stable distributionP equalsP = (Pa)a∈S with
componentsPa = πa1 ·πa2 · · · πas (arranged in lexicographic
order) in both cases. We assume that the initial stateX0 ∈ S

is distributed according to this stable distribution.
The observation unitO reports the vector̂P(N) of relative

frequencies as described above. The expectationE[P̂(N)]
equalsP for both,A-n andA-o. In the case ofA-n, V [P̂(N)]
is the covariance matrix of a multinomial distribution with
627
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parametersP and 1 since the corresponding chain yields
an i.i.d. sequence of states. A weak inverse is given by
6 = diag(1/P(1,...,1), . . . , 1/P(α,...,α)). For q = 1 we get

Ĩ6,ϕ,1(P̂(N), P) = 2N

ϕ′′
m∑

i=1

Piϕ(
P̂

(N)
i

Pi

), (1)

which is Csisźar’s (1963) famousϕ-divergence. For the loss
functionϕ2(u) := 1

2(u−1)2, Ĩ6,ϕ2,1 equals the ordinary chi-
square statistic, whereasϕ1(u) := 1−u+u ln(u) yields the I-
Divergence of Kullback and Leibler (1951),G2(P̂(N), P) =
2n
∑m

i=1 P̂
(N)
i ln(

P̂
(N)
i

Pi
), which is also called log-likelihood

ratio statistic, see Cressie and Read (1984), and Wegenkitt
(1998, 1999b). By the above, our setup includes standard
serial tests for pseudorandomness.

Now we switch to the automatonA-o: Although
6 = V [P̂(N)] has an awfully complicated structure, a rather
simple weak inverse6 can be given, see Good (1953),
Marsaglia (1985), Marsaglia and Zaman (1993), and We-
genkittl (1998). The nice thing about this weak inverse is
that it can be written as the sum of two matrices such that for
q = 2, Ĩ6,ϕ,q decomposes to the difference of two standard
ϕ-divergences of type (1), one for dimensions and one for
dimensions − 1. In other words,P andP̂(N) are computed
for twoA-n automata in dimensionss ands−1, respectively,
for the same sequence of letters.Ĩ6,ϕ,2 is asymptotically

chi-square distributed withR(6) = αs − αs−1 degrees of
freedom in this case.

By now, our setup also includes the overlapping serial
tests in the dense case. We get a connection to entropy
based testing if we assume uniform distribution onS, P =
( 1

m
, . . . , 1

m
), and consider the linear transform of the statistic

Ĩ6,ϕ1,2 with the loss functionϕ1,

Is := log2(m) − Ĩ6,ϕ1,2(P̂(N), ( 1
m

, . . . , 1
m

))

2N ln(2)
.

Is is an estimator for the entropy of the sequence of letters
under the condition that this sequence stems from a stationary
ergodic source of order less thans, see Section 4 and the
papers of Wegenkittl (1999a) and L’Ecuyer, Compagner,
and Cordeau (1996) for details.

3.2 Gambling Tests

By the latter property ofIs we conclude that it might be
important to consider serial tests in high dimensions in order
to reveal defects of PRNGs. However, if the state space
S = As is getting large, we run into difficulties in storing
all the m = αs components of̂P(N) in the main memory
of the computer, and in performingdensetests with the
required sample sizesN >> m.
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Here, the concept ofdimension reductionby applying
a linear transform to the counter vector in the observat
unit can be helpful: instead of reportinĝP(N) itself, the
observation unit computes a vectorP̂(N) · M for a real
s × t matrix, t < s. This vector is asymptotically norma
distributed with meanP·M and covariance matrixM∗6M,
so that we may still apply the modified generalizedφ-
divergenceĨ6,ϕ,q in the comparison unit.M might for
example be a matrix consisting of zeros and ones only
such a way, that the state spaceS is partitioned into a
few classes which are considered to maintain the relev
information on the suspected defects of a PRNG, and
the relative frequencies of all states within each class
summed up. The resulting vectors have less compon
and, consequently, are more accessible to the compar
unit.

As an example consider the class ofgambling testsfrom
Wegenkittl (1998) and Wegenkittl and Matsumoto (1999
The keyboardK consists of the lettersh andt (head, tail) and
the monkey simulates fair coin tosses. InA we memorize
the lasts − 1 coin throws and bet onh if it had occurred
more often than(s − 1)/2. In this case we can either win
or loose depending on the next coin throw. Otherwis
we skip the round. In terms of the automaton unit w
have a state space of cardinality2s which can be rather
intractable in practice, see the examples below.O collapses
the state space to the 3 dimensional vector denoting w
losses, and skipped rounds. The test has shown the ab
to detect theoretically foreseen deficiencies of two hi
period generatorsT800 (Matsumoto and Kurita 1994) and
ranarray (Knuth 1997) in dimensionss = 53, 102, as
well as the improvement by temperingT800 (yielding the
excellentTT800 ) and discarding with high luxury paramete
applied toranarray , see again Wegenkittl and Matsumo
(1999).

4 RETURN TIME ANALYSIS

Instead of counting the number of visits of the Marko
chain in each possible state, we might consider the ret
time to the initial state or a function thereof. Accordin
statistics have been studied in Choe and Kim (1999) a
Maurer (1992). LetT = min{l ≥ 1 : Xl = X0} be the
return time to the initial state, and letE[T |X0 = i] be the
expected return time conditional on a start in statei ∈ S.
The fundamental relationship to the stable distribution,

E[T |X0 = i] = 1

Pi

, i ∈ S, (2)

holds in every stationary ergodic chain. By (2) we expe
a connection between tests build on the estimation of
return time and the serial tests in the last section, in wh
P̂(N) estimatesP.
6
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Indeed, the following setup for the logarithm of the
return time also incorporates the concept of tests in dime
sion s: We choose an automatonA with state spaceS and
define a return timeO-r (“r”eturn) unit by letting

T̂ = min{l ≥ 1 : (Xl·s , Xl·s+1, . . . , Xl·s+s−1) =

= (X0, X1, . . . , Xs−1)},
note the non-overlapping treatment similar toA-n. Let
H(S, IP) = −∑i∈S Pi

∑
j∈S pij log2(pij ) be the entropy

of the chain(S, IP), i.e. the entropy of the sequence of state
assumed under the monkey hypothesis, and letH(P) =
−∑i∈S Pi log2(Pi) be that of the stable distribution. It
turns out (Wegenkittl 1999a) that

lim
s→∞(E[log2(T̂ )] − (s − 1)H(S, IP) − H(P)) = C,

with C = −γ / ln(2) = −0.832746. . ., whereγ stands for
the Euler constant. By this,Ir := E[log2(T̂ )]/s gives an
estimator of the entropyH(S, IP). To carry out the test,
we computeIr and compare it to the theoreticalH(S, IP)

under the monkey hypothesis in the comparison unit.
As stated in Maurer (1992), such tests are not con

structed with a certain defect of a PRNG in mind but with
respect to the information theoretic meaning of the per-b
entropy. If a PRNG is used to produce keys for a crypto
graphic application, the effective key size can be estimate
by using Maurer’s (1992) test, which is an optimized ver
sion ofIr . The connection to serial testing is established b
choosing the trivial automatonA with state spaceS = A
and transition to statea ∈ S if letter a is received: in
this case,Ir and Is actually estimate the same quantity,
namely the entropy of the stationary ergodic source whic
produces the sequence of letters and which equalslog2(α)

under the monkey hypothesis. In our empirical tests w
have found thatIs slightly outperformsIr because of the
use ofoverlappings-letter words and tends to reject bad
PRNGs with smaller sample sizesN . Also, Is gives an
unbiased estimate if the dimensions is larger than the order
of the (imaginative) letter source. Return time based tes
are asymptotically (for larges) unbiased, but the results are
difficult to interpret whens is small.

5 UNIVERSAL AND SPECIFIC TESTS

We have identified two important families of tests which are
both built on the notion of turning a letter-driven finite state
automaton into a Markov chain and analyzing differen
figures of merit, such as the relative frequency of eac
state and the expected logarithm of the return time to th
initial state. Both families can be used to estimate th
entropy of the letter generating source provided that th
28



Monkeys, Gambling, and Return Times: Assessing Pseudorandomness

i

a

in

t
ty

of
on

.

p
.

)
h

s

a

s

.

f

r
s

order of this source (i.e., the “memory” of the monkey)
smaller than the dimensions of the test. We may call the
tests universal in the sense that any deviation of the f
memoryless monkey is detected for large enough sam
size and dimensions. Monkeys with higher memory will
be able to hide the correlations in the letter sequence
way that is inaccessible to the tests.

We identify the following test setups for empirical tes
of PRNGs which we quote in increasing order of universali

• special purpose test: the test is designed to
show a presumed defect in the PRNs obtained
from a selected family of PRNGs. If the de-
sign parameters likeα, s, or M are well cho-
sen, the test is highly efficient in finding the
corresponding deviation from the monkey hy-
pothesis, but even low-quality generators with
other specific defects will pass the test. Con-
sider for instance gambling tests which show
the difference betweenT800 andTT800 but
fail to reject standard linear congruential gen-
erators with bad lattice structure like RANDU
in dimension 3. This type of test is used to put
alert signs telling potential users that the deter-
ministic origin of the PRNs may actually show
up in very simple simulation problems. It also
stresses the importance of cross-evaluation of
simulations with PRNGs of different type.

• application related test: here, the design pa-
rameters are chosen with respect to the target
application. The test becomes a toy-version
of the simulation problem. Since we know the
results in advance, we can rate on the genera-
tors performance. Although we consider this
an important type of test, it is difficult to give
families of tests which are general enough to
be adjusted to the specific application. The
general serial test presented in Section 3 for
example still suffers from the complicated and
often infeasible calculation of the covariance
matrix 6. We encourage further investigation
of this problem.

• systematic testing: we fix a test and a family
of generators and vary both, the design pa-
rameters likeα, s, andN of the test, and the
parameters of the generator such as the pe-
riod length, modulus, or multiplier. Our aim
is to systematically determine the region of
rejection in the parameter space so that we
shed light on the ability of the generator to
hide its deterministic nature under different
“pressure”. As a result we get rules of thumb
on the applicability of the generator depend-
ing on e.g. the number of bits and the sample
6
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sizes used in an application. Examples are
the load-tests in Leeb and Wegenkittl (1997)
which show the superiority of inversive– over
linear congruential generators in overlapping
serial tests, or the sparse case tests in L’Ecuyer,
Simard, and Wegenkittl (1998).

• universal tests finally are the intended answer
to the question “why do I have to use so many
different tests?”: although universal tests do
exist in the theoretical sense, their practical
value is limited by the computational effort that
is necessary to do the test in high dimensions
s. As we have seen, highs is necessary to
reveal all potential correlations hidden in the
PRNs.

Nowadays generators can be ordered among a scale
increasing state space. Usual congruential generators are
the lower end of the scale, since the period length is limited
by the bit size of the CPU used for the modulus arithmetics
After all, the generation of the next PRN uses all bits in
the state space in each step. This operation pretty mixes u
the bits if the parameters of the generator are well selected
In higher dimensions, the small period length necessarily
imposes limits on the quality of the PRNs. Huge period
high-speed generators likeTT800 are on the opposite end.
Only a small amount of bits in the state space is used to
determine the next PRN. Such generators may suffer from
long range correlations although the period length would
admit better results in even high dimensions.

A good compromise seems to be given by combined
generators (see e.g. L’Ecuyer 1996, 1999a, and 1999b
which use a rather large fraction of the state space in eac
step, but limit the single operations to small modulus. Such
generators can often be viewed as tricky implementation
of large period congruential generators.

Empirical testing strives to detect the finite memory (i.e.
state space) of the generator by allowing the test to have
finite memoryS itself. From the universality argument, we
know that larges and S = As will enable certain tests to
distinguish between monkey and PRNG. Some generator
require additional tricks like carefully selected dimension
reduction in order to implement the test for the necessary
size of s. The more tricks we need to reveal the “non-
monkeyness” the higher our confidence is that an arbitrary
application will not implement similar feature extraction and
that using the PRNG yields reasonable simulation results

In summary, rejection by an empirical test gives valuable
information on the generator. It is not a lack of quality in the
first place since every generator fails in the same number o
tests from a theoretical point of view. The important question
is, whether the application and the test depend on simila
features. Instead of using lots of different tests, we stres
the importance of systematic testing by varying the design
29
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parameters. Doing such tests gives knowledge on a spec
generator, doing cross evaluation with different generato
gives knowledge on a specific problem, simulation stud
or Monte Carlo algorithm.
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godiziẗat von Markoffschen Ketten.Magyar Tud. Akad.
Mat. Kutató Int. Közl, 8:85–108.

DeMatteis, A., and Pagnutti, S., 1995. Controlling corr
lations in parallel Monte Carlo.Parallel Computing,
21:73–84.

Dudewicz, E.J., van der Meulen, E.C., SriRam, M.G., an
Teoh, N.K.W., 1995. Entropy-based random numb
evaluation. American Journal of Mathematical and
Management Sciences, 15(1,2):115–153.

Eichenauer-Herrmann, J., Herrmann, E., and Wegenk
S., 1997. A survey of quadratic and inversive con
gruential pseudorandom numbers. In H. Niederreit
P. Hellekalek, G. Larcher, and P. Zinterhof, editor
Monte Carlo and Quasi-Monte Carlo Methods 1996,
number 127 in Lecture Notes in Statistics, pages 66–9
Springer, New York.

Entacher, K., Uhl, A., and Wegenkittl, S., 1998. Linea
and Inversive Pseudorandom Numbers for Parallel a
Distributed Simulation. InTwelfth Workshop on Par-
allel and Distributed SimultationPADS’98 , May 26th
- 29th, 1998, pages 90–97, Banff, Alberta, Canad
IEEE Computer Society, Los Alamitos, California.

Ferrenberg, A. M., Landau, D.P., and Wong, Y.J., 199
Monte Carlo simulations: hidden errors from “good
63
ific
rs
,

on
l

r

d
-
.
t

ed

s-

-
-

-

d
r

tl,
-
r,
,

7.

d

.

.

random number generators.Phys. Rev. Lett.,
69(23):3382–3384.

Good, I. J., 1953. The serial test for sampling numbers an
other tests for randomness.Proc. Cambridge Philo-
sophical Society, 49:276–284.

Hellekalek, P., 1998a. Good random number generators ar
(not so) easy to find.Mathematics and Computers in
Simulation, 46:485–505.

Hellekalek, P., 1998b. On Correlation Analysis of Pseu-
dorandom Numbers. In H. Niederreiter, P. Hellekalek,
G. Larcher, and P. Zinterhof, editors,Monte Carlo
and Quasi-Monte Carlo Methods 1996, volume 127 of
Lecture Notes in Statistics, pages 251–265. Springer.

Knuth, D. E., 1997.The Art of Computer Programming, vol-
ume 2: Seminumerical Algorithms. Addison-Wesley,
Reading, MA, third edition.

Kullback, S., and Leibler, R.. 1951. On information and
sufficiency. Ann. Math. Statist., 22:79–86.

L’Ecuyer, P., 1992. Testing random number generators. In
J.J. Swain, D. Goldsman, R.C. Crain, and J.R. Wilson,
editors, Proceedings of the 1992 Winter Simulation
Conference, pages 305–313. IEEE Press, Piscataway
N.J.

L’Ecuyer, P., 1994. Uniform random number generation.
Annals of Operations Research, 53 :77–120.

L’Ecuyer, P., 1996. Maximally equidistributed combined
Tausworthe generators.Mathematics of Computation,
65(213):203–213.

L’Ecuyer, P., 1999a. Good parameters and implementa
tions for combined multiple recursive random number
generators.Operations Research, 47(1):159–164.

L’Ecuyer, P., 1999b. Tables of Maximally Equidistributed
Combined LFSR Generators.Mathematics of Compu-
tation, 68(225):261–269.

L’Ecuyer, P., Compagner, A., and Cordeau,
J.F., 1996. Entropy tests for random num-
ber generators. published electronically at
www.iro.umontreal.ca/˜lecuyer .

L’Ecuyer, P., Simard, R., and Wegenkittl, S., 1998. Sparse
serial tests of uniformity for random number generators.
Submitted for publication.

Leeb, H., and Wegenkittl, S., 1997. Inversive and lin-
ear congruential pseudorandom number generators i
empirical tests.ACM Trans. Modeling and Computer
Simulation, 7(2):272–286.

Marsaglia, G., 1985. A current view of random number
generators. In L. Billard, editor,Computer Science and
Statistics: The Interface, pages 3–10. Elsevier Science
Publishers B.V.

Marsaglia, G., and Zaman, A., 1993. Monkey Tests for
Random Number Generators.Computers Math. Ap-
plic., 26(9):1–10.

Matsumoto, M., and Kurita, Y., 1994. Twisted GFSR gener-
ators II.ACM Trans. Model. Comput. Simul., 4:254–266.
0



Monkeys, Gambling, and Return Times: Assessing Pseudorandomness

s

-

ce
,

s,
Maurer, U.M., 1992. A universal statistical test for random
bit generators.J. Cryptology, 5:89–105.

Niederreiter, H., 1992.Random Number Generation and
Quasi-Monte Carlo Methods. SIAM, Philadelphia,
USA.

Niederreiter, H., 1995. New developments in uniform pseu-
dorandom number and vector generation. In H. Nieder-
reiter and P. Jau-Shyong Shiue, editors,Monte Carlo
and Quasi-Monte Carlo Methods in Scientific Comput-
ing, volume 106 ofLecture Notes in Statistics. Springer.

Vattulainen, I., Ala-Nissila, T., and Kankaala, K., 1994.
Physical tests for random numbers in simulations.Phys-
ical Review Letters, 73(19):2513–2516, 11.

Vattulainen, I., Ala-Nissila, T., and Kankaala, K., 1995.
Physical models as tests of randomness.Physical Re-
view E, 52(3):3205–3213.

Wegenkittl, S., 1998. Generalized φ-Divergence and
Frequency Analysis in Markov Chains. PhD the-
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