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ABSTRACT

We present a two-stage experiment design for use in sim
lation experiments that compare systems in terms of the
expected (long-run average) performance. This procedu
simultaneously achieves the following with a prespecifie
probability of being correct: (a) find the best system o
a near best system; (b) identify a subset of systems th
are more than a practically insignificant difference from
the best; and (c) provide a lower bound on the probabilit
that the best or near best system has actually been selec
The procedure assume normally distributed data, but allow
unequal variances.

1 INTRODUCTION

In this paper we address problems that arise in thereporting
and interpretation of simulation experiments performed t
identify the best system, where best means maximum or
minimum expected (long-run average) performance. Th
procedure we derive allows the simulation analyst to achiev
the following goals, all with prespecified probability of being
correct:

1. Design their experiment so as to find the best
system, or one within a practically insignificant
difference from the best system (we refer to
this as a “good selection”).

2. Bound the difference between each system
and the best system, and thereby eliminate
all systems that are more than the practically
insignificant difference from the best.

3. Revise the prespecified probability of a good
selection upward, based on the results of the
experiment, and also give a lower bound on
the probability that the unique best system has
been selected.

Many ranking and selection procedures exist tha
achieve goal 1 (see, for instance, Bechhofer, Santner a
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Goldsman 1995, or Goldsman and Nelson 1998). Multiple
comparison procedures, specifically multiple comparison
with the best (MCB), can satisfy goal 2 (Hsu 1996). How-
ever, the bounds provided by standard MCB procedure
are difficult to interpret because they areconstrainedcon-
fidence intervals: each interval either contains0 or has0
as one end point. A0 endpoint means that a system can
be declared either “no better than the best” or “no differen
from the best,” depending on which end point it is. This
subtly is confusing to many analysts. We solve the problem
by providing fixed-width, unconstrained MCB intervals, a
small extension to existing theory. An important use o
such intervals is to eliminate from further consideration al
systems that are clearly inferior to the best system.

A more fundamental contribution is made by addressin
goal 3. We do this by providinga lower confidence bound on
the achieved probability of a good selection (PGS)after all of
the simulation data have been realized. Since the procedu
guarantees a PGS of at least a prespecified nominal lev
our lower confidence bound will revise this value upward if
the data so indicate. We can also provide a lower confidenc
bound on the probability that theuniquebest system has
been selected, which we refer to as the probability of
correct selection (PCS).

The concept of a revised probability of a good selection
is similar in spirit to Hsu’s (1984)S-value, which is the
smallest confidence level at which the sample best syste
would be declared to be the true best system. In ou
case we design the experiment to achieve a given, nomin
probability of a good selection that we hope to revise upwar
if the simulation results are favorable.

The paper is organized as follows: We first describe
how lower confidence bounds on PCS and PGS can b
obtained in general. These lower confidence bounds o
PCS and PGS depend on a lower confidence bound on t
difference between the best system and each inferior syste
we obtain those bounds in Section 3. Section 4 introduce
a specific procedure for reevaluating PCS and PGS aft
sampling. An illustrative example is provided in Section 5.
1
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2 ASSESSING PGS

Throughout this paper we assume that larger expected perfo
mance implies a better system. Letµ1, µ2, . . . , µk denote
the unknown means of thek systems to be compared, and
let µ̂i denote our point estimator ofµi . In this section we
assume only that the distribution of̂µi − µ̂` − (µi − µ`)

does not depend onµ1, µ2, . . . , µk.
Denote the ordered means byµ[1] ≤ µ[2] ≤ · · · ≤

µ[k−1] < µ[k], and for the moment suppose that our goal
is to find the unique best system[k]; later we address the
problem of finding either system[k] or a system[i] whose
true mean is close enough toµ[k].

Our rule will be to select the system with the largest
performance estimate,̂µi . Therefore, the probability of a
(unique) correct selection is

PCS

= Pr
{
µ̂[i] < µ̂[k], i = 1, 2, . . . , k − 1

}
= Pr

{
µ̂[i] − µ̂[k] − (µ[i] − µ[k])

< µ[k] − µ[i], i = 1, 2, . . . , k − 1
}

= Pr
{
Di < µ[k] − µ[i], i = 1, 2, . . . , k − 1

}
(1)

whereDi, i = 1, 2, . . . , k − 1 has the same joint distribu-
tion as µ̂[i] − µ̂[k] − (µ[i] − µ[k]), i = 1, 2, . . . , k − 1. If
the values of the differencesµ[k] − µ[i] were known, as
well as the joint distribution ofD1, D2, . . . , Dk−1, then (1)
might be evaluated exactly. Since this is impossible in
practice, Kim (1986) suggested replacingµ[k] − µ[i] in (1)
with (1−α)100%lower confidence bounds on these differ-
ences, thereby providing a(1 − α)100% lower confidence
bound (LCB) on the achieved probability of correct selec-
tion when (1) is evaluated (see also Anderson, Bishop and
Dudewicz 1977). Kim (1986) was only able to provide lower
confidence bounds on the single differenceµ[k] − µ[k−1],
whereas we will provide bounds on allk − 1 differences
leading to a much tighter LCB on PCS.

One shortcoming of our proposal is that the LCB on
PCS can be small when there are one or more system
whose performance is very close to the best, making a
unique correct selection unlikely. Thus, it makes sense to
provide a lower confidence bound on choosing the bes
system or a system whose mean is within a practically
insignificant differenceδ of the best. That is, we want to
select a systemi such thatµ[k] −µi ≤ δ. We call this event
a “good” selection, and let PGS denote the probability of
a good selection.
612
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we derive

PGS

= Pr
{
µ̂[i] − µ̂[k] − (µ[i] − µ[k])

< max[δ, µ[k] − µ[i]], i = 1, 2, . . . , k − 1
}

(2)

= Pr
{
Di < max[δ, µ[k] − µ[i]], i = 1, 2, . . . , k − 1

}
no matter what the configuration of the true means. Our
approach will be to substitute LCBs forµ[k] − µ[i] in (2)
and evaluate this probability numerically.

3 TWO-SIDED MCB

The following lemma will be useful for deriving two-sided,
fixed-width MCB confidence intervals:

Lemma 1 (Hsu, 1996, Section 4.2.1) If

Pr{µ̂i − µ̂` − (µi − µ`) < δ, ∀i 6= `} ≥ 1 − α (3)

then with probability greater than or equal to1 − α

µi − max
`6=i

µ` ∈
[
µ̂i − max

`6=i
µ̂` ± δ

]
for i = 1, 2, . . . , k.

Remark: Notice that (3) will hold when we can form
simultaneous two-sided confidence intervals for all-pairwise
differencesµi − µ` that take the form̂µi − µ̂` ± δ. For
instance, in the usual one-way analysis of variance mode
with normally distributed data and equal variances, setting
δ = q

(1−α)
k,k(n−1)Sp/

√
n—whereq

(1−α)
k,k(n−1) is the1−α quantile

of the studentized range distribution of dimensionk and
degrees of freedomk(n − 1), and S2

p is the usual pooled
variance estimator—achieves (3). This is the procedure
given by Hsu (1996, pp. 103–104). Below we propose a
two-stage procedure that allows unequal variances acros
systems, and also allows the value ofδ to be specified in
advance.

Let T1, T2, . . . , Tk be independentt random variables,
each withν degrees of freedom, and define the random
variableR = maxi Ti − mini Ti . Let r

(1−α)
ν be the1 − α

quantile ofR. The quantityr will be the critical constant in
our two-stage procedure. See Tables 1, 2 and 3 for numerica
values; these values were obtained via simulation and almos
all are accurate to the second decimal place.



Evaluating the Probability of a Good Selection
Table 1:  Critical Valuesr0.9
ν

ν\k 3 4 5 6 7 8 9 10 11 12 13 14 15

1 19.8 27.1 34.5 41.1 48.5 55.9 62.5 68.8 75.8 81.5 90.8 96.8 103.70
2 6.23 7.54 8.60 9.50 10.40 11.21 11.84 12.51 13.29 13.77 14.48 15.03 15.59
3 4.65 5.35 5.92 6.48 6.93 7.30 7.73 8.03 8.36 8.64 8.91 9.08 9.45
4 4.01 4.61 5.10 5.47 5.78 6.07 6.35 6.60 6.79 6.98 7.21 7.37 7.53
5 3.73 4.27 4.66 4.99 5.25 5.49 5.73 5.92 6.10 6.26 6.40 6.54 6.67
6 3.55 4.05 4.42 4.69 4.96 5.17 5.35 5.51 5.65 5.81 5.93 6.06 6.19
7 3.45 3.91 4.23 4.52 4.74 4.94 5.11 5.28 5.40 5.53 5.65 5.75 5.86
8 3.37 3.83 4.13 4.38 4.61 4.80 4.96 5.10 5.22 5.34 5.45 5.56 5.65
9 3.32 3.74 4.07 4.29 4.50 4.69 4.82 4.96 5.09 5.21 5.31 5.40 5.48

10 3.26 3.68 3.99 4.21 4.42 4.60 4.73 4.86 4.99 5.09 5.19 5.28 5.36
11 3.23 3.64 3.94 4.16 4.36 4.54 4.65 4.79 4.90 5.01 5.10 5.19 5.28
12 3.19 3.59 3.89 4.12 4.30 4.48 4.60 4.72 4.84 4.93 5.02 5.11 5.19
13 3.16 3.57 3.84 4.09 4.26 4.41 4.56 4.68 4.79 4.87 4.98 5.06 5.14
14 3.16 3.55 3.83 4.04 4.22 4.38 4.51 4.62 4.74 4.84 4.92 4.99 5.08
15 3.13 3.52 3.79 4.02 4.20 4.36 4.48 4.59 4.71 4.79 4.88 4.96 5.04
16 3.11 3.51 3.77 4.00 4.17 4.33 4.46 4.56 4.67 4.76 4.83 4.93 4.98
17 3.12 3.47 3.75 3.97 4.15 4.29 4.42 4.54 4.63 4.73 4.81 4.89 4.96
18 3.09 3.47 3.74 3.96 4.12 4.27 4.39 4.51 4.61 4.71 4.77 4.85 4.93
19 3.08 3.44 3.72 3.93 4.10 4.27 4.38 4.50 4.57 4.68 4.74 4.82 4.91
20 3.08 3.45 3.71 3.91 4.09 4.24 4.36 4.47 4.56 4.66 4.74 4.81 4.87
30 3.01 3.36 3.63 3.82 3.99 4.12 4.27 4.34 4.44 4.53 4.60 4.66 4.72
40 2.98 3.35 3.59 3.77 3.94 4.08 4.19 4.29 4.38 4.46 4.53 4.60 4.66
50 2.97 3.32 3.57 3.76 3.91 4.06 4.17 4.26 4.34 4.42 4.50 4.56 4.62
60 2.96 3.30 3.56 3.75 3.90 4.02 4.14 4.23 4.32 4.42 4.48 4.54 4.60
70 2.95 3.30 3.55 3.73 3.89 4.02 4.12 4.23 4.30 4.38 4.45 4.51 4.57
80 2.95 3.30 3.53 3.73 3.88 4.00 4.10 4.21 4.30 4.37 4.44 4.51 4.56
90 2.94 3.28 3.53 3.71 3.88 3.99 4.10 4.20 4.29 4.36 4.44 4.50 4.55

100 2.93 3.28 3.52 3.72 3.86 3.99 4.11 4.20 4.28 4.36 4.43 4.49 4.54

Table 2:  Critical Valuesr0.95
ν

ν\k 3 4 5 6 7 8 9 10 11 12 13 14 15

1 39.4 53.2 66.5 81.4 96.2 110.7 122.0 132.7 149.0 158.4 176.2 189.2 201.40
2 8.72 10.37 11.84 13.03 14.17 15.30 16.30 17.00 18.15 18.66 19.55 20.36 21.10
3 5.91 6.71 7.42 8.05 8.56 9.03 9.51 9.84 10.22 10.60 10.91 11.06 11.58
4 4.90 5.58 6.10 6.53 6.89 7.19 7.48 7.74 8.02 8.18 8.47 8.64 8.79
5 4.48 5.09 5.49 5.83 6.11 6.37 6.62 6.83 7.02 7.20 7.35 7.49 7.63
6 4.23 4.75 5.13 5.42 5.69 5.89 6.10 6.26 6.40 6.57 6.70 6.84 6.98
7 4.05 4.53 4.87 5.18 5.40 5.59 5.76 5.96 6.09 6.20 6.33 6.45 6.54
8 3.95 4.43 4.72 4.99 5.21 5.41 5.57 5.69 5.86 5.97 6.07 6.19 6.27
9 3.89 4.30 4.61 4.84 5.06 5.25 5.39 5.53 5.67 5.76 5.88 5.98 6.08

10 3.79 4.21 4.52 4.75 4.96 5.12 5.29 5.43 5.51 5.63 5.74 5.82 5.91
11 3.76 4.16 4.45 4.67 4.88 5.03 5.19 5.32 5.41 5.51 5.62 5.70 5.80
12 3.70 4.10 4.40 4.63 4.79 4.97 5.10 5.22 5.33 5.44 5.53 5.61 5.69
13 3.67 4.07 4.33 4.59 4.76 4.90 5.05 5.15 5.27 5.36 5.46 5.53 5.62
14 3.67 4.05 4.31 4.52 4.71 4.87 4.99 5.10 5.20 5.32 5.38 5.47 5.55
15 3.62 4.00 4.27 4.50 4.66 4.83 4.95 5.04 5.16 5.26 5.34 5.41 5.50
16 3.60 3.97 4.25 4.47 4.63 4.78 4.93 5.02 5.12 5.21 5.28 5.38 5.44
17 3.60 3.96 4.22 4.42 4.61 4.74 4.88 4.99 5.08 5.18 5.25 5.32 5.40
18 3.56 3.93 4.20 4.41 4.57 4.72 4.84 4.95 5.05 5.14 5.22 5.30 5.36
19 3.55 3.90 4.17 4.37 4.54 4.70 4.81 4.94 5.00 5.12 5.18 5.25 5.33
20 3.54 3.90 4.16 4.36 4.51 4.69 4.80 4.90 4.98 5.07 5.15 5.23 5.30
30 3.45 3.80 4.04 4.26 4.40 4.53 4.66 4.73 4.83 4.93 4.99 5.05 5.11
40 3.43 3.77 4.01 4.17 4.34 4.47 4.58 4.66 4.77 4.83 4.90 4.98 5.03
50 3.40 3.74 3.97 4.17 4.30 4.44 4.55 4.64 4.72 4.79 4.87 4.93 4.99
60 3.38 3.72 3.97 4.14 4.29 4.41 4.50 4.60 4.70 4.78 4.85 4.90 4.94
70 3.37 3.71 3.95 4.12 4.28 4.40 4.48 4.60 4.67 4.74 4.81 4.87 4.92
80 3.36 3.71 3.93 4.12 4.26 4.37 4.47 4.57 4.66 4.73 4.80 4.86 4.91
90 3.35 3.68 3.93 4.10 4.25 4.37 4.47 4.57 4.64 4.71 4.78 4.85 4.90

100 3.36 3.68 3.91 4.09 4.23 4.35 4.47 4.55 4.64 4.72 4.79 4.84 4.88
613
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Table 3:  Critical Valuesr0.99
ν

ν\k 3 4 5 6 7 8 9 10 11 12 13 14 15

1 200.8 271.3 330.1 392.6 478.7 536.2 585.0 638.8 709.0 738.0 858.8 954.4 967.10
2 18.89 21.50 24.47 26.45 29.42 33.07 33.49 35.02 37.79 38.08 39.70 42.23 43.82
3 9.84 10.88 12.00 13.01 13.43 14.27 15.15 15.61 16.06 16.75 17.27 17.54 18.19
4 7.22 8.14 8.88 9.49 9.98 10.22 10.57 10.89 11.40 11.47 11.93 12.04 12.29
5 6.34 7.07 7.49 7.95 8.30 8.59 8.88 9.15 9.38 9.64 9.76 10.11 10.13
6 5.80 6.42 6.77 7.15 7.45 7.68 7.98 8.12 8.28 8.45 8.64 8.76 8.89
7 5.45 6.01 6.39 6.67 6.92 7.13 7.33 7.55 7.68 7.84 7.93 8.13 8.18
8 5.27 5.76 6.07 6.34 6.62 6.78 7.01 7.10 7.29 7.36 7.56 7.65 7.73
9 5.11 5.56 5.87 6.08 6.34 6.52 6.72 6.84 6.98 7.09 7.19 7.34 7.38

10 4.99 5.41 5.71 5.93 6.15 6.32 6.51 6.64 6.76 6.81 6.98 7.04 7.13
11 4.91 5.27 5.58 5.78 6.00 6.15 6.35 6.46 6.58 6.61 6.77 6.84 6.99
12 4.80 5.19 5.49 5.71 5.87 6.04 6.22 6.31 6.42 6.53 6.61 6.73 6.80
13 4.76 5.12 5.38 5.66 5.81 5.93 6.11 6.20 6.34 6.41 6.50 6.61 6.67
14 4.69 5.06 5.34 5.55 5.71 5.93 5.97 6.10 6.22 6.35 6.41 6.48 6.57
15 4.65 5.01 5.28 5.50 5.65 5.83 5.96 6.04 6.14 6.23 6.31 6.41 6.48
16 4.63 4.94 5.25 5.42 5.59 5.78 5.91 5.98 6.09 6.17 6.21 6.33 6.38
17 4.61 4.94 5.17 5.39 5.57 5.68 5.82 5.92 6.02 6.12 6.16 6.28 6.31
18 4.56 4.91 5.17 5.37 5.51 5.65 5.76 5.91 5.97 6.04 6.15 6.21 6.31
19 4.53 4.88 5.12 5.32 5.48 5.63 5.73 5.85 5.94 6.03 6.06 6.14 6.23
20 4.51 4.85 5.04 5.28 5.45 5.58 5.70 5.79 5.88 5.97 6.00 6.11 6.19
30 4.37 4.67 4.91 5.09 5.22 5.40 5.47 5.55 5.64 5.74 5.82 5.87 5.90
40 4.32 4.59 4.84 4.98 5.15 5.27 5.38 5.46 5.53 5.61 5.66 5.74 5.79
50 4.28 4.58 4.79 4.96 5.08 5.23 5.31 5.38 5.46 5.54 5.62 5.67 5.72
60 4.25 4.55 4.76 4.93 5.07 5.17 5.23 5.35 5.44 5.51 5.55 5.61 5.67
70 4.24 4.51 4.75 4.92 5.04 5.16 5.23 5.33 5.40 5.45 5.57 5.57 5.62
80 4.19 4.53 4.70 4.88 5.02 5.11 5.24 5.29 5.39 5.45 5.51 5.57 5.62
90 4.20 4.50 4.70 4.85 5.01 5.13 5.21 5.30 5.37 5.42 5.48 5.57 5.60

100 4.20 4.50 4.70 4.86 4.97 5.09 5.20 5.25 5.36 5.42 5.49 5.54 5.59
e

3.1 Procedure

Consider the following algorithm for producing fixed-width
confidence intervals for all pairwise comparisons when th
data are normally distributed and independent:

3.1.1 Fixed-Width, All-Pairwise Comparisons

1. Specify confidence level1 − α, halfwidth δ > 0, and
initial sample sizen0 ≥ 2.

2. Sample i.i.d. observationsYi1, Yi2, . . . , Yin0 from all
systemsi = 1, 2, . . . , k, and compute the sample vari-
ances

S2
i = 1

n0 − 1

n0∑
j=1

(Yij − Ȳi )
2

for i = 1, 2, . . . , k.
3. Determine the total sample size needed by letting

Ni = max

n0 + 1,

 r
(1−α)
n0−1 Si

δ

)2
 . (4)

4. From systemi, for i = 1, 2, . . . , k, take additional
samplesYi,n0+1, Yi,n0+2, . . . , Yi,Ni

.

61
5. Compute the generalized sample mean

µ̂i =
Ni∑

j=1

βij Yij

where for eachi the βij are chosen such thatβi1 =
βi2 = · · · = βin0,

∑Ni

j=1 βij = 1, and

S2
i

Ni∑
j=1

β2
ij = δ

r
(1−α)
n0−1

)2

.

6. Report the simultaneous confidence intervals

µi − µ` ∈ [µ̂i − µ̂` ± δ]

for all i 6= `.

A proof that the intervals in step 3.1.1 are indeed
simultaneous(1 − α)100% confidence intervals when the
simulation output data are normally distributed can be found
in Hochberg and Tamhane (1987, pp. 200-201). In fact,
this procedure produces simultaneous confidence intervals
for all contrasts involvingµ1, µ2, . . . , µk. Application of
4
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lemma 1 immediately yields the desired two-sided MCB
confidence intervals

µi − max
`6=i

µ` ∈
[
µ̂i − max

`6=i
µ̂` ± δ

]
(5)

for i = 1, 2, . . . , k.

3.2 Inference

What inference is possible at the end of the procedure defin
above? The MCB intervals (5) imply thatµi −max̀ 6=i µ` ≤
µ̂i − max̀ 6=i µ̂` + δ. Therefore, if this upper bound is less
than0 we can infer that systemi is inferior to the best; if this
upper bound is less than−δ, and we have chosenδ so that
differences greater thanδ are practically significant, then we
can eliminate all such systems from further consideration

Let B = argmax µ̂i ; that is, B is the index of the
system selected as best. Notice that we can also claim
with probability ≥ 1 − α, that

µB − max
`6=B

µ` ≥ µ̂B − max
`6=B

µ̂` − δ ≥ −δ.

Thus, with confidence level1 − α we are assured that we
have made a good selection in that the mean of the select
system is withinδ of the true best mean. Stated differently,
the event

A = {µ̂i − µ̂` − (µi − µ`) < δ, ∀i 6= `}

implies a good selection will be made. In fact, even less i
required. Nelson and Goldsman (1998) show that

B = {
µ̂[i] − µ̂[k] − (µ[i] − µ[k]) < δ, i = 1, 2, . . . , k − 1

}
is sufficient to guarantee a good selection. ClearlyA ⇒ B.

Now consider the event

B′ = {
µ̂[i] − µ̂[k] − (µ[i] − µ[k]) < max[δ, µ[k] − µ[i]],

i = 1, 2, . . . , k − 1} .

Clearly B ⇒ B′, soPr{B′} ≥ Pr{B}. It is also the case the
B′ implies a good selection will be made:

• If µ[i] < µ[k] − δ, so that[i] is not a good
selection, thenB′ implies that̂µ[i] < µ̂[k] and
system[i] will not be selected.

• If µ[i] ≥ µ[k]−δ, so that[i] is a good selection,
thenB′ implies that̂µ[i]−µ̂[k]−(µ[i]−µ[k]) ≤
δ for all such[i]. This is precisely the eventB
that guarantees a good selection will be made.

Thus, PGS ≥ Pr{B′} and our goal becomes obtaining a
lower confidence bound onPr{B′}. We achieve this by
61
ility of a Good Selection
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substituting(1 − α)100% simultaneous lower confidence
bounds of the form

µ[k] − µi ≥ µ̂B − µ̂i − δ

for all i 6= B intoB′, giving a(1−α)100%lower confidence
bound on PGS of

Pr{Di < max[δ, µ̂B − µ̂i − δ], i = 1, 2, . . . , k − 1} . (6)

These bounds are based on the fact that the two-sided MCB
intervals (5) imply that

max
`6=i

µ` − µi ≥ max
`6=i

µ̂` − µ̂i − δ

for i = 1, 2, . . . , k with probability ≥ 1 − α.

4 COMPUTING A LCB ON PGS

In this section we show to evaluate the right-hand side of (6)
for the two-stage procedure. To obtain a lower confidence
bound on PCS we simply replacemax[δ, µ[k] − µ[i]] by
µ[k] − µ[i] in the derivation.

Let ξ = δ/r
(1−α)
n0−1 . Then

PGS

≥ Pr
{
µ̂[i] − µ̂[k] − (µ[i] − µ[k]) <

max[δ, µ[k] − µ[i]], i = 1, 2, . . . , k − 1
}

= Pr

{
µ̂[i] − µ[i]

ξ
≤ µ̂[k] − µ[k]

ξ
+

max[δ, µ[k] − µ[i]]
ξ

, i = 1, 2, . . . , k − 1

}

= Pr

{
Ti ≤ Tk + max[δ, µ[k] − µ[i]]

ξ
,

i = 1, 2, . . . , k − 1}

=
∫ ∞

−∞

k−1∏
i=1

Fn0−1
(
t + max[δ, µ[k] − µ[i]]/ξ

)
×dFn0−1(t) (7)

whereT1, T2, . . . , Tk, are independentt random variables,
each withn0 − 1 degrees of freedom, andFn0−1 is the cdf
of the t distribution with n0 − 1 degrees of freedom. The
fact that(µ̂[i] − µ[i])/ξ, i = 1, 2, . . . , k are independentt
random variables follows from Stein (1945).

To obtain a(1 − α)100% lower confidence bound on
PGS we substitute(1 − α)100% lower confidence bounds
on µ[k] − µ[i] in (7) and evaluate the integral numerically.
5
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5 EXAMPLE

To illustrate the performance of the procedure, considerk =
5 independent systems represented by normal distributio
with means and variances as shown in Table 4. Supp
we taken0 = 10 initial replications from each and apply
the procedure with1 − α = 0.9 and δ = 0.5, 1 or 2. The
last two columns of Table 4 shows the average of the low
confidence bounds on PGS and PCS from 100 replicatio
of the entire procedure.

The primary feature to notice in these results is that PG
always remains larger than0.9, while PCS can be larger or
small depending on how large or small our indifference zo
δ is. A large value ofδ implies little second-stage sampling
and a small chance of selecting the unique best syst
(remember that these are lower confidence bounds on P
which is why the estimated PCS can be below1/k = 0.2);
while a small value ofδ delivers precise estimates and
larger chance of selecting the unique best.

Table 4:  Average LCB on PGS and PCS over100 Repli-
cations of the Procedure withn0 = 10, 1 − α = 0.9 and
r

(0.9)
9 = 4.07 when the Data are Normally Distributed

µ1, . . . , µ5 σ1, . . . , σ5 δ PGS PCS
0, 0, 0, 0, 1 1,2,3,4,5 0.5 0.98 0.91

1.0 0.97 0.21
2.0 0.97 0.03

1, 2, 3, 4, 5 1, 1, 1, 1, 1 0.5 0.99 0.96
1.0 0.99 0.47
2.0 0.98 0.15

6 CONCLUSIONS

The procedure presented in this paper provides quite a
of useful information to the experimenter, much more tha
others that have been proposed for this problem. Simi
procedures derived in Nelson and Banerjee (1999) allow
the use of common random numbers and exploiting eq
variances across systems when this is believed to be
case. However, such wide-ranging inference comes a
price that indicates areas for further research.

The procedure in this paper is conservative if the p
mary interest is in selecting a good system (recall that t
procedure also provides inference on all-pairwise comp
isons). In other words, PGS> 1−α for all configurations of
the meansµ1, µ2, . . . , µk. Procedures that are much tighte
(require less sampling) while still providing the same in
ference are desirable.

The method for constructing the LCBs on PCS and PG
are highly parametric, meaning that they depend strongly
the assumption of normally distributed data. Nonparamet
versions, based on bootstrapping for instance, would
61
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extremely valuable since the LCB could account for both
the possible increase in confidence due to encountering a
favorable configuration of the means, and also the possible
degradation in confidence due to violation of the assumptions
of the procedure.
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