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ABSTRACT correlation between the output of each system (Law and
Kelton 1991; Banks, Carson, and Nelson 1996). CRN can be
This article describes some recently-proposed proceduresimplemented, for example, by causing theh simulation
that identify the best simulated system when common ran- replication of each system to observe the same demand
dom numbers are used. The procedures are based on gpatterns.
Bayesian average-case analysis, rather than a worst-case in-  Clark and Yang (1986) and Nelson and Matejcik (1995)
difference zone formulation. The procedures allow decision- are exceptions that present procedures for selecting the best
makers to focus on reducing either the expected opportunity- system when CRN is used. The procedure of Clark and
cost loss associated with potentially selecting an inferior Yang (1986), called Procedui@) here, does not make
system, or the probability of incorrect selection. Numerical special assumptions about the covariance induced by CRN,
experiments indicate that the new procedures outperform but is based on the statistically conservative least-favorable
two existing procedures with respect to several criteria for condition (LFC) that is characteristic of indifference-zone

a well-known selection problem. formulations. Nelson and Matejcik (1995) provide an alter-
nate indifference-zone procedure (Proced\it#1) that can
1 INTRODUCTION require fewer replications to achieve the same probability

of correct selection, but requires a sphericity assumption

This paper considers the problem of comparing a small for the covariance matrix.
number of systems, say 2 to 20, in terms of the expected Here, we describe rather different two-stage procedures
value of some given stochastic performance measure. The proposed by Chick and Inoue (1999a) for selecting the best
performance of each system is estimated by a simulation system using CRN. The approach is Bayesian and decision-
experiment (Law and Kelton 1991; Banks, Carson, and theoretic, and is a natural extension of earlier work for
Nelson 1996), and the goal is to efficiently identify the best independent replications (Chick and Inoue 1999b). The
system, where ‘best’ is defined as having the maximum number of second-stage replications is determined by an
expected performance. average-case criterion, rather than the LFC of indifference-

The performance of each system must be estimated with zone procedures. This allows first-stage information about
a finite number of simulation replications, so it is impossible the unknown means, variances, and covariances to help
to guarantee that the best system will be selected. The identify likely contenders for the best. Whereas Procedures
indifference-zone formulation, the dominant approach to the C) and N M require that all systems be simulated during
problem for some time (Bechhofer, Santner, and Goldsman the a second stage, our procedures might simulate only a
1995; Goldsman and Nelson 1998), attempts to provide a subset of systems. This focuses simulation effort on systems
lower bound on the probability of correct selection, given that are likely to benefit most from additional replications.
the assumption that the best system is at least a prespecifiedrurther, our procedures allow for the reduction of either the
amount better than the other systems. probability of incorrect selectioor the expected opportunity

Most relevant research assumes that the simulation costloss associated with potentially incorrect selections. We
output is independent. On the other hand, common random do not require a sphericity assumption for the covariance
numbers (CRN) is a variance reduction technique that can from CRN.
be used to sharpen comparisons by inducing a positive
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We refer several times to a specific selection problem
considered by Koenig and Law (1985) and Nelson and
Matejcik (1995). There are fivés, S) inventory policies
for controlling the inventory level of a discrete product. If
the inventory level drops below, then an order is placed
to bring the level up taS. Different values fors and S
lead to different inventory policies. The demand in each
period is the only stochastic process in the model. The best
system is the policy that has the minimum expected cost per

period, evaluated over 30 periods, where cost is measured

in thousands of dollars. See Koenig and Law (1985) for
further details of the model.
2 BACKGROUND
Letx; ; be the output of thg-th replication of system, for
i=1... ksothak; = (x1;, ..., xx, ;) isthelxk vector
of outputs across all systems on replicatiopnWe assume
throughout thatxy, X2, ... are i.i.d. multivariate normal
vectors, conditional on the unknown mean vector=
(w1, ..., wg) and unknown variance-covariance matBx
px;wz (X)) ~ N (w, 2). 1)
For independent replication¥, is diagonal.

We are interested in comparing thelifferent systems
in terms of their expected performanee. In the inventory
example, there areé = 5 policies, x; ; is the average cost
for 30 periods observed on theth replication of inventory
policy i, andw; is the expected cost per period of théh
inventory policy.

Two-stage indifference-zone procedures guarantee a

lower bound P* on the probability of correct selection
(PCS), whenever the best system is at Iddsbetter than
the other systems. Procedut®’ of Clark and Yang (1986)

is the first indifference-zone procedure to account for CRN.
A first-stage ofrq replications of each system are observed
using CRN across all systems. The numbgof second-
stage replications depends 6f ¢ = 11— (1—p*)/(k—1),r—1,

the 1l — (1 — P*)/(k — 1) quantile of the standard dis-
tribution with r; — 1 degrees of freedom, and the sample
variances of the differences in output,

1

-3

=1

(xig — xj1 — (& — %)))?
rn—1

~2
Ui,j

wherey; is the first stage sample mean, so that

£\ 2
5*
The system with the highest overall sample mean is then

selected as best.

ro = max{ 0, | max
J#i
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Nelson and Matejcik (1995) develop ProcediveV,
an alternate indifference-zone procedure. The number
of second-stage replications then dependsédn g =
TkP_*L(k_l)(r _1.a/2 the P* quantile of the maximum of
a standar mu(tivariate random variable of dimension
k — 1 with (k—1)(r1 — 1) degrees of freedom, and common
correlation1/2 (see Hochberg and Tamhane 1987), and
the sample variance of the difference (given the sphericity
assumption),

52 _ 23 Y i — K — X+ m)?
k—D(@r1—-1)

wherem = Zle Xi/k is the overall sample mean, so that

o= maxo. | (£)7% -] .

Empirical tests demonstrate that the procedure is somewhat
robust to departures from sphericity.

Procedure)y and N M both simulateall systems
with CRN during second-stage replications, regardless of
how well the mean for each system is known after the first
stage, or whether the first stage sample mean for some
systems are clearly inferior. The issue of screening out
inferior systems after the first stage is considered by Nelson,
Swann, Goldsman, and Song (1998), although the idea is
not discussed at length.

&2

3 AN ALTERNATE FORMULATION

The results of Chick and Inoue (1999a) provide new two-
stage procedures for identifying the best simulated system
that are less conservative than procedures based on the
LFC assumption, that incorporate screening during the sec-
ond stage so that simulation effort is focused on systems
that best benefit from additional analysis, and that do not
make restrictive assumptions about the covariance induced
by CRN. This section summarizes the Bayesian decision-
theoretic assumptions behind those procedures.

The first stage of the new procedures described below
are structurally similar to Procedurg®y)y and MM, in
that r1 replications of each system are observed to obtain
simulation outpuy = (X1, ... , X, ), and sample statistics
are computed,

1

A X;
D B @
j=1
ri
T = é/VJ_:Z(Xj_ﬂ)t(Xj_ﬁ')/"l 3)
=1
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The selection of the best system after both stages of output outcomes are given in lower case, suchwasWe therefore
are observed is the same as well, in that the system with refer to the output precisioh = £~1, and consider its

the maximal estimate of the mean is selected as best. unknown value through the random variable because
The second stage of the new procedures, however, the symbolsX ando already have strong connotations for
differs in four ways. variance-covariance and summation.
Screening. Asubsef;ofallsystemé/ = {1, ... , k} The average-case analysis for selecting the ‘best’ second

may be simulated- times during the second stage. All stage experimentCé andry), is done with respect to the
systems are eligible for selection, including the systems in distributions of the unknown mean, given the first stage

C1=1{1,...,k}\C> that are simulated only during the first  output,W |¢,. The general setup is therefore similar to the
stage. When all systems are simulated, denote the second-development of Chick and Inoue (1999b) for independent
stage vectors of output by, ... ,y,,. The output still has replications.

multivariate normal distribution with unknown meanand Although the assessment of probability distributions for

varianceX, but the notatiory distinguishes second-stage the unknown mean and precision of the simulation output
from first-stage output. Lefc, ; be the output vector of the  is not a feature of indifference zone formulations, there
Jj-th second-stage replication when only the system&in is a rich history for doing so in the Bayesian tradition

are simulated. This notation is used throughout to denote (de Groot 1970; Bernardo and Smith 1994). Chick and

appropriate subvectors and submatrices for systerfis am Inoue (1999a) suggest a prior distribution f&f, A that
C1, such asw = (w¢, Wc,) for subvectors of the unknown  leads to a multivariate distribution after conditioning on
mean, orX¢,c, for the variance-covariance matrix g#, ;. the first stage output that has— 1 degrees of freedom, the
Denote all second stage output by same degrees of freedom for related frequentist analysis.
E = (Yep1r -+ YCora) - A D)~ Wi(ri+k—29) (6)
N N -1
Loss Function. A second difference from g (W) N (”“’ rik )

indifference-zone procedures is a choice for the loss cri-
terion. The PCS is an integral part of indifference-zone

procedures. Because the 0-1 loss function and the PCS are . . o
related. we consider whereW, («, B) is a Wishart distribution, an8t; (u, «, v)

is a multivariater distribution with meanu and variance
0 whenw; > max: w: «~1v/(v —2) when the degrees of freedom> 2. See also
Lo-1(, W) = { 1 otherwise. (4) Inoue and Chick (1998).

' Eqg. 7 only make sense whef > k, becauseS must
where the loss is 0 if the best system is selected, and 1 if be invertible. This differs from the indifference-zone proce-
an inferior system is selected. dures, which do not require a specific relation betwegn

In many business and engineering applications, the and k.
expected opportunity cost loss may be more relevant. We The Bayesian probability of correct selection when
therefore also consider thapportunity cost loss systemi is selected as best, is then

pwig (W)~ St (ﬂ, ri(rp — DS — 1). (7

Lo (i, W) = maXw; — w; (5) 1- EwlLo-1 G, W,
J

) ) ) where the expectation is taken with respect to whatever
associated with selecting as best when the means are jnformation is available (e.g., after the first stage, the dis-

w. The loss is_ 0 for a correct selection, and is otherwise inution in Eq. 7 is appropriate). This is an average-case
the difference in means between the best and the selectedpcg not a PCS for the worst-case LFC.

system. Budget Constraint. A fourth difference is that we

Average Case Analysis. Third, the new procedures  ropose to reduce the expected loss for a specified amount
below choos€ andr» with an average-case analysis rather ot second-stage simulation effort. Indifference-zone pro-

than the worst-case LFC analysis. The average is taken over .oqures. on the other hand. seek to reduce the number of

the likely values of the mean and variance, as suggested rgpjications required to achieve a specified PCS. There is
by the first-stage output. To do so, we adopt a Bayesian practical motivation for this difference (e.g., declare which
approach to infer the values of the unknown mean and system is best by tomorrow at 9am). We therefore as-

variance from simulation output and Bayes’ rule. Unknown  gme that after the first stage, the decision-maker selects a
guantities are treated as random variables and are written second-stage budgét so thatrs - |Co| = b, where|Ca| is

in upper case, such a8 = (Wy, ..., Wy), and specific the number of systems ifh.
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3.1 Design Of A ‘Good’ Second Stage

The problem is to select a non-empty subetC U/ =
{1,2,...,k} of systems for simulation during the second
stage, based on information from the first-stage oufput
that minimizes the predicted value of the expected loss after
runningrz = b/|C2| replications of systems i, with CRN.

Suppose that for a give@i; andr,, the second-stage
output & is observed. Denote the expected value of the
unknown mean, conditional on all output, by

Denote the system with the posterior expectation for the
unknown mean by

dN

, =arg

max
=1k

(8)

Zi.
Then the expected loss is
Ewiseg, 1L (d' W) | & &)

wherel (d{,\’ W) is the relevant loss function from Eq. 4 or

Eq. 5. AIthoughd)],v is sub-optimal for the 0-1 loss function
(Berger 1988), it is used implicitly by Procedur€¥ and
N M, isintuitive, and allows for a relatively straightforward
analysis.

After the first stage, but prior to the second, the as-yet
unseen second-stage output

& =(Yep1, -+ Yeor)

is random. Because the second-stage output is random be-

fore it is observed, the posterior expectation of the unknown
mean is also random,

Z = E[W | &, Evl.

The distribution oZ determines the probability that a given

system will be selected as best, once the second-stage outpu

is observed. Its specific distribution is described in Sec. 4.
The prediction for expected loss, given tligt will be,

but has not yet been observed, is then obtained by averaging

over the random second-stage output,

P*(r2.C2) = Evie, | Ewisoe, L (W) | &, &v1].
This leads to the optimization problem

9)

min  p*(r2,C2)
C2
st. rp=0/|Cy.
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We requireCs to be nonempty, although we comment below
on situations where a second-stage might be foregone. Our
mathematical analysis considers = b/|C2| to be real-
valued, but the numerical experiments of Sec. 6 round
down to an integer.

4 FORMULAS FOR PROCEDURES

Several formulas are important for describing the new se-
lection procedures with CRN. See Chick and Inoue (1999a)
for a thorough mathematical treatment. Here, [idtbe

a permutation that orders the first-stage sample means,
Xy < ... < Xpgy-  Let ¢,(s) and ®,(s) denote the
pdf and cdf, respectively, of the standaretlistributed
random variable withv degrees of freedom, and define

2
Wy (s) = [7° (x =)y (x)dx = 250 ¢, (s) — s(L— @, (s)).
Anderson (1957) shows that if the systefasare simu-
latedr, times in the second stage, the maximum likelihood

estimator (MLE) for the unknown mean is

r1 r

e, = O _Xepi+ Y Yoo )/(ri+r2)  (10)
i=1 j=1

2 N 2 N =1 =

ey ke, + (”’Cz - MCz) Sczczsczcl'

The number of hats, or 2, indicates the number of stages
of data used for the estimate.

Further, the posterior expectation for the unknown mean
afterthe second stagezis= fL and the predictive distribution
Pzi&.&y (2) is multivariater,

Sty (

where 8 is identical toS except for the submatrix corre-
sponding to systems simulated for only one stage, where
z =
ﬂz,clcl = SCJ_CzS-C.ZCzSCQCl' )
The probability that one system will be preferred over
another after both stages using predictions based on first-

(r1+r2)

A

R, (11)

ri(ri— DByt — l),

stage output alone, is determined by the distributions of

Z. When no further replications are done & 0), the
system selected as best has the highest first-stage sample
mean (I{,V = [k]). Whenr, > 0, the predictive distribution
Pzi-z;\68y (i —zj) of the univariate differenc&; — Z;

in the expected mean performance of systénasd j is
determined from Eq. 11 to be:

St (fi - Xj, Mfcz,i,j, ri— l>, (12)
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where

-1
w0, =riri—D[(ei —ej)Bzlei —e))'] ~,  (13)
ande; is the k—dimensional vector of all O's, except for a
1 in thei—th coordinate. If all systems are simulated in
the second stage, substitusefor 8, into Eq. 13. Define

1/2 - _
&yt = (eatinia) ™~ Gy — Fre)-

Chick and Inoue (1999a) indicate that the expected
opportunity cost los®*(Ca, r2) whenk = 2 is exactly

P (C27 r2) = Tul/] 2] rl—l [";:U, l] - (14)

-1
2
(r1+r2 TCo. 1112 ]) ‘Ijrl—l |:(r1+r2) ECQ [1]i|

They use this observation to motivate a Bonferroni-like
sum of pairwise losses for use as a surrogate objective
function,

Bonf, ¢ (r2, C2) = (15)

k—1
-1/2
) it Yri-t (] =
i=1
7
(r1+r2 TColi1. Ik ]) lprlfl |:(r1+r2> ‘§C2 [i] i|

that will be optimized rather thap*(Co, r2). If all systems
are simulated infinitely oftenrf{ — oo, C2 = U), then
Bonf, . (r2, C2) — 0, as desired with the value of perfect
information. Asr, — 0, then Bonf . (r2, C2) approaches
the Bonferroni-like bound for expected loss whii is
selected with no further replications, Bgnf(r2, C2) —

Z 1l ul[,/z[k] ri—1 [SU [i] ]

A similar Bonferroni-like surrogate objective is obtained
for the 0-1 loss function. Chick and Inoue (1999a) indicate
that with an extra approximation, the following Bonferroni-

like surrogate objective function for 0-1 loss can be obtained.

k=1

Z @, —1l&u1ir] —

i1
12
D1 [(%) SCZ,[i]i|

The difference in the summand is a reasonable approxi-
mation to the expected loss in a pairwise comparison be-
tween systemg] and[k]. When all systems are simulated
(C2 = U) and the number of replications grows without
bound, therlim,,_, o, Bonfo_1(r2, C2) = 0, so the loss i9

with perfect information. With no additional replications,
lim,,—0Bonfo_1(r2, C2) = Y{=1 ®r,_1l& )] is exactly

the Bonferroni bound on the probability ofcorrectselec-
tion after the first stage.

Bonfo_1(r2, C2) = (16)
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5 NEW SELECTION PROCEDURES

There are four new procedures presented by Chick and
Inoue (1999a) for reducing the risk of incorrect selections
by designing the second-stage to minimize the Bonferroni-
like surrogate objective functions. There is an exhaustive
and heuristic procedure for each of loss function, the ex-
pected opportunity cost and 0-1 loss in Eq. 15 and Eg. 16,
respectively.

Procedure&)Ccrn below is an exhaustive procedure that
checks all2f — 1 non-empty subsets 6f to find the subset
C2 that minimizes the surrogate objective Bgnfr,, C2).
Procedure 0-4m, the 0-1 loss analog, is obtained by
replacing appropriate terms (e.g. Beni(rp, C2) for
Bonf, .. (r2, C2)). After observing the first-stage output,
the decision-maker selects a second-stage buklgéfthe
selection ofb may be guided by average CPU times for
replications during the first stage, in order to control the time
required to complete the procedure. If the Bonferroni-like
surrogate objective is satisfactorily low after the first stage
(.9, Y *Z1 ®,,_1l&,.1i7] < 1— P*), then the second-stage
replications may be foregone.
5.1 ProcedureOCcrn
1. Pick a first-stage sample siz¢ > k. Take i.i.d.
samplexy, ... , X, from each of thet systemsusing
CRN across systems
Determine the sample means,
tion [i] so that X3 <
S=Y"1(x =R (X, = %)
Select a budgeét for second-stage replications.
Choose the subset of syste@isof &/ = {1,... ,k}
that minimizes the Bonferroni-like surrogate function
Bonf, .. (r2, C2) from Eq. 15, wheres = b/|C5|.

Take rp b/|C2|] additional i.i.d. observations
Y15 - - - > YCo.r, from each system i@z, using CRN
across systems.

Compute the second-stage sample mean for systems in
C2 and the ‘regression estimate’ for systemsCin=
U\Co.

n

the permuta-
< X, and set

1 r2
Y Xepi + Y Yoo )/ (r1+12)

i=1 =1
e, + (ze, — %e,) Sole. S
C1 Zc, C2) =2¢,0,C2C1

2c,

2

7. Select the system with the largestas best.

Because the runtime of the exhaustive procedures are
not polynomial in the number of systems, suboptimal heuris-
tics are proposed that check at ma@stsubsets. Procedure
OCe¢rn:h the heuristic for opportunity cost, is presented
below. The idea is to first evaluate the surrogate objective
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when all systems are simulatath, = ¢/. The surrogate ob-
jective is then evaluated again, this time dropping out either
the system that contributes least to reducing Beab, C»).

If screening that system out, or screening out sysfem
improves the surrogate objective, then the process is con-
tinued until screening out additional systems no longer

Inoue

estimated by (i) running 3000 independent first stages with
r1 = 10, (i) running independent second stages for each
procedure, then (iii) averaging the 3000 outcomes of each
procedure.

Each measure is evaluated as a function of the second-
stage budgei. Since Procedure%y and N\ M both require

decreases the surrogate objective. The heuristic requiresall systems to be simulated, they give the same allocation

O (k% time, as there ar® (k) iterations, and0 (k%) work
per iteration for matrix algebra. Procedure Quly, the
opportunity cost analog of Proceduf® . -p, is obtained
by substituting terms from Bopf. (2, C2) with terms from
Bonfy_1(r2, Co).

Numerical experiments with the heuristic procedures
indicate that the screening step (Step 5.2 of Procedure
OCc¢n:p) should not round-> down when evaluating the
surrogate objective. 16/(|C2| — 1) is rounded down, then
too few systems may be screened.

5.2 ProcedureOCc¢in:n

1.
2.

Do steps 5.1 to 5.1 of Proceduf®crmn.

Initialize the set of system& considered for second-
stage analysis to b = {1, ..., k}.

Computerp = b/|C2| and evaluate the Bonferroni-
like surrogate for expected opportunity cost loss,
Bonf, ¢.(r2, C2).

If there is only one system under consideratioh|(=

1), then go to Step 5.1.

Determine the sdt] € C2\{[k]} that contributes least
to reducing Bonf..(r2, C2), €.g., minimizes

(#22) (2 ]

and setry’ = b/(|C2| — 1). If eliminating i from C,
reduces the surrogate bound (Bgnfry/, C2\{i}) <
Bonf, .. (r2, C2)), then screet from the set of consid-
ered system§> (assignC>  Co\{i} andr2 1) &
to Step 5.2.

If [k] € C2 and screening olk] improves the surrogate
objective, then do so & go to Step 5.2.

Do steps 5.1 to 5.1 of Proceduf crn.

3.

r1+r2
r2

r1+r2
r2

7.

6 EMPIRICAL EVALUATION

Here we evaluate the effectiveness of the indifference-zone
Procedure€) and A M; the new exhaustive and heuristic
procedures for reducing the expected 0-1 loss (Procedures
0-1crn and 0-%yn-p); and the opportunity cost analogs (Pro-
ceduresOCc¢rn and OCqrp-py). Each procedure is evaluated

in terms of two measures of effectiveness, when applied to
determine the best of the five (s,S) inventory policies from
Koenig and Law (1985). Each measure of effectiveness is
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(although they might give a different PCS guarantee for
the LFC), and therefore perform identically with respect
to our measures. We chooseto be a multiple of 5, and
round downry for our new procedures. This gives a slight
advantage to the indifference-zone procedures.

The first measure of effectiveness is the widely-used
empirical probability of correct selection (EmpPCS), the
fraction of times that a selection procedure selects a known
best system. In this case, inventory policy 2 is presumed
best, based on tens of thousands of simulation runs. For the
inventory example, EmpPCS is plotted in Fig. 1. All four
new procedures clearly outperform the indifference-zone
procedures for this experiment. Procedurecghperforms
somewhat less well than the other three new procedures,
perhaps due to approximations made in its derivation. The
other procedures all performed rather similarly.

A second measure is the Bonferroni-like surrogate for
the predicted expected opportunity cost loss (PredBOCL)
of Eq. 15. This measure is computed by averaging over
many first-stage procedures, rather than considering both
stages of output.

Chick and Inoue (1999a) present empirical evidence
that the new procedures also outperform Proceddggs
and MM with respect to the expected P-value after both
stages, the expected opportunity cost loss after both stages,
and the average predictive estimate of the probablity of
correct selection Bopf 1(r2, C) after one stage. Procedure
OC¢rn:h Seems particularly effective across all measures.

0.96

0.92

Procedures CY & NM

Procedure 0-1
crn:h

Procedure 0—1[:r

Procedure OC _
crn:h

Procedure OCcm

0.9/ n

I I
50 100
Budget for second stage sampling (b)

0.88

150

Figure 1: Empirical Fraction of Correct Selections.
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experiments of Sec. 6 the heuristic procedures require about
&~ Procedures CY & NM 0.7 CPU seconds to compute the allocations. For large

—«— Procedure 0-1_
0.14 crn:h

—s—  Procedure 0-1_ ’ small simulation runtimes, CPU time might be better spent
4 —o—  Procedure OC_ running replications rather than calculating allocations. For
oser —&—  ProcedureOC,, | smallerk, or largerb or simulation runtimes, the benefit

of screening is more likely to compensate for the cost of
computingCs.

o
[
T

PredBOCL

0.08

8 CONCLUSIONS

Indifference-zone formulations have focused on designing
procedures that guarantee a minimum probability of correct
selection, given the worst-case LFC. The approach here
considers the expected probability of correct selection in a
50 100 150 Bayesian sense, so that information from first-stage repli-
Budget for second stage sampling (b) i . . j
cations can be used in lieu of the LFC. We also consider

Figure 2: Predicted Expected Opportunity Cost Loss. that business decisions sometimes require an accounting of
expected opportunity cost loss, rather than the probability

7 DISCUSSION of correct selection.

Although the closed-form solution of our general for-
All four new procedures perform better than both indif- Mulation is not presently known, we present theoretically
ference zone procedures with respect to all five measures ustifiable procedures for reducing the risk of incorrect selec-
of efficiency in the experiments of Sec. 6. This is not tion. Theidea is to reduce a Bonferroni-like approximation
surprising, since two of the systems in the numerical study ©Of the sum of pairwise losses. .
had performances that could be identified as unlikely con-  For a well-known inventory selection problem, all
tenders for the best after the first stage. These two systemsfour néw procedures perform favorably relative to two
were typically not simulated by our new procedures during indifference-zone procedures. Proced@€cm:y seems
the second stage, although the indifference-zone proceduresParticularly effective.
were obligated to run additional replications for them.

It is somewhat surprising that Procedure Qpl, per- REFERENCES

forms somewhat better than Proceduregh With respect to ) o )
EmpPCS. The difference, however, is within sampling error, Anderson, T. W. 1957. Maximum likelihood estimates for

and might also be associated with slack in the Bonferroni- a multivariate normal distribution when some observa-
like approximation for Bonf_1(r2, C2). The opportunity tions are missingJournal of the American Statistical
cost loss procedures perform strongly as well, perhaps be-  Association 52200-203.
cause there are fewer approximations in with the surrogate Banks, J., J. S. Carson, and B. L. Nelson. 19Bscrete-
objective for the opportunity cost loss than for the 0-1 loss Event System Simulatiofgnd ed.). Upper Saddle
function. River, NJ, USA: Prentice-Hall, Inc.

A potential criticism of the new procedures is that Bechhofer, R.E., T.J. Santner, and D. M. Goldsman. 1995.
a bound on the expected loss is not provided. On the Design and Analysis for Statistical Selection, Screening,
other hand, fork = 2 the predictive pairwise opportunity and Multiple ComparisonsNew York: John Wiley &
cost loss is exact, so the budgetcan be increased to Sons, Inc. _ _
insure a given expected opportunity cost loss. The surrogate Berger, J. O. 1988. A Bayesian approach to ranking and
Bonfo_1(r2, C») is only an approximation, not a bound, and selection of related means with alternatives to analysis-

therefore cannot provide an average-case PCS guarantee by ~ Of-variance methodology. Journal of the American
increasing. On the other hand, the new procedures provide Statistical Association §802), 364-373. _
a higher EmpPCS than the indifference zone procedures as aBémardo, J. M. and A. F. M. Smith. 1994.Bayesian

function of b, at least for the inventory example considered _ Theory Chichester, UK: Wiley.

above. Chick, S. E. and K. Inoue. 1999a. New procedures for
The new procedures require more computation than the ~ identifying the best simulated system using common

indifference-zone procedures. Whereas Procedtjyeand _random numbersin submission

NM are O(k?) in the number of systems, the heuristic Chick, S. E. and K. Inoue. 1999b. New two-stage and

Procedures Ogkn:p and OCernepy are bothO (k%). For the sequential procedures for selecting the best simulated

system.in submission

609



Chick and Inoue

Clark, G. M. and W.-N. Yang. 1986. A Bonferroniselection tion output analysis, particularly for multiple comparisons
procedure when using common random numbers with problems. He is also interested in multi-attribute decision
unknown variances. In J. Wilson, J. Hendriksen, and analysis.
S. Roberts (Eds.Rroceedings of the Winter Simulation
Conference pp. 313-315. Institute of Electrical and
Electronics Engineers, Inc.

de Groot, M. H. 1970.0ptimal Statistical DecisionsNew
York: McGraw-Hill, Inc.

Goldsman, D. and B. L. Nelson. 1998. Statistical screen-
ing, selection, and multiple comparisons in computer
simulation. In D. J. Madeiros, E. F. Watson, J. S. Car-
son, and M. S. Manivannan (EdsBroceedings of the
Winter Simulation Conferencgp. 159-166. Institute
of Electrical and Electronics Engineers, Inc.

Hochberg, Y. and A. C. Tamhane. 198Multiple Com-
parison ProceduresNew York: John Wiley & Sons.
Inoue, K. and S. E. Chick. 1998. Comparison of Bayesian
and frequentist assessments of uncertainty for selecting
the best system. In D. J. Medeiros, E. J. Watson,

M. Manivannan, and J. Carson (EdsBroceedings
of the Winter Simulation Conferencep. 727-734.
Institute of Electrical and Electronics Engineers, Inc.

Koenig, L. W. and A. M. Law. 1985. A procedure for
selecting a subset of size containing the? best ofk
independent normal populations, with applications to
simulation. Commun. Statist.-Simulation and Compu-
tation 143), 719-734.

Law, A. M. and W. D. Kelton. 1991 Simulation Modeling
& Analysis(2nd ed.). New York: McGraw-Hill, Inc.

Nelson, B. L. and F. J. Matejcik. 1995. Using com-
mon random numbers for indifference-zone selection
and multiple comparisons in simulatiodManagement
Science 4,11935-1945.

Nelson, B. L., J. Swann, D. Goldsman, and W. Song.
1998. Simple procedures for selecting the best simu-
lated system when the number of alternatives is large.
Northwestern University, IEMS Technical Report

AUTHOR BIOGRAPHY

STEPHEN E. CHICK is an assistant professor of In-
dustrial and Operations Engineering at the University of
Michigan, Ann Arbor. In addition to stochastic simulation,
his research interests include Bayesian statistics, reliability,
decision analysis, and computational methods in statistics.
His research is motivated by projects in manufacturing and
health care. His work experience includes several years of
material handling system design for the automotive industry
using simulation analysis.

KOICHIRO INOUE s finishing his Ph.D. thesis at the
Department of Industrial and Operations Engineering at the
University of Michigan, Ann Arbor. His dissertation work
focuses on the application of Bayesian statistics to simula-

610



	MAIN MENU
	PREVIOUS MENU
	---------------------------------------
	Search CD-ROM
	Search Results
	Print

