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ABSTRACT

This article describes some recently-proposed procedu
that identify the best simulated system when common ra
dom numbers are used. The procedures are based o
Bayesian average-case analysis, rather than a worst-cas
difference zone formulation. The procedures allow decisio
makers to focus on reducing either the expected opportun
cost loss associated with potentially selecting an inferi
system, or the probability of incorrect selection. Numeric
experiments indicate that the new procedures outperfo
two existing procedures with respect to several criteria f
a well-known selection problem.

1 INTRODUCTION

This paper considers the problem of comparing a sm
number of systems, say 2 to 20, in terms of the expec
value of some given stochastic performance measure. T
performance of each system is estimated by a simulat
experiment (Law and Kelton 1991; Banks, Carson, a
Nelson 1996), and the goal is to efficiently identify the be
system, where ‘best’ is defined as having the maximu
expected performance.

The performance of each system must be estimated w
a finite number of simulation replications, so it is impossib
to guarantee that the best system will be selected. T
indifference-zone formulation, the dominant approach to t
problem for some time (Bechhofer, Santner, and Goldsm
1995; Goldsman and Nelson 1998), attempts to provide
lower bound on the probability of correct selection, give
the assumption that the best system is at least a prespec
amount better than the other systems.

Most relevant research assumes that the simulat
output is independent. On the other hand, common rand
numbers (CRN) is a variance reduction technique that c
be used to sharpen comparisons by inducing a posit
6
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correlation between the output of each system (Law an
Kelton 1991; Banks, Carson, and Nelson 1996). CRN can b
implemented, for example, by causing thej -th simulation
replication of each system to observe the same dema
patterns.

Clark and Yang (1986) and Nelson and Matejcik (1995
are exceptions that present procedures for selecting the b
system when CRN is used. The procedure of Clark an
Yang (1986), called ProcedureCY here, does not make
special assumptions about the covariance induced by CR
but is based on the statistically conservative least-favorab
condition (LFC) that is characteristic of indifference-zone
formulations. Nelson and Matejcik (1995) provide an alter
nate indifference-zone procedure (ProcedureNM) that can
require fewer replications to achieve the same probabilit
of correct selection, but requires a sphericity assumptio
for the covariance matrix.

Here, we describe rather different two-stage procedure
proposed by Chick and Inoue (1999a) for selecting the be
system using CRN. The approach is Bayesian and decisio
theoretic, and is a natural extension of earlier work fo
independent replications (Chick and Inoue 1999b). Th
number of second-stage replications is determined by a
average-case criterion, rather than the LFC of indifference
zone procedures. This allows first-stage information abo
the unknown means, variances, and covariances to he
identify likely contenders for the best. Whereas Procedure
CY andNM require that all systems be simulated during
the a second stage, our procedures might simulate only
subset of systems. This focuses simulation effort on system
that are likely to benefit most from additional replications
Further, our procedures allow for the reduction of either th
probability of incorrect selectionor the expected opportunity
cost loss associated with potentially incorrect selections. W
do not require a sphericity assumption for the covarianc
from CRN.
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We refer several times to a specific selection problem
considered by Koenig and Law (1985) and Nelson and
Matejcik (1995). There are five(s, S) inventory policies
for controlling the inventory level of a discrete product. If
the inventory level drops belows, then an order is placed
to bring the level up toS. Different values fors and S

lead to different inventory policies. The demand in each
period is the only stochastic process in the model. The best
system is the policy that has the minimum expected cost per
period, evaluated over 30 periods, where cost is measured
in thousands of dollars. See Koenig and Law (1985) for
further details of the model.

2 BACKGROUND

Let xi,j be the output of thej -th replication of systemi, for
i = 1, . . . , k, so thatxj = (x1,j , . . . , xk,j ) is the1×k vector
of outputs across all systems on replicationj . We assume
throughout thatx1, x2, . . . are i.i.d. multivariate normal
vectors, conditional on the unknown mean vectorw =
(w1, . . . , wk) and unknown variance-covariance matrix6,

pXj |w,6

(
xj

) ∼ Nk (w, 6). (1)

For independent replications,6 is diagonal.
We are interested in comparing thek different systems

in terms of their expected performancewi . In the inventory
example, there arek = 5 policies,xi,j is the average cost
for 30 periods observed on thej -th replication of inventory
policy i, andwi is the expected cost per period of thei-th
inventory policy.

Two-stage indifference-zone procedures guarantee a
lower boundP ∗ on the probability of correct selection
(PCS), whenever the best system is at leastδ∗ better than
the other systems. ProcedureCY of Clark and Yang (1986)
is the first indifference-zone procedure to account for CRN.
A first-stage ofr1 replications of each system are observed
using CRN across all systems. The numberr2 of second-
stage replications depends onδ∗, t = t1−(1−P ∗)/(k−1),r1−1,
the 1− (1− P ∗)/(k − 1) quantile of the standardt dis-
tribution with r1 − 1 degrees of freedom, and the sample
variances of the differences in output,

σ̂ 2
i,j =

r1∑
l=1

(xi,l − xj,l − (x̄i − x̄j ))2

r1− 1

wherex̄i is the first stage sample mean, so that

r2 = max

{
0,

⌈
max
j 6=i

(
t

δ∗

)2

σ̂ 2
i,j − r1

⌉}
.

The system with the highest overall sample mean is then
selected as best.
604
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Nelson and Matejcik (1995) develop ProcedureNM,
an alternate indifference-zone procedure. The numbe
of second-stage replications then depends onδ∗, g =
T P ∗

k−1,(k−1)(r1−1),1/2, the P ∗ quantile of the maximum of
a standard multivariatet random variable of dimension
k−1 with (k−1)(r1−1) degrees of freedom, and common
correlation 1/2 (see Hochberg and Tamhane 1987), and
the sample variance of the difference (given the sphericity
assumption),

σ̂ 2 = 2
∑k

i=1
∑r1

j=1(xi,j − x̄i − x̄j +m)2

(k − 1)(r1− 1)

wherem =∑k
i=1 x̄i/k is the overall sample mean, so that

r2 = max

{
0,

⌈( g

δ∗
)2

σ̂ 2− r1

⌉}
.

Empirical tests demonstrate that the procedure is somewha
robust to departures from sphericity.

ProceduresCY and NM both simulateall systems
with CRN during second-stage replications, regardless of
how well the mean for each system is known after the first
stage, or whether the first stage sample mean for som
systems are clearly inferior. The issue of screening out
inferior systems after the first stage is considered by Nelson
Swann, Goldsman, and Song (1998), although the idea is
not discussed at length.

3 AN ALTERNATE FORMULATION

The results of Chick and Inoue (1999a) provide new two-
stage procedures for identifying the best simulated system
that are less conservative than procedures based on th
LFC assumption, that incorporate screening during the sec
ond stage so that simulation effort is focused on systems
that best benefit from additional analysis, and that do not
make restrictive assumptions about the covariance induce
by CRN. This section summarizes the Bayesian decision-
theoretic assumptions behind those procedures.

The first stage of the new procedures described below
are structurally similar to ProceduresCY and NM, in
that r1 replications of each system are observed to obtain
simulation outputEx = (x1, . . . , xr1), and sample statistics
are computed,

µ̂ =
r1∑

j=1

xj

r1
(2)

6̂ = S̄/r1 =
r1∑

j=1

(xj − µ̂)t (xj − µ̂)/r1 (3)
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A Decision-Theoretic Approach to Screen

The selection of the best system after both stages of out
are observed is the same as well, in that the system w
the maximal estimate of the mean is selected as best.

The second stage of the new procedures, howev
differs in four ways.

Screening. A subsetC2 of all systemsU = {1, . . . , k}
may be simulatedr2 times during the second stage. Al
systems are eligible for selection, including the systems
C1 = {1, . . . , k}\C2 that are simulated only during the first
stage. When all systems are simulated, denote the seco
stage vectors of output byy1, . . . , yr2. The output still has
multivariate normal distribution with unknown meanw and
variance6, but the notationy distinguishes second-stage
from first-stage output. LetyC2,j be the output vector of the
j -th second-stage replication when only the systems inC2
are simulated. This notation is used throughout to deno
appropriate subvectors and submatrices for systems inC2 or
C1, such asw = (wC2 wC1) for subvectors of the unknown
mean, or6C2C2 for the variance-covariance matrix ofyC2,j .
Denote all second stage output by

Ey =
(
yC2,1, . . . , yC2,r2

)
.

Loss Function. A second difference from
indifference-zone procedures is a choice for the loss c
terion. The PCS is an integral part of indifference-zon
procedures. Because the 0-1 loss function and the PCS
related, we consider

L0−1 (i, w) =
{

0 whenwi ≥ maxj wj

1 otherwise,
(4)

where the loss is 0 if the best system is selected, and 1
an inferior system is selected.

In many business and engineering applications, t
expected opportunity cost loss may be more relevant. W
therefore also consider theopportunity cost loss

Lo.c. (i, w) = max
j

wj − wi (5)

associated with selectingi as best when the means ar
w. The loss is 0 for a correct selection, and is otherwi
the difference in means between the best and the selec
system.

Average Case Analysis. Third, the new procedures
below chooseC2 andr2 with an average-case analysis rathe
than the worst-case LFC analysis. The average is taken o
the likely values of the mean and variance, as sugges
by the first-stage output. To do so, we adopt a Bayesi
approach to infer the values of the unknown mean a
variance from simulation output and Bayes’ rule. Unknow
quantities are treated as random variables and are writ
in upper case, such asW = (W1, . . . , Wk), and specific
6
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outcomes are given in lower case, such asw. We therefore
refer to the output precisionλ = 6−1, and consider its
unknown value through the random variable3, because
the symbols6 andσ already have strong connotations for
variance-covariance and summation.

The average-case analysis for selecting the ‘best’ second
stage experiment (C2 and r2), is done with respect to the
distributions of the unknown mean, given the first stage
output,W |Ex . The general setup is therefore similar to the
development of Chick and Inoue (1999b) for independent
replications.

Although the assessment of probability distributions for
the unknown mean and precision of the simulation output
is not a feature of indifference zone formulations, there
is a rich history for doing so in the Bayesian tradition
(de Groot 1970; Bernardo and Smith 1994). Chick and
Inoue (1999a) suggest a prior distribution forW, 3 that
leads to a multivariatet distribution after conditioning on
the first stage output that hasr1−1 degrees of freedom, the
same degrees of freedom for related frequentist analysis.

p3|Ex (λ) ∼ Wk

(
r1+ k − 2, S̄

)
(6)

pW|λ,Ex (w) ∼ Nk

(
µ̂, r1λ

−1
)

pW|Ex (w) ∼ Stk
(
µ̂, r1(r1− 1)S̄−1, r1− 1

)
. (7)

whereWk (α, β) is a Wishart distribution, andStk (µ, κ, ν)

is a multivariatet distribution with meanµ and variance
κ−1ν/(ν−2) when the degrees of freedomν > 2. See also
Inoue and Chick (1998).

Eq. 7 only make sense whenr1 ≥ k, becausēS must
be invertible.This differs from the indifference-zone proce-
dures, which do not require a specific relation betweenr1
and k.

The Bayesian probability of correct selection when
systemi is selected as best, is then

1− EW [L0−1 (i, w)],

where the expectation is taken with respect to whatever
information is available (e.g., after the first stage, the dis-
tribution in Eq. 7 is appropriate). This is an average-case
PCS, not a PCS for the worst-case LFC.

Budget Constraint. A fourth difference is that we
propose to reduce the expected loss for a specified amount
of second-stage simulation effort. Indifference-zone pro-
cedures, on the other hand, seek to reduce the number of
replications required to achieve a specified PCS. There is
practical motivation for this difference (e.g., declare which
system is best by tomorrow at 9am). We therefore as-
sume that after the first stage, the decision-maker selects a
second-stage budgetb, so thatr2 · |C2| = b, where|C2| is
the number of systems inC2.
05
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3.1 Design Of A ‘Good’ Second Stage

The problem is to select a non-empty subsetC2 ⊆ U =
{1, 2, . . . , k} of systems for simulation during the second
stage, based on information from the first-stage outputEx,
that minimizes the predicted value of the expected loss afte
runningr2 = b/|C2| replications of systems inC2 with CRN.

Suppose that for a givenC2 and r2, the second-stage
output Ey is observed. Denote the expected value of the
unknown mean, conditional on all output, by

z= E[W | Ex, Ey].

Denote the system with the posterior expectation for the
unknown mean by

dN
y = arg max

i:i=1,... ,k
zi . (8)

Then the expected loss is

EW|Ex,Ey [L
(
dN

y , W
)
| Ex, Ey],

whereL
(
dN

y , W
)

is the relevant loss function from Eq. 4 or

Eq. 5. AlthoughdN
y is sub-optimal for the 0-1 loss function

(Berger 1988), it is used implicitly by ProceduresCY and
NM, is intuitive, and allows for a relatively straightforward
analysis.

After the first stage, but prior to the second, the as-ye
unseen second-stage output

EY =
(
YC2,1, . . . , YC2,r2

)
is random. Because the second-stage output is random b
fore it is observed, the posterior expectation of the unknown
mean is also random,

Z = E[W | Ex, EY].

The distribution ofZ determines the probability that a given
system will be selected as best, once the second-stage outp
is observed. Its specific distribution is described in Sec. 4

The prediction for expected loss, given thatEY will be,
but has not yet been observed, is then obtained by averagin
over the random second-stage output,

ρ∗(r2, C2) = EY|Ex

[
EW|Ex,EY [L

(
dN

Y , W
)
| Ex, EY]

]
.

This leads to the optimization problem

min
C2

ρ∗(r2, C2) (9)

s.t. r2 = b/|C2|.
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We requireC2 to be nonempty, although we comment below
on situations where a second-stage might be foregone. Ou
mathematical analysis considersr2 = b/|C2| to be real-
valued, but the numerical experiments of Sec. 6 roundr2
down to an integer.

4 FORMULAS FOR PROCEDURES

Several formulas are important for describing the new se-
lection procedures with CRN. See Chick and Inoue (1999a)
for a thorough mathematical treatment. Here, let[i] be
a permutation that orders the first-stage sample means
x̄[1] ≤ . . . ≤ x̄[k]. Let φν(s) and 8ν(s) denote the
pdf and cdf, respectively, of the standardt-distributed
random variable withν degrees of freedom, and define

9ν(s) = ∫∞
s

(x − s)φν(x)dx = ν+s2

ν−1 φν(s)− s(1−8ν(s)).
Anderson (1957) shows that if the systemsC2 are simu-

latedr2 times in the second stage, the maximum likelihood
estimator (MLE) for the unknown mean is

ˆ̂µC2
= (

r1∑
i=1

xC2,i +
r2∑

j=1

yC2,j )/(r1+ r2) (10)

ˆ̂µC1
= µ̂C1

+
( ˆ̂µC2

− µ̂C2

)
S̄−1

C2C2
S̄C2C1.

The number of hats,̂ or ˆ̂, indicates the number of stages
of data used for the estimate.

Further, the posterior expectation for the unknown mean
after the second stage isz= ˆ̂µ, and the predictive distribution
pZ|Ex,EY (z) is multivariatet ,

Stk

(
µ̂,

(r1+ r2)

r2
r1(r1− 1)βZ

−1, r1− 1

)
, (11)

whereβZ is identical toS̄ except for the submatrix corre-
sponding to systems simulated for only one stage, where
βZ,C1C1

= S̄C1C2S̄−1
C2C2

S̄C2C1.
The probability that one system will be preferred over

another after both stages using predictions based on first-
stage output alone, is determined by the distributions of
Z. When no further replications are done (r2 = 0), the
system selected as best has the highest first-stage samp
mean (dN

y = [k]). Whenr2 > 0, the predictive distribution
pZi−Zj |Ex,EY

(
zi − zj

)
of the univariate differenceZi −Zj

in the expected mean performance of systemsi and j is
determined from Eq. 11 to be:

St
(

x̄i − x̄j ,
(r1+ r2)

r2
τC2,i,j , r1− 1

)
, (12)
6
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where

τC2,i,j = r1(r1− 1)
[
(ei − ej )βZ(ei − ej )t

]−1
, (13)

andei is thek−dimensional vector of all 0’s, except for a
1 in the i−th coordinate. If all systems are simulated in
the second stage, substituteS̄ for βZ into Eq. 13. Define

ξC2,[i] =
(
τC2,[i],[k]

)1/2
(x̄[i] − x̄[k]).

Chick and Inoue (1999a) indicate that the expecte
opportunity cost lossρ∗(C2, r2) whenk = 2 is exactly

ρ∗(C2, r2) = τ
−1/2
U ,[1],[2]9r1−1

[
ξU ,[1]

]− (14)

(
r1+r2

r2
τC2,[1],[2]

)−1
2

9r1−1

[(
r1+r2

r2

) 1
2

ξC2,[1]
]

They use this observation to motivate a Bonferroni-like
sum of pairwise losses for use as a surrogate objecti
function,

Bonfo.c.(r2, C2) =
k−1∑
i=1

τ
−1/2
U ,[i],[k]9r1−1

[
ξU ,[i]

]− (15)

(
r1+r2

r2
τC2,[i],[k]

)−1
2

9r1−1

[(
r1+r2

r2

) 1
2

ξC2,[i]
]

that will be optimized rather thanρ∗(C2, r2). If all systems
are simulated infinitely often (r2 → ∞, C2 = U), then
Bonfo.c.(r2, C2)→ 0, as desired with the value of perfect
information. Asr2 → 0, then Bonfo.c.(r2, C2) approaches
the Bonferroni-like bound for expected loss when[k] is
selected with no further replications, Bonfo.c.(r2, C2) →∑k−1

i=1 τ
−1/2
U ,[i],[k]9r1−1

[
ξU ,[i]

]
.

A similar Bonferroni-like surrogate objective is obtained
for the 0-1 loss function. Chick and Inoue (1999a) indicat
that with an extra approximation, the following Bonferroni-
like surrogate objective function for 0-1 loss can be obtaine

Bonf0−1(r2, C2) =
k−1∑
i=1

8r1−1[ξU ,[i]] − (16)

8r1−1

[(
r1+r2

r2

)1/2
ξC2,[i]

]

The difference in the summand is a reasonable approx
mation to the expected loss in a pairwise comparison b
tween systems[i] and[k]. When all systems are simulated
(C2 = U) and the number of replications grows without
bound, thenlimr2→∞ Bonf0−1(r2, C2) = 0, so the loss is0
with perfect information. With no additional replications,
limr2→0 Bonf0−1(r2, C2) = ∑k−1

i=1 8r1−1[ξU ,[i]] is exactly
the Bonferroni bound on the probability ofincorrectselec-
tion after the first stage.
60
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5 NEW SELECTION PROCEDURES

There are four new procedures presented by Chick and
Inoue (1999a) for reducing the risk of incorrect selections
by designing the second-stage to minimize the Bonferroni-
like surrogate objective functions. There is an exhaustive
and heuristic procedure for each of loss function, the ex-
pected opportunity cost and 0-1 loss in Eq. 15 and Eq. 16
respectively.

ProcedureOCcrn below is an exhaustive procedure that
checks all2k−1 non-empty subsets ofU to find the subset
C2 that minimizes the surrogate objective Bonfo.c.(r2, C2).
Procedure 0-1crn, the 0-1 loss analog, is obtained by
replacing appropriate terms (e.g. Bonf0−1(r2, C2) for
Bonfo.c.(r2, C2)). After observing the first-stage output,
the decision-maker selects a second-stage budgetb. The
selection ofb may be guided by average CPU times for
replications during the first stage, in order to control the time
required to complete the procedure. If the Bonferroni-like
surrogate objective is satisfactorily low after the first stage
(e.g.,

∑k−1
i=1 8r1−1[ξU ,[i]] ≤ 1−P ∗), then the second-stage

replications may be foregone.

5.1 ProcedureOCcrn

1. Pick a first-stage sample sizer1 ≥ k. Take i.i.d.
samplex1, . . . , xr1, from each of thek systemsusing
CRN across systems.

2. Determine the sample means̄x, the permuta-
tion [i] so that x̄[1] ≤ . . . ≤ x̄[k], and set
S̄=∑r1

j=1(xj − x̄)t (xj − x̄)

3. Select a budgetb for second-stage replications.
4. Choose the subset of systemsC2 of U = {1, . . . , k}

that minimizes the Bonferroni-like surrogate function
Bonfo.c.(r2, C2) from Eq. 15, wherer2 = b/|C2|.

5. Take r2 = bb/|C2|c additional i.i.d. observations
yC2,1, . . . , yC2,r2 from each system inC2, using CRN
across systems.

6. Compute the second-stage sample mean for systems
C2 and the ‘regression estimate’ for systems inC1 =
U\C2.

zC2 = (

r1∑
i=1

xC2,i +
r2∑

j=1

yC2,j )/(r1+ r2)

zC1 = x̄C1 +
(
zC2 − x̄C2

)
S̄−1

C2C2
S̄C2C1

7. Select the system with the largestzi as best.

Because the runtime of the exhaustive procedures ar
not polynomial in the number of systems, suboptimal heuris-
tics are proposed that check at most2k subsets. Procedure
OCcrn:h, the heuristic for opportunity cost, is presented
below. The idea is to first evaluate the surrogate objective
7
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when all systems are simulated,C2 = U . The surrogate ob-
jective is then evaluated again, this time dropping out eithe
the system that contributes least to reducing Bonfo.c(r2, C2).
If screening that system out, or screening out system[k]
improves the surrogate objective, then the process is con
tinued until screening out additional systems no longe
decreases the surrogate objective. The heuristic require
O(k4) time, as there areO(k) iterations, andO(k3) work
per iteration for matrix algebra. Procedure 0-1crn:h, the
opportunity cost analog of ProcedureOCcrn:h, is obtained
by substituting terms from Bonfo.c.(r2, C2) with terms from
Bonf0−1(r2, C2).

Numerical experiments with the heuristic procedures
indicate that the screening step (Step 5.2 of Procedur
OCcrn:h) should not roundr2 down when evaluating the
surrogate objective. Ifb/(|C2| − 1) is rounded down, then
too few systems may be screened.

5.2 ProcedureOCcrn:h

1. Do steps 5.1 to 5.1 of ProcedureOCcrn.
2. Initialize the set of systemsC2 considered for second-

stage analysis to beU = {1, . . . , k}.
3. Computer2 = b/|C2| and evaluate the Bonferroni-

like surrogate for expected opportunity cost loss,
Bonfo.c.(r2, C2).

4. If there is only one system under consideration (|C2| =
1), then go to Step 5.1.

5. Determine the set[i] ∈ C2\{[k]} that contributes least
to reducing Bonfo.c.(r2, C2), e.g., minimizes

(
r1+ r2

r2

)−1
2

9r1−1

[(
r1+ r2

r2

) 1
2

ξC2,[i]

]
,

and setr2
′ = b/(|C2| − 1). If eliminating i from C2

reduces the surrogate bound (Bonfo.c.(r2
′, C2\{i}) <

Bonfo.c.(r2, C2)), then screeni from the set of consid-
ered systemsC2 (assignC2 C2\{i} andr2 r2

′) &
to Step 5.2.

6. If [k] ∈ C2 and screening out[k] improves the surrogate
objective, then do so & go to Step 5.2.

7. Do steps 5.1 to 5.1 of ProcedureOCcrn.

6 EMPIRICAL EVALUATION

Here we evaluate the effectiveness of the indifference-zon
ProceduresCY andNM; the new exhaustive and heuristic
procedures for reducing the expected 0-1 loss (Procedur
0-1crn and 0-1crn:h); and the opportunity cost analogs (Pro-
ceduresOCcrn andOCcrn:h). Each procedure is evaluated
in terms of two measures of effectiveness, when applied t
determine the best of the five (s,S) inventory policies from
Koenig and Law (1985). Each measure of effectiveness i
608
estimated by (i) running 3000 independent first stages with
r1 = 10, (ii) running independent second stages for each
procedure, then (iii) averaging the 3000 outcomes of each
procedure.

Each measure is evaluated as a function of the second
stage budgetb. Since ProceduresCY andNM both require
all systems to be simulated, they give the same allocation
(although they might give a different PCS guarantee for
the LFC), and therefore perform identically with respect
to our measures. We chooseb to be a multiple of 5, and
round downr2 for our new procedures. This gives a slight
advantage to the indifference-zone procedures.

The first measure of effectiveness is the widely-used
empirical probability of correct selection (EmpPCS), the
fraction of times that a selection procedure selects a known
best system. In this case, inventory policy 2 is presumed
best, based on tens of thousands of simulation runs. For the
inventory example, EmpPCS is plotted in Fig. 1. All four
new procedures clearly outperform the indifference-zone
procedures for this experiment. Procedure 0-1crn performs
somewhat less well than the other three new procedures
perhaps due to approximations made in its derivation. The
other procedures all performed rather similarly.

A second measure is the Bonferroni-like surrogate for
the predicted expected opportunity cost loss (PredBOCL)
of Eq. 15. This measure is computed by averaging over
many first-stage procedures, rather than considering both
stages of output.

Chick and Inoue (1999a) present empirical evidence
that the new procedures also outperform ProceduresCY
and NM with respect to the expected P-value after both
stages, the expected opportunity cost loss after both stages
and the average predictive estimate of the probablity of
correct selection Bonf0−1(r2, C2) after one stage. Procedure
OCcrn:h seems particularly effective across all measures.
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7 DISCUSSION

All four new procedures perform better than both ind
ference zone procedures with respect to all five meas
of efficiency in the experiments of Sec. 6. This is n
surprising, since two of the systems in the numerical st
had performances that could be identified as unlikely c
tenders for the best after the first stage. These two sys
were typically not simulated by our new procedures dur
the second stage, although the indifference-zone proced
were obligated to run additional replications for them.

It is somewhat surprising that Procedure 0-1crn:h per-
forms somewhat better than Procedure 0-1crn with respect to
EmpPCS. The difference, however, is within sampling er
and might also be associated with slack in the Bonferro
like approximation for Bonf0−1(r2, C2). The opportunity
cost loss procedures perform strongly as well, perhaps
cause there are fewer approximations in with the surrog
objective for the opportunity cost loss than for the 0-1 lo
function.

A potential criticism of the new procedures is th
a bound on the expected loss is not provided. On
other hand, fork = 2 the predictive pairwise opportunit
cost loss is exact, so the budgetb can be increased to
insure a given expected opportunity cost loss. The surro
Bonf0−1(r2, C2) is only an approximation, not a bound, an
therefore cannot provide an average-case PCS guarant
increasingb. On the other hand, the new procedures prov
a higher EmpPCS than the indifference zone procedures
function ofb, at least for the inventory example consider
above.

The new procedures require more computation than
indifference-zone procedures. Whereas ProceduresCY and
NM are O(k2) in the number of systems, the heuris
Procedures 0-1crn:h andOCcrn:h are bothO(k4). For the
60
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experiments of Sec. 6 the heuristic procedures require abou
0.7 CPU seconds to compute the allocations. For largek or
small simulation runtimes, CPU time might be better spent
running replications rather than calculating allocations. For
smaller k, or largerb or simulation runtimes, the benefit
of screening is more likely to compensate for the cost of
computingC2.

8 CONCLUSIONS

Indifference-zone formulations have focused on designing
procedures that guarantee a minimum probability of correct
selection, given the worst-case LFC. The approach here
considers the expected probability of correct selection in a
Bayesian sense, so that information from first-stage repli-
cations can be used in lieu of the LFC. We also consider
that business decisions sometimes require an accounting o
expected opportunity cost loss, rather than the probability
of correct selection.

Although the closed-form solution of our general for-
mulation is not presently known, we present theoretically
justifiable procedures for reducing the risk of incorrect selec-
tion. The idea is to reduce a Bonferroni-like approximation
of the sum of pairwise losses.

For a well-known inventory selection problem, all
four new procedures perform favorably relative to two
indifference-zone procedures. ProcedureOCcrn:h seems
particularly effective.
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