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ABSTRACT

This paper addresses the problem of goal-driv
simulation. Goal-driven simulation is a task frequent
performed by users of simulation systems. It consists
determining, when possible, an assignment of one 
several decision variable(s) in order to obtain a particu
value for a specific goal variable. This task is poor
supported in simulation systems because of lack 
appropriate algorithms. Some systems assist goal-dri
simulation with a functionality called target value
computation. This functionality allows users to set a valu
for a goal variable and to get the value of a decisi
variable by running a simulation "backwards" from th
goal. However, target value computation is insufficient 
current simulation systems: it does not deal with mod
involving conditional expressions in equations – a comm
case in practice – nor with under and over-constrain
problems, which frequently occur during goal-drive
simulation. We present an algorithm which overcom
these difficulties. We propose to combine graph theore
methods for monitoring the numerical solving process 
the model and interval constraint reasoning for deali
with under-constrained and over-constrained problem
This algorithm, implemented in a simulation environme
called AMIA , has been successfully applied to several lar
models containing thousands of equations.

1 INTRODUCTION

Simulation is the most widely used decision suppo
technique in Economics and Management. One of the m
reasons for the popularity of simulation systems com
from the assistance they give to decision makers 
performing what-if? analysis, i.e., for determining the
possible outcomes of decision hypotheses. It is now wid
accepted that supporting decision more efficiently requi
to assist how-to? analysis as well as what-if? analysis.
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How-to? analysis starts with a goal and determines one 
several) decision(s) which allows one to reach this go
How-to? analysis is very important in today's manageme
practice because many decisions are made in such a g
driven way. In the context of simulation, how-to? analysis
can be performed by goal-driven simulation. Goal-driven
simulation consists in using a simulation model for findin
when possible, the value of a specific decision variable
order to reach a specific value for a particular output (
goal) variable. Goal-driven simulation is very important fo
users of simulation tools because it is complementary w
traditional data-driven simulation. Goal-driven simulatio
is used in many fields like financial and marketin
planning, economic forecasting and engineering desi
However, in many simulation tools, this task i
cumbersome: the user must adjust the value of the decis
variable by trial and error until she gets a value of the g
variable which satisfies her. Goal-driven simulation can 
assisted by a functionality called target value computation.
Target-value computation automates the determination o
value for a decision variable by running the simulatio
model "backwards" from the expected goal. Howeve
because of lack of appropriate algorithms, target va
computation is seldom available in current simulatio
systems. When it is available, it is only with limited
possibilities. In HEQS (Derman and Sheppard 1985) a
some commercial spreadsheet packages for instance, ta
value computation is possible, but limited to hierarchic
systems of equations (i.e. without simultaneous equatio
and fails to solve seemingly simple problems involvin
conditions such as: given the equation: X = if Y = 1 then 2
else 0, how to set Y in order to get X = 2 ?

Target value computation is, in general, a difficu
problem. Two difficulties must be overcome. First, a
shown in the above example, target value computat
should deal with conditions in equations (today, mo
modeling languages allow the definition of equation
involving such conditions). Second, the problem can 
8
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under-constrained (this would be the case for the proble
how to set Y in order to get X = 0 ?). The set of solutions
must be in this case characterized and given to the user i
meaningful form.

Two approaches can be considered for tackling targ
value computation problems. The first one, initially
proposed by Serrano and Gossard (Serrano and Goss
1987) for solving systems of constraints in engineerin
design, extended in (Porté et al. 1988) and (Ait-Aoudia
Jegou and Michelucci 1993), exploits results of grap
theory concerning matchings. It helps in characterizing
constrained systems, i.e., systems of equations which c
be numerically solved. However it does not take condition
into account. The second approach is based on inter
reasoning. It stems from the observation that target val
computation problems form a subset of interval constrai
satisfaction problems. Interval constraint reasoning (Old
and Vellino 1993), a set of powerful techniques for solvin
constraint satisfaction problems is hence a good candid
for solving target value computation problems. Thes
techniques cope with under-constrained problem
However, up until now, they lack efficiency for tackling
large models.

In this paper, we propose to solve target valu
computation problems by taking advantage of the tw
above approaches. First, we extend the graph-theore
method proposed by Serrano and Gossard in order to d
with conditions. Second, we combine it with interva
constraint reasoning only when necessary, i.e., wh
dealing with under-constrained problems. An algorithm
based on these ideas has been implemented in AMIA  (Page
1996), a discrete-time simulation workbench. Thi
algorithm has successfully been applied to some lar
models. One of them, described in (Camos, Dumort an
Valette 1986), contains several thousands of equations.

The paper is organized as follows. The target valu
computation problem is precisely stated in section 2. O
algorithm for target value computing is presented i
section 3. Section 4 presents two examples illustrating o
algorithm. Section 5 discusses related work. Section 
summarizes the contribution of this paper and indicates 
applications.

2 PROBLEM STATEMENT

From a general standpoint, this work is concerned wi
discrete-time simulation models (Cellier 1991). Models o
this kind are generally represented by difference equatio
and, in many simulation systems, the equations are pie
wise defined. In this paper, we consider a more simp
class of models: sets of algebraic piece-wise define
equations (PWDE); the generalization to differenc
equations is discussed in section 6. These models form
triple <X,K,E> where X is a set of unknown real-valued
variables; K is a set of real-valued variables whose value 
579
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known; E is a set of PWDEs. In each PWDE, the left-han
side is an unknown and the right-hand side is an express
which may contain conditions. These PWDEs have t
following syntax:

piece-wise-defined-equation ::= var = expr
expr ::= if cond-expr then expr else expr | arithm-expr

where var is an unknown variable, arithmetic expression
(arithm-expr) are formed using numbers, variables, usu
arithmetic operators and functions (+, -, ×, /, log, ...), while
conditional expressions (cond-expr) are made up of
relational and logical operators (=,  ≠, >, ..., and, or, ...)
combining arithmetic expressions. In the remainder of t
paper, we will use the term equation to refer to a PWDE
which does not contain any condition.

A target value computation problem associated with a
model <X,K,E> consists in:

assigning a value to a particular unknown variable 
called goal variable,

removing the value of a particular known variable I
called instrument variable,

determining one value of I as well as an assignment o
the variables in X-{ G} such that all the PWDEs of E are
satisfied.

A target value computation problem can be seen a
numerical constraint satisfaction problem (CSP) in whi
the set of variables is (X - {G}) ∪ { I}, the domain of these
variables is ℜ and the set of constraints is E.

Target value computation raises the problem 
solving sets of nonlinear equations. Because interactivity
often a primary concern in simulation, the approach w
have chosen to trade completeness for efficiency. It rel
on classical numerical algorithms using floating-poi
arithmetic which may not converge, but which are mo
efficient than the complete methods developed w
interval arithmetic (see section 5).

3 SOLVING TARGET VALUE
COMPUTATION PROBLEMS

This section presents our algorithm for target valu
computation. The reader is invited to consult the exam
in section 4 to find illustrations of the concepts an
properties introduced in this section.

3.1 Definitions and Properties

As stated above, our work is based on numeric
algorithms. To be as generic as possible, we consider th
algorithms as a black box called equation solver which,
when given a set of equations, terminates but may 
successfully find an instantiation of the unknown variabl
that satisfies the set of equations.
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Using an equation solver as a black box implies 
make assumptions about the properties of the sets
equations it is able to solve. In this paper, we make t
important assumptions. First, a PWDE should not be s
to the equation solver as long as its condition contains
variable whose value is unknown. This assumption is ma
because continuity is required by almost all numeric
algorithms that solve sets of equations whereas conditi
usually break the continuity of the function in which the
appear. The consequence of this first assumption is t
conditional expressions must be handled outside 
numerical machinery. The second assumption we make
also required by most numerical equation solvin
algorithms: the set of equations should be constrained.

Definition 1 (constrained set of equations) Let E be
a set of n equations. E is a constrained set of equations if
and only if :

it contains as many equations as unknowns;
in every subset of k equations (0 ≤ k ≤ n), at least k

different unknowns appear;
The second condition of this definition stems from

Simon's concept of self-contained structure (Simon 1953).
It ensures that no part of the model is over-constrain
This condition is not easy to handle, from a computation
point of view. For this reason, several researchers ha
proposed a more tractable formulation based on 
representation of the set of equations in the form of
bipartite graph (Serrano and Gossard 1987).

Definition 2 (bipartite graph associated with a set
of equations) The bipartite graph associated with a set o
equations E in the set X of unknowns is the bipartite graph
G(E,X), such that (e∈E, v∈X) is an edge in G if and only if
variable v appears in equation e.

Constrained sets of equations can be characterized
bipartite graphs using the following theorem (Porté et 
1988):

Theorem 1 (characterization of constrained sets of
equations) Let E be a set of equations in the set X of
unknowns. E is a constrained set of equations if and only
its associated bipartite graph G(E,X) admits a perfect
matching.

Under the assumption that the equation solver can d
with systems of PWDEs which are constrained and who
conditions contain no variable whose value is unknown
naïve approach for solving a target value computati
problem would be to consider each condition in a syste
of PWDEs as an hypothesis which can be either true
false. Thus, a system of PWDEs containing m conditions
results in 2m different systems of equations. One can the
attempt to sequentially solve these systems (some of wh
may be non-constrained) until a solution consistent w
the hypotheses is discovered. However, this solution
grossly inefficient because inconsistencies are discove
only when the whole system of equations has been built 
58
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A more efficient approach consists in trying to
discover inconsistencies as soon as they appear in 
system of PWDEs. Following this idea, one can notic
that before any hypothesis is made, some part of a model
may satisfy the two assumptions stated above, even if 
model as a whole does not. Before explaining how 
determine the constrained subsets of equations contai
in a model, we need to introduce some concepts a
properties.

Definition 3 (active PWDE) A PWDE e is said active
if every variable appearing in its condition (if any) is
known; otherwise, it is said inactive.

It should be noticed that the state (active or inactiv
of a PWDE is not defined once for all: during the solvin
process, an inactive PWDE may later become acti
because the unknowns it contains in its condition ha
been computed. When a PWDE is active, the arithme
expression in its right-hand side is determined. This 
embodied in the following definition.

Definition 4 (active part of an active PWDE) The
active part of an active PWDE e is defined by the result of
the recursive function active below, applied on e:

active(var = arithm-expr) =  arithm-expr
active(var = if cond-expr then expr1 else expr2) =

active var = expr cond-expr true
active var = expr

( ) if  evaluates to 
( ) otherwise2

1



Theorem 1 provides an interesting characterization 
constrained sets of equations. In order to adapt it to t
context of PWDEs, we introduce the following definition.

Definition 5 (bipartite graph associated with a set
of PWDEs) The bipartite graph associated with a set o
PWDEs P in the set X of unknowns is the bipartite graph
G(E,X) such that E is the subset of PWDEs in P which
are active; (e∈E, v∈X) is an edge in G if and only if
variable v appears in the left-hand side or in the activ
part of e.

In order to characterize the maximum subset 
equations in a set of PWDEs that can be sent to t
equation solver, we have stated and demonstrated 
following theorem (the demonstration is presented 
(Boudis 1997)) using alternating paths, i.e. paths whose
successive edges are alternatively inside and outside
matching.

Theorem 2 (characterization of the maximum
constrained subset of equations in a set of PWDEs) Let
P be a set of PWDEs containing a set of unknow
variables X, G(E,X) be the bipartite graph associated to P
and W a maximum matching on G. The set of equations
in E matched by W which cannot be reached by an
alternating path w.r.t. W from a variable in X not matched
by W is a maximum constrained subset of equation
(MCSE).
0
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3.2 Algorithm for Target Value Computation

The algorithm for target value computation is based 
theorem 2 and on an interval constraint solver to deal w
non-constrained systems. Its principle can be stated
follows. A basic step iteratively scans the set of PWD
which are not yet solved in order to determine an MCS
and then to solve it using the equation solver. Each time
MCSE is successfully solved, the unknowns it contai
become known. Some previously inactive PWDEs m
thus become active i.e. become new candidates to b
included in an MCSE at the next iterations. When no mo
active PWDE can be solved while some inactive PWD
are still to be considered, the conditions of these inact
PWDEs are treated as choice points. A backtrack
structure is established. For each inactive PWDE, t
branches corresponding respectively to the assumpti
that the condition is either true or false, are set. Bo
branches are explored in a depth-first search manner. W
every inactive PWDE has been considered and the valu
the instrument variable is still unknown, it means that t
system is under-constrained. In this case, the inter
constraint solver is invoked to find a value for th
instrument value which is consistent with both the oth
values found so far and the set of equations. The algori
which performs these operations is embodied in t
target_value function described in the APPENDIX.

The target_value function takes three parameters; 
first one, I, is the instrument variable. A variable is treat
as a record with a field value containing its value (or
when the value is unknown). The second parame
PWDEs, is a set of PWDEs which have not already be
solved. Each PWDE is treated as a record with four fiel
var is the variable in the left-hand side, if is the express
in condition; then is the expression corresponding to 
right-hand side of the PWDE when its condition is tru
else is the expression when the condition is false. The th
parameter, CONSTRAINTS, is the set of curre
constraints. This set is initially empty and is augment
each time an hypothesis is made about the condition o
PWDE.

The target_value function is roughly divided in tw
parts. The first one spans from line 9 to line 20. It 
basically an iteration which determines a new MCSE, th
solves it. Each time an MCSE is solved, the consistency
the solution is checked against CONSTRAINTS. Th
iteration stops either when an inconsistency is encounte
(CONSISTENCY = false), or when an MCSE cannot b
solved (SOLVED = false), or when no new MCSE can 
found (MCSE = ∅).

The second part of the target_value function whi
spans from line 21 to the end deals with the termination
the above iteration. If an inconsistency occurs or if 
MCSE cannot be solved, the value and the domain
variables which have been backed up (line 10) befo
58
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MCSEs computations start are restored with their previo
value (line 33) and the target_value function returns
value indicating its failure (RESULT = false), so tha
backtracking can take place. If the iteration terminates w
an empty MCSE, two possibilities must be considered. T
first one is that every inactive PWDE has been process
In this case, either the instrument variable has be
determined, the problem is then solved, or the instrum
variable is still unknown and the interval constraint solv
is invoked to determine it (line 26). The second possibil
is that some inactive PWDEs have not been processed
this case, the first inactive PWDE is selected (line 24) a
a choice point is established from its condition (lines 2
31).

The auxiliary functions and procedures used by t
target_value function are described below:

− function mcse(PWDEs: set of pwde) → set of
pwde returns an MCSE in PWDEs. It
incrementally maintains the bipartite graph
associated with the set of unsolved active
PWDEs. A maximum matching is computed
using the algorithm described in (Hopcroft
and Craft 1973). The equations which are
reached by an alternating path w.r.t. to this
matching from a non-matched variable are
removed to obtain the MCSE, according to
theorem 2.

− function equation_solver(PWDEs: set of
pwde) → boolean invokes the equation solver
on the constrained set of active PWDEs; it
returns true if PWDEs can be solved, false
otherwise. As a side effect, if PWDEs can be
solved, the unknowns it contains are
instanciated. The equation solver implements
a set of classical numerical methods. An
appropriate method is chosen according to the
set of equations. For a set of linear equations,
Gaussian elimination is used. For a set of
nonlinear equations, Levenberg-Marquardt
algorithm is used. Like any algorithm for
solving sets of nonlinear equations using
floating-point arithmetic, this algorithm is not
guaranteed to converge towards a solution.

− Function check_consistency(CONSTRAINTS:
set of constraint) → boolean invokes the
interval constraint solver described in section
3.3. It returns true if CONSTRAINTS is
consistent and false otherwise.

− function inactive_pwde(PWDEs: set of pwde)
→ pwde returns an inactive PWDE in
PWDEs or nil if there is no such PWDE.

− function solve_constraints(CONSTRAINTS:
set of constraint) → boolean returns true if a
1



oal-Driven Simulation

th
d
a
le

n

o
a
b
 

 

v
e
r
+
v

p
ib
th

m
h
h
o
m

i
n
i

is
le
E
n

 

io
y

of
SP.

re
-
e
is
e

r

e
s

.

t
s
,

e
,
,
ed
An Algorithm for G

value of the instrument variable satisfying
CONSTRAINTS has been found, false
otherwise. This function is detailed in section
3.3.

− procedure backup_variables and procedure
restore_variables respectively backs up and
restores the values and the domains of the
unknown variables which have been reduced
by constraint propagation.

3.3 The Interval Constraint Solver

The interval constraint solver we have chosen for 
algorithm is MICRO (Gensel 1995). It handles linear an
nonlinear constraint systems of equations, inequalities 
disequalities, involving boolean and numerical variab
(integers and float numbers) whose domain is represen
by a union of intervals.

Operators involved in constraint expressio
correspond to those found in the syntax of PWDE
Complex constraints are built up from standard comparis
operators and arithmetic or boolean (for condition
expressions) operators. Each operator is represented 
primitive constraint. Each primitive constraint is attached
set of rules of consistency which is fired whenever
change occurs in the arguments of the constraint. T
range of constraint arguments is computed using inter
arithmetic rules given in (Moore 1966). These principl
are common to most existing interval constraint solve
including CLP(BNR) (Older and Vellino 1993) and Inc+
(Hyvönen, De Pasquale and Lehtola 1993). Inter
computations are performed with outward rangin
(rounding the left endpoint down and the right endpoint u
so that bounds are always correct. Whenever it is poss
the evaluated range of a constraint expression is fur
narrowed using both the centered and the mean va
forms (Alander 1985).

The constraint solver plays two roles in the algorith
First, the function check_consistency invokes t
constraint solver with the conditions corresponding to t
hypotheses made so far and with the set of equati
associated with these conditions. The solver transfor
these data into an interval CSP. Then, a constra
propagation phase checks this set of constraints aga
consistency. If it is not consistent, there is no solution a
the solving process backtracks to the previous choice po
Otherwise, the propagation ensures that if a solution ex
it is present in the domains of the constrained variab
During the propagation, the domains of the PWD
variables are reduced by eliminating values which can
appear in a solution. These reductions are effective 
along a branch of the search tree until backtrack
performed.

Second, when called, the solve_constraints funct
attempts to find one solution for a system which is alwa
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made of n active equations in n+1 unknowns plus a set 
hypotheses. These data are transformed in an interval C
Domain splitting is performed on the domain of the
instrument variable. At each splitting step, new bounds a
propagated in the interval CSP. If one of the two split sub
domains is inconsistent, it is left aside, otherwise th
instrument variable is instantiated to the mid-value of th
sub-domain and the equation solver is called. When th
equation solver fails, dynamic splitting is further applied
until either a solution is found in the reduced domains o
no further splitting is possible.

4 EXAMPLES

Let us illustrate the target value computation algorithm
using the model (M) below:

A = B × E2 (1)
B = if C > 4 then A - 1 else C + 2 (2)

(M) C = if E1 ≥ 1 then D - 1 else 0 (3)
D = if log(E1) ≤ 3 then 2 × C - 2 else 0 (4)
E1 ← 1  E2 ← 2

The set of unknowns is X = {A,B,C,D}, the set of known
variables is K = {E1,E2} and the set of PWDEs is E =
{(1),(2),(3),(4)}. Let us consider for the first example the
following target value computation problem: how to set th
value of E2 in order to get A = 10 ? The set of unknown
becomes X = {B,C,D,E2}; the set of known variables
becomes K = {E1,A}. Figure 1 depicts the bipartite graph
associated with the model (M) resulting from this problem
The PWDE (2) is not in the graph because it is not active.

B

D

1

3

4

•

•

•

•

•

C•

• E2

Figure 1:  The Bipartite Graph Associated with
the Model (M) Resulting from the Target Value
Computation Problem "How to Set the Value of
E2 in Order to Get A = 10 ?". Thick lines
correspond to the maximum matching W (see
below).

Following the algorithm presented above, an MCSE is firs
searched for. Among the different maximum matching
existing for this graph, let us suppose that W = {((1), B)
((3), C), ((4), D)} is obtained (it can be shown that when
several different perfect matchings exist, they induce th
same MCSE). E2 is not matched by W and {(E2,(1))
((1),B)} is an alternating path starting at E2. Hence
equation (1) cannot be solved. No other equation is reach
2



Page, Gensel, and Boudis

n

n
p

1

.

14-
hat
is
ints
 to
 of
l

ce,
 to
ns
+
),

ts

 is
 to
. At

ce,
of

he

ks.
in
um
he

tite
sard
 be
 in
een
it-
se
in
on

is
ns
ms
ms

the
on,

of
on
For
ke
rs
n.
nal

 not
by an alternating path starting at a variable not matched b
W. Therefore, according to theorem 2, {(3),(4)} is an
MCSE. The solving process then enters the loop in line
13-20. {C = D - 1, D = 2 × C - 2} is sent to the equation
solver, yielding C = 3 and D = 4. The solving process goe
on with the bipartite graph depicted on Figure 2.

B1

2

••

• •E2

Figure 2:  The Bipartite Matching Associated to
the Model (M) at the Second Iteration.

PWDE (2) is now active, because C > 4 evaluates to fals
Equations (3) and (4) which are solved have been remove
The maximum matching is {((1), E2), ((2), B)}. Since
every variable is matched, {(1),(2)} is an MCSE. The
solving process enters for the second time the loop in line
13-20; {10 = B × E2, B = 3 + 2} is sent to the equation
solver, yielding B = 5 and E2 = 2. All the PWDEs have
been processed, so PWDEs is now empty, as well a
MCSE; then, the solving process goes out of loop 10-20
No more inactive PWDE remains to be processed, th
solving process is thus over with E2 = 2 as a solution.

The next example illustrates a case where constrai
processing is necessary both to analyze the consistency o
set of constraints and to solve it because the problem 
under-constrained. The problem considered here is: how 
set E1 in order to get A = 10 ? The set of unknowns is thu
X = {B,C,D,E1} and K = {E2,A}.

The solving process of the algorithm is presented i
figure 3. The bipartite graph is not depicted at each ste
because of space limitation.

not(C  > 4)

A = 10
B = 5
E2 = 2

5 = 10 - 1

A = 10
B = 5
E2 = 2

5 = C + 2

E1 > 1

A = 10 
B = 5
C = 3
E2 = 2

3 = D - 1

log(E1) ≤ 3

A = 10 
B = 5
C = 3
D = 4 
E2 = 2

4 = 2 x 3 - 2

C > 4
⊥

2

2'

3

4

A = 10
E2 = 2

10 = B x 2

1

Figure 3:  Solving Process for the Problem "How to Set E
in Order to Get A = 10 ?"

In the initial state 1 (this number corresponds to the
level of recursion in function target_value) in figure 3, the
bipartite graph contains only PWDE (1) and variable B
The maximum matching is {((1),B)} and the MCSE is
{(1)}. {10 = B × 2} is sent to the equation solver, yielding
B = 5. No PWDE becomes active, so the resulting MCSE
583
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is empty. The solving process thus goes out of the loop 
21. An inactive PWDE is searched for. Let us suppose t
PWDE (2) is first considered. Its condition, C > 4, 
asserted to be true. It is thus added to the set of constra
as well as the equation 5 = 10 - 1, which corresponds
this condition. We are now in state 2 in figure 3. The set
constraints {C > 4, 5 = 10 - 1} is sent to the interva
constraint solver which detects an inconsistency. Hen
the algorithm backtracks to state 2' which corresponds
the condition not(C > 4). The bipartite graph now contai
two vertices: the PWDE (2), which evaluates to {5 = C 
2}, and the variable C. The maximum matching is {((2
C)} and the MCSE is {(2)}. {5 = C + 2} is sent to the
equation solver, yielding C = 3. The set of constrain
{not(C > 4), 5 = C + 2} is consistent. The MCSE is now
empty; a new hypothesis must be made. PWDE (3)
chosen to become active, leading to state 3. D is found
be equal to 4, and the same reasoning leads to state 4
this point, the constraint 4 = 2 × 3 - 2 is consistent and
there is no more inactive PWDE to be processed. Hen
the function solve_constraints is called on the set 
constraints {E1 ≥ 1, log(E1) ≤ 3}. It determines that
interval [1, 20.08...] is consistent for E1 and returns t
mid-value in this interval. The algorithm then stops.

5 DISCUSSION

In this section, we compare our approach with other wor
The algorithm for goal-driven simulation presented 
section 3 is based on the characterization of the maxim
constrained subset of equations in a set of PWDEs. T
idea of representing a system of equations by a bipar
graph is due to Serrano and Gossard (Serrano and Gos
1987). They have shown that a system of equations can
decomposed in sub-systems by determining a matching
the associated bipartite graph. These results have b
formalized and extended in (Porté et al. 1988) and (A
Aoudia, Jegou and Michelucci 1993). However, the
works do not deal with conditional expressions 
equations (PWDEs), which are very frequent in simulati
systems. In presence of conditional expressions, it 
important to determine, not only if a system of equatio
can be solved, but also whether it contains sub-syste
which can be solved. The resolution of these sub-syste
may render active other PWDEs and the resolution of 
whole system can thus proceed further on. For this reas
theorem 2 of the paper is an important contribution.

Target value computation problems form a subset 
constraint satisfaction problems. Constraint satisfacti
techniques are hence candidates for solving them. 
instance, constraint logic programming languages li
CLP(ℜ) (Jaffar et al. 1992) implement constraint solve
which can be applied to target value computatio
Furthermore, these techniques can also handle conditio
expressions in equations. However, these systems do
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deal with nonlinear systems (or non-polynomial ones i
systems like RISC-CLP(Real) (Hong 1993)). Furthermore
when facing to under-constrained problems, they provide
solution in the form of a symbolic expression, which is no
very useful for the user in the context of goal-driven
simulation.

Interval constraint satisfaction techniques are als
relevant for solving target value computation problems
These techniques are based on branch and pru
algorithms. For instance, Newton constraint programmin
language (Van Hentenryck, Michel and Benhamou 199
uses interval Newton method, the equivalent for interva
of the well-known method for solving sets of nonlinea
equations. This interval method is very interesting in th
context of goal-driven simulation. First, its failure proves
the absence of a solution. This is interesting in particul
for over-constrained problems. Second, it finds all th
solutions of a set of linear and/or nonlinear equation
Third, the solution of under-constrained problems is give
in the form of an interval solution reaching the goal, whic
is very useful for the user. However, these methods al
have an important drawback: they suffer from inefficienc
when dealing with large problems. Benchmarks in (Chi
and Lee 1994) show that the interval Gauss-Seidel meth
is several orders of magnitude less efficient than i
floating-point equivalent. At a lesser degree, the sam
problem arises with the interval Newton method whos
convergence is shown to be slow on large systems 
equations. For this reason, we also use interval constra
solving in our work, but only when necessary, i.e., fo
dealing with under-constrained problems, but not fo
equation solving.

6 CONCLUSIONS

In this paper, we have presented an algorithm fo
performing goal-driven simulation. This algorithm
monitors the numerical equation solving process usin
graph theoretic methods in order to determine when a s
of piece-wise defined equations can be sent to the equat
solver. It deals with non-constrained problems using a
interval constraint solver.

The algorithm has been extended to differenc
equations and integrated in AMIA  (Page 1996), an
environment for discrete-time simulation based on a
algebraic modeling language. Using this system, the targ
value computation algorithm has been successfully appli
to several models. One of these models (called MEDEE

(Camos, Dumort and Valette 1986)), developed for ener
demand forecasting in European countries, involves seve
thousands of equations. Despite the size of the model, m
goal-driven simulations are performed in less than a minu
on a PC, providing energy policy-makers with a powerfu
decision support tool.
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APPENDIX

1  function target_value(I: variable; PWDEs: set of pwde;
                    CONSTRAINTS: set of constraint) →
boolean
2  variables
3    SOLVED: boolean
   // indicates whether the equation solver succeeded or not
4    MCSE: set of pwde
   // maximum constrained set of equations
5    RESULT: boolean
   // result of the target_value function
6    CONSISTENCY: boolean
7    P: pwde
8  begin
9 if not check_consistency(CONSTRAINTS) then
                           return (false);
10    backup_variables;
11    MCSE ←mcse (PWDEs);
12    SOLVED ← true; CONSISTENCY ← true;
13 while MCSE ≠ ∅ and  SOLVED and
CONSISTENCY do
14      SOLVED ← equation_solver(MCSE);
15   if  SOLVED then
16     CONSISTENCY ←
                              check_consistency(CONSTRAINTS);
17        PWDEs ← PWDEs - MCSE;
18        MCSE ← mcse(PWDEs)
19      end if
20    end while;
21    if not  CONSISTENCY or not  SOLVED then
22      RESULT ← false
23    else  // MCSE = ∅
24      P ← inactive_pwde(PWDEs);
25   if P = nil  then 
     // no more inactive PWDE
26     if I.value ≠ ? then RESULT ← true
                                 else  RESULT ←
               solve_constraints(PWDEs ∪ CONSTRAINTS)
27        else
28        RESULT ←
              target_value(I, {P.var = P.then} ∪
                                       (PWDEs - {P}), {P.if} ∪
                              {P.var = P.then} ∪ CONSTRAINTS)
29 or
30        target_value(I, {P.var = P.else} ∪
                          (PWDEs - {P}),
        {not(P.if)} ∪ {P.var = P.else} ∪ CONSTRAINTS)
31      end if
32    end if;
33    if not(RESULT) then restore_variables;
34  return (RESULT)
35  end;
4
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