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ABSTRACT

A forest treatment problem arising in a Northern Arizon
region is first formulated as a discrete MCDM problem, 
which the payoff values are uncertain.  This uncertainty
modeled by randomization considering the uncerta
values as random variables with assumed types 
distribution depending on the levels of uncertainty.  
combination of discrete MCDM methodology and
stochastic simulation is used to find the best treatme
strategy with respect to criteria including water quanti
and quality, wild life, wood production, aesthetics an
management costs.

1 INTRODUCTION

Most practical operational problems involve multiple
criteria. Therefore, these problems must be effective
formulated as multi-objective optimization problems
Simultaneous optimization of the multiple criteria wil
then lead to the best decision alternative. Typical examp
of such problems are found in industrial planning an
control, natural resource management, land use planni
water resources development, and in all other fields 
applied sciences.

Multiple Criterion Decision Making (MCDM) is the
terminology used in reference to the problems in whic
two or more non-commensurable and conflicting criter
exist. One such problem is the management of natu
resources on watershed lands. In these problems, it is o
necessary to consider multiple and simultaneo
conflicting objectives and the solution usually requires 
proper MCDM approach in order to arrive at the “bes
alternative.

The problem of MCDM has been studied extensive
in the literature. Pareto optimality, for example, is the ba
of the solutions of the MCDM problems. This is a
innovative idea first introduced by the Italian economi
Pareto. A significant contribution was later made 
Koopmans (1951) using the concept of efficient vecto
573
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He introduced the concept of non-dominated solutions
modern MCDM problems. The introduction of go
programming by Charnes and Cooper (1961) was the m
significant work of the 1950s in this area. The 1970s t
witnessed the development of a variety of algorithms
solve nonlinear multi-criterion problems. Spec
algorithms are also developed which have the ability
solve linear as well as nonlinear and discrete as wel
continuous problems. A valuable summary of the MCD
methods and game theory specifying their application
several fields of business, engineering, and nat
resources management is presented for example,
Szidarovszky, et al. (1986).

The uncertainty in MCDM problems is usual
modeled by randomization or fuzzification. In the case
the first concept the uncertain parameters are consid
random variables, and a simulation study is performed
the case of the second approach the uncertain param
are modeled as fuzzy numbers, and the resulting fu
solution is replaced by a crisp solution by certa
defuzzification methodology.

In this paper a simulation model is presented 
solving discrete MCDM problems where the objecti
function values are uncertain. The methodology will 
then illustrated by a case study of a specific fores
management problem.

2 DISCRETE MCDM PROBLEMS

Consider a decision problem with N alternatives and M
objectives. Let amn  denote the evaluation of alternativen

with respect to objective m. The resulting M × N  matrix
is called the payoff matrix. Assume that the decision ma
(DM) has specified importance weights to all objectiv
which will be denoted by c1,  c2 ,...,cM . We may assume
that all objectives have to be maximized, otherwise 
values of the objectives have to multiplied by (-1). T
most commonly used methodology is the class of dista
based methods.
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Let Am
∗
 and Am∗  denote the mth components for the

ideal and nadir points, respectively, for a given objectivem.
If the DM is unable to provide his or her ideal point and
or nadir selections, they can be chosen as:

Am
∗ =  max amn:1≤ n ≤ N{ }

A
m∗ =  min amn:1≤ n ≤ N{ }  .

Define the scale factor sm  for the objective m as:

sm = Am
∗ − Am∗ .

It is noted here that Am
∗  and Am∗  are the largest and

smallest values, respectively, of objective m on the set of
the given alternatives.

In the present study, we use the family of 1p  metrics,

which is one of the most frequently used measures
distance in distance-based methods. This distance, kn
as Minkowski metric, is described as

ρp a,b( ) = ci ai − bi

p

i =1

I

∑ 
 
 

 
 
 

1

p

    (p ≥ 1),

and based on this metric, six methods are most freque
applied. Methods A, C, and E are distance minimizing fro
the ideal point, and methods B, D, and F maximize 
distances form the nadir with p = 1, 2,  ∞ , respectively.
Since methods A and B are equivalent to each oth
method B will not be applied in this study.

3 SIMULATION METHOD

A distribution is selected for each uncertain value to mo
the uncertainty of the objective values. Le
xmn,  Xmn,  and emn  denote the minimal, maximal, and

mean values respectively, presented by the DM for e
element of the payoff matrix. Three distribution types a
considered in the present study as:

(i) Mean Value Analysis with the probability mass function
given as

fmn x( ) =
1    if x = emn

0   if x ≠ emn

 
 
 

.

It is noted that this distribution type corresponds to t
deterministic case in which complete information 
available on the amn  values.
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(ii)  Triangular Distribution with the density function given
by

fmn =

2 x − xmn( )
Xmn − xmn( )e− xmn( )

      if xmn ≤ x ≤ e

2 Xmn − x( )
Xmn − xmn( ) Xmn − e( )     if e≤ x ≤ Xmn

                0                     otherwise

 

 

 
  

 

 
 
 

where

e= 3emn − xmn − Xmn;

(iii)  Uniform Distribution whose density function is

fmn =

Xmn − emn

emn − xmn( ) Xmn − xmn( )      if xmn ≤ x ≤ emn

emn − xmn

Xmn − emn( ) Xmn − xmn( )     if emn < x ≤ Xmn

                0                       otherwise

 

 

 
 

 

 
 

With the distributions in (i), (ii), and (iii), we may
generate random values using a routine method. T
Amn value equals emn  in case (i). The distributions in

cases (ii) and (iii) are continuous. It is well-known tha
V = Fmn

−1 U( ) follows the given distribution function Fmn

provided that U is uniformly distributed in 0,1[ ] (see,
for example, Rubinstein, 1981). Therefore, the valuesV
for the two cases (ii) and (iii) are calculated
respectively, as

and
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A Simulation Aided So

as described in Eskandari, et al. (1995).
The overall best alternative for each given distan

based method was selected by the following simula
procedure based on the above observations. Let S be the
number of simulation runs. Choose S to be a large numbe
and generate S random payoff matrices with independe
elements. Use the selected method to find the 
alternative for each payoff matrix and record the numbe
times each alternative happens to be optimal. We 
obtain estimates of the probability that each alternativ
the best by dividing these frequencies by S. The overall
best choice is then the alternative with the high
probability estimate.

4 NUMERICAL STUDY

Four forest treatment strategies are compared in 
section. In the first method of treatment, a watershed of 
ha in size was completely clear cut, removing 
merchantable poles and saw timber and felling 
remaining noncommercial wood. In order to trap and re
snow, reduce evapotranspiration losses, and increas
surface drainage efficiency of the watershed, all slash 
debris were machine windrowed. Once the clear
treatment was completed, the woodland tree species 
allowed to sprout and grow.

The second treatment, uniform thinning, w

performed be removing 75% of the initial 30m2 / ha of
the basal area (a measure of the density of the fo
overstory). This procedure left even-aged groups of t

resulting in an average basal area of 7 m2 / ha. All slash
was windrowed in this treatment.

The combined strip cutting and thinning treatme
started by an irregular strip cut applied to a third waters
of approximately 546 ha in size. Within irregular strips
20 m in width, all merchantable wood was removed and
remaining nonmerchantable trees were felled. T
intervening leave strips which averaged 35 m in width w
reduced to 25% of their basal area.

An area of 351 ha watershed land was used as co
in order to evaluate the other three treatments. The co
was managed with minimal managerial inputs; therefo
the characteristics and resources of the control repre
what might be expected to result from a pure custo
management.
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There were several decision making groups concern
with the natural resources in this area. Experts from ea
major group were selected in our study to provide realist
opinions and preferences. These experts include: 1) Wa
users (downstream concerns), 2) Livestock produce
(upstream concerns),  3) Foresters (upstream concerns)
Environmentalists (upstream-downstream concerns), and 
Land use planners (up-stream-downstream concerns). E
of these groups has several criteria, which are presented
Table 1. The table also includes the average, minimal, a
maximal values for the first three alternatives. For control n
data are given in the table, since all values are equal to z
(all other alternatives are compared to it). The five group
have also assigned importance weights for each criterio
Based on these weights, two combined weight sets ha
been estimated, where we took into account the importan
and power of these groups in public relation.

The numerical results are presented in Table 2. In t
first case the distances are tabulated, and in the cases of
triangular and uniform distributions the probability value
that each alternative is optimal, are presented. With fe
exemptions, control is the best choice. The detaile
analysis of the results and the other model variants will b
presented in a future paper.
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Table 1:  Model Data

Alternative Criterion Data Weights (by five DM groups) Combined
Weight

Clear Cut Uniform
Thinning

Strip cut
and

Type 1 2 3 4 5 Case 1 Case 2 75% thinning
Water production mean 2.95 2.32 0.92
Stream flow
(inch/year)

min 20 10 15 7.5 10 12 12.5 -18 -20.9 -1.42

max 20.82 23.74 3.25
Sediment yield mean -1.65 -0.25 -0.01
(ton/year) min 20 10 10 7.5 7 11 12 -13.11 -1.3 -0.06

max 0.06 0.016 0.11
Wild life mean 1.11 2.31 1.5
Deer min 2 3 2 7 3.4 4 3.5 -0.87 -2.1 -0.43
(pellet/group/acre/mo) max 2.19 5.5 3.21
Elk mean -0.15 3.97 0.58
(pellet/group/acre/mo) min 2 3 2 7 3.3 4 3.5 -3.44 -2.25 -0.15

max 2.42 6.16 2.04
Pygmy nuthatch mean -13.2 -9.9 0.7
(pair/100 acres) min 2 3 2 7 3.3 4 3.5 -18.1 -13.6 -0.16

max -8.3 -6.2 3.6
Violet-green swallow mean -6.7 -5.3 1.7
(pair/100 acres) min 2 3 2 7 3.3 4 3.5 -9.7 -9.7 -0.5

max -3.7 -1.7 4.5
Cavity nesters mean -42.3 -28.3 -12.9
(pair/100 acres) min 2 3 2 7 3.3 4 3.5 -48.6 -43 -28.9

max -31.9 -21 8.1
Aesthetics mean -1.02 -0.75 -0.57
(rank) min 10 10 10 30 16.6 18 15 -1.02 -0.75 -0.57

max -1.02 -0.75 -0.57
Livestock production mean 433.1 416.7 94
Herbage production min 7 15 5 2 5.6 6 8 -82.7 315.7 -32
(pound/acre) max 1042.3 514.7 303
Grass mean 168.4 76.1 96.1
(pound/acre) min 7 10 5 2 5.5 5 6.5 -90.3 43.1 34.3

max 473.6 107.5 132.3
Carrying capacity mean 0.08 0.0355 0.02
(AUM/acre) min 6 10 5 1 5.5 5 6 -0.05 0.0201 -0.03

max 0.22 0.0511 0.08
Management costs mean -135.91 -63.189 -75.79
(dollar/acre) min 5 5 5 5 16.6 6 6.5 -135.91 -63.189 -75.79

max -135.91 -63.189 -75.79
Wood production mean -41.1 -52.3 -47.7
Growth (sell as wood) min 10 10 20 5 8.3 10 9.5 -37.7 -64.9 -63.9
(board feet/acre) max -47.5 -38.7 -15
Growth (total wood) mean -33.1 -26.1 -19.3
(cubic feet/acre) min 5 5 15 5 8.3 7 6.5 -39.3 -35.2 -24.5

max -29.9 -19.1 -8
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Table 2: Comparison of Numerical Results

Type of Method Case Control Clear Cut Uniform Strip Cut
Uncertainty Thinning 75% and Thinning

A 1 42.155 70.42 46.386 42.287
2 45.806 65.617 44.282 43.099

C 1 6.200 8.334 5.444 5.114
Mean 2 6.510 8.049 5.249 5.196
Value E 1 12.000 18.000 13.235 10.059

Analysis 2 12.500 15.000 11.029 8.602
D 1 7.358 5.350 6.072 6.449

2 7.125 5.792 6.244 6.388
F 1 18.000 12.000 9.437 10.933

2 15.000 12.500 10.181 11.927

Method Case Control Clear Cut Uniform Strip Cut

Thinning 75% and Thinning

A 1 0.96693 0.00000 0.00020 0.03287
2 0.84915 0.00000 0.02159 0.12926

C 1 0.26961 0.00000 0.06528 0.66511
Triangular 2 0.11192 0.00000 0.15429 0.73379

Distribution E 1 0.65814 0.00000 0.00000 0.34186
2 0.52496 0.00000 0.20927 0.26577

D 1 0.99919 0.00000 0.00000 0.00081
2 0.99548 0.00000 0.00000 0.00452

F 1 1.00000 0.00000 0.00000 0.00000
2 1.00000 0.00000 0.00000 0.00000

Method Case Control Clear Cut Uniform Strip Cut

Thinning 75% and Thinning

A 1 0.98471 0.00000 0.00034 0.01495
2 0.90582 0.00000 0.02120 0.07298

C 1 0.50251 0.00000 0.05692 0.44057
Uniform 2 0.26848 0.00000 0.15016 0.58136

Distribution E 1 0.72100 0.00000 0.00000 0.27900
2 0.56925 0.00000 0.21355 0.21720

D 1 0.99916 0.00000 0.00000 0.00084
2 0.99520 0.00000 0.00028 0.00452

F 1 1.00000 0.00000 0.00000 0.00000
2 1.00000 0.00000 0.00000 0.00000
577
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