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ABSTRACT

It typically can be difficult to create and solve optimizatio
models for large-scale sequential decision proble
examples of which include applications such 
communications networks, inventory problems, a
portfolio selection problems.  Monte Carlo simulatio
modeling allows for the creation and evaluation of the
large-scale models without requiring a complete analyt
specification.  Unfortunately, optimization of suc
simulation models is especially difficult given the larg
state spaces that often produce a combinatorially explo
number of potential solution policies.

In this paper we introduce a new techniqu
Simulation for Model Generation (SMG), that begins wi
a simulation model of the system of interest and th
automatically builds and solves an underlying stocha
sequential decision model of the system.  Sin
construction and implementation of the created mo
requires approximation techniques, we also discuss sev
types of error that are induced into the decision proc
Fortunately, the decision policies produced by the SM
approach can be directly evaluated in the origin
simulation model - thus the results of the SMG model c
be compared against any other possible strateg
including any decision policies currently in use.

1 INTRODUCTION

In this paper, we present a new simulation/optimizat
approach to the generation of optimal policies for ve
large-scale systems.  The approach, which we call 
Simulation for Model Generation (SMG) algorithm
combines Monte Carlo simulation with state spa
aggregation to empirically create an aggregated seque
stochastic decision model (Markov decision process
MDP) representation of the system of interest.  T
aggregated MDP can then be solved to produce a po
solution for the original system.  The basic SMG algorith
is described below, followed by a brief discussion of so
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of the modeling and simulation issues involved in 
implementation.

2 SMG ALGORITHM

One way in which to deal with problems with very larg
complex state spaces is to formulate a simpler aggreg
model which can then be solved to generate a solution
the original system (see Scherer and White (1986), for
example).  This formulation, however, requires combini
the parameters from the original model in some way
create the transition probabilities and one-step rewards
its aggregated counterpart (see Puterman (1994)).  If
original state and action spaces are very large, for exam
on the order of 1e+100 elements, then it is not feasible
use an analytic approach to form this combination.  T
SMG approach allows us to deal with such a situation i
natural way.

Assuming that there exists a verified and validat
simulation model of the system under consideration, 
SMG approach involves specifying a state spa
aggregation scheme and identifying the associa
mapping from each original state into its aggrega
counterpart.  By then simulating the underlying proce
we may empirically capture the probability of eac
transition between aggregated states, as well as 
associated transition reward or cost.  After sufficie
“training” of the aggregated parameters, we may solve 
associated aggregated MDP model to generate a solu
policy which may be “disaggregated” and applied to t
original non-aggregated system.

The relative performance of a policy generated by t
SMG approach is easily validated by applying it within t
“ground-truth” simulation of the system.  This ensures th
the performance of any solution policy can be accurat
determined regardless of how accurate and/or appropr
the chosen aggregation scheme may be.  Also, the issu
a poorly chosen aggregation scheme may be addre
through the “Outer loop” of the algorithm, as presented
Figure 1. This provides a framework within which a
9
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Real World 
Process

“Ground Truth”
Simulation Model

Define basic model parameters:
states, actions, and rewards

OUTER LOOP: Modify
aggregation to improve MDP

Specify MDP
aggregation

Create new MDP
aggregation

Solve current
aggregated
MDP model

Simulate to train
parameters for
aggregated MDP

Stopping criteria

Create new MDP policies

INNER LOOP: Continue to train new
policies to improve MDP quality

Policy evaluation - validate via simulation.  If
acceptable, stop.

Figure 1:  Simulation for Model Generation (SMG)
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aggregation scheme may be changed and then reap
within the basic SMG algorithm to produce a new, a
possibly improved, solution policy for the origina
problem.

3 MODELING AND SIMULATION ISSUES

There are several types of approximation error involv
with implementing an approach such as the SM
algorithm, and it is important to recognize these poten
errors so that they may be addressed appropriately.  
following are the three primary sources of error associa
with the SMG algorithm in particular:

1. Type A error  -  associated with the initial
modeling of the underlying problem as a
Markov decision process,

2. Type B error  -  associated with the structural
limitations imposed by the formation of an
aggregated model and the potential loss of the
Markov property due to this aggregation,

3. Type C error  - associated with the
incomplete simulation training of the
generated MDP model parameters.
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Each of these error types is illustrated in Figure 2 on
the following page.

The first type of error is related to the initial formation
of the full-scale Markov decision process from the original
underlying problem.  Although we typically assume that
this original problem has a natural representation as an
MDP, this need not be true in general.  By carefully
defining state and action spaces and by making
assumptions about the associated transition behavior, it is
possible to model a great number of problems as Markov
decision processes, even if they are non-Markovian.

The second type of application error, Type B, is
related to the formation of an aggregated model from the
original Markov decision process model.  There are two
aspects to this type of error, both of which impact the
ability of the aggregation scheme to accurately represent
the underlying process.  The first of these is related to the
structural limitations that may be imposed upon an
aggregated problem due to combining the states from the
original model.  The second aspect of the Type B error is
associated with the potential loss of the Markov property
due to the choice of aggregation scheme, and the
uncertainty that this imposes on the performance of the
aggregated model (Zobel 1998).
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Real World
original process

original MDP model
formulation
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Figure 2:  Approximation Error for the SMG Algorithm
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The Type C approximation error introduced above 
associated with our use of simulation to empirical
generate an MDP model.  The empirical parame
estimates produced in each iteration of the SMG algorit
are simply approximations to the “true” parameter valu
for the chosen aggregation, therefore, although th
approximations become more accurate as the numbe
simulated observations increases, they may only achi
the actual values in the limit.  By solving a Marko
decision process based on these approximate parame
we are thus subject to the error induced by this result.

In general, it is important to keep in mind that if a
SMG generated model is based on an aggregated M
formulation then it may contain components of all thre
types of approximation error discussed above.  In defin
each aspect of the SMG approach, therefore, we mus
aware of the presence and the effect of this error so tha
may minimize its impact.  Ultimately, however, we judg
the performance of the algorithm based upon t
performance of the policies that it produces within th
ground truth simulation model.

4 ILLUSTRATION

We have implemented the SMG approach within tw
particular test domains: the first is a large-scale telepho
network routing problem, and the second is a common, 
theoretically and computationally complex, problem 
inventory control.  We briefly describe each of the
problems below.
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4.1 Telephone Network Routing Problem

We first explored the performance of the SMG algorith
with respect to the problem of choosing routes f
telephone calls within a network.  Each call is associa
with an origin node and a destination node and occupie
single connecting path through the network for th
(stochastic) duration of the call.  Furthermore, each li
between nodes only has finite capacity and the arrival
calls to the network occurs stochastically.  The state of 
system is defined to be the number and location of calls
the network, an action is a routing choice for a particu
incoming call, and the objective is to minimize the long
term number of calls “blocked” or prevented from enterin
the network because of insufficient capacity on th
specified route.

Using several different network formulations, th
results of applying the SMG algorithm to the routin
problem were compared against four standard heuris
routing strategies: direct routing, least-loaded routin
dynamic alternative routing, and Krishnan’s MDP base
Separable Routing (1990).  Despite the complexity of t
problem, the SMG approach was able to gener
telephone routing policy solutions that compared favorab
against these well-established, tailored heuristics.  
several situations, SMG actually matched both t
performance and the structure of the best heuristic soluti
without previous knowledge of this structure.  Additiona
testing will continue to improve the performance of th
algorithm and will explore some of the issues associa
with aggregating the network state space.
1
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4.2 Inventory Control Problem

We chose as our second application a standard invent
control problem, with discrete stochastic monthly deman
and variable storage, shortage, and ordering costs.  In 
example, the current inventory level defines the state of 
system, the actions each correspond to a given numbe
items to order in a given month, and the objective functio
involves minimizing the average expected cost per u
time.  Aggregated problems are easily generated from t
model by combining adjacent inventory levels.

As the basis for our SMG approach, we used a "blac
box" simulation of this inventory control problem which
was drawn from the literature (Law and Kelton 1991), an
which provided the algorithm only with the current syste
state and transition cost at each decision interval.  With 
other system information available, the SMG algorithm
was able to generate policy solutions that were of t
complex structure and quality of the known optima
solution form, i.e., the well-studied (s, S) policy structur
(Zobel 1998).  This suggests that the approach may be v
useful in situations where there is limited system
knowledge and where the optimal policies take on 
specific, but unknown, structure.

5 CONCLUSIONS

In this paper we have presented an approach by which 
may take a problem that is computationally intractable a
create reasonable solutions via a simulation of the origin
problem.  The solution methodology described uses
simulation model to create an approximating MDP whic
is then solved via traditional MDP solution approache
Since the approximating MDP model is a fairly rich an
robust sequential optimization model, optimal policies ca
be created which represent an intelligent an
comprehensive search of the policy space.

The performance of policies generated by the SM
algorithm may be properly evaluated by applying the
within an underlying “ground-truth” simulation which has
itself been verified and validated.  In this way, any solutio
generated by SMG can be easily compared against a
other potential solution via the simulation mode
Exploratory experimental results indicate that the SM
algorithm would allow for the modeling and optimization
of numerous problems for which no known policy structur
exists, and which are currently considered too complex 
anything other than simple heuristic rules.  It is our beli
that these results demonstrate that this approach is of h
potential and worthy of additional research and testing.
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