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ABSTRACT

As systems become more complex, the need to explicitly a
count for uncertainty during modeling and simulation grows
The interactions between assumptions made in modeli
different subsystems may greatly affect system behavi
Unless these assumptions are quantified and included in
simulation, results can be misleading or even complete
wrong.

Piecewise linear (PL) modeling is proposed as a meth
for quantifying the uncertainty in a model. With PL models
sets of models with varying amounts of uncertainty are ea
ily developed. Robust simulation is then used to account f
uncertainty during analysis. Also, robust simulation allow
dynamic selection of models. Through the use of PL mo
eling and robust simulation, unexpected model interactio
can be predicted.

These techniques are demonstrated on 3 simple illust
tive examples. A model library is developed for a saturatio
This saturation is then used in a feedback system, and
simulation results of various models are examined. A fi
nal example demonstrates the benefits of changing mo
accuracy during simulation.

1 INTRODUCTION

Two trends in control design are placing new demands
modeling and simulation. First, component libraries are b
ing developed to allow rapid prototyping of new designs
Second, as systems become more complex, models from
ferent areas of engineering are being interconnected. F
example, an engineer may choose a wing from a previo
design, attach it to a new airplane model, and then simula
its performance during flight maneuvers. While conceptual
simple, this is computationally very difficult. Aerodynamic
coefficients are measured under static conditions. Structu
models of the wing are inherently dynamic. How does the a
mosphere interact with the structural modes of wing? How d
the aerodynamic properties change as the wing flexes? A
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these interactions important? This paper presents a modeli
and simulation technique that addresses these types of issu

In short, large systems can be constructed as the inte
connection of simpler subsystems, but large system mode
are not simply the interconnection of simpler subsystem
models. The assumptions made in modeling one subsyste
may critical to a second subsystem’s model. The solutio
to this problem is to explicitly define all assumptions as
uncertainties in the model and use this information during
simulation (Khatri 1996).

The first part of the solution, defining model assump-
tions, leads directly to model hierarchies. Once the assum
tions are quantified, it is natural to create a set of models wit
varying degrees of accuracy. The second part of the solutio
accounting for assumptions during simulation, requires new
simulation techniques. Simulation results from any valid
model should yield compatible results. Two simulation re-
sults for a system are compatible when their differences fa
within explicit error bounds.

One implementation of this solution is to model using
sets of uncertain piecewise linear (PL) systems and simula
using robust simulation. Sets of uncertain PL models are ea
ily created from general nonlinear systems and admit a simp
partial ordering of their accuracy. Robust simulation explic-
itly accounts for model uncertainty and allows for switching
between models during a single simulation. These tech
niques present a practical, computationally tractable solutio
to the problems encountered when simulating large system

2 HIERARCHICAL MODELING

When creating a mathematical model of a physical system
any degree of complexity is possible. A resistor mode
can simply bee = ir or can include a variety of parasitic
effects. When developing models for interconnection with
other systems, the degree of accuracy needed is not know
a priori. Effects critical to one system may be superfluous
to another. Thus, a set of models with varying degrees o
accuracy are needed. Finally, the set of models must b
useful for computation.
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Model hierarchies are an area of active research in t
computer graphics community. Wavelets are used to cre
sets of models of 3 dimensional objects for on-screen re
dering. As an object moves toward the foreground of a
image, more complex models are used to display finer de
(Schr̈oder 1996).

Modeling for control has its own set of requirements
Primarily, simulation and analysis computations must gro
reasonably as state dimension increases. In computer gra
ics, all problems are limited to 2 or 3 dimensions. Add
tionally, some measure of model accuracy is needed. I
nonlinear 2 state model more accurate than a linear 5 st
model? PL systems satisfy both of these requirements.

A PL system, described in more detail in (Kantner 1996
and (Sontag 1982), is a nonlinear system of the form

x[k + 1] = Aix[k] + Āi + Bi [u[k]; n[k]]
y[k] = Cix[k] + C̄i + Di [u[k]; n[k]] ,

(x[k], u[k]) ∈ Ri, i ∈ 1 . . . l (1)

whereRi is one of a finite number of regions in the state an
input space.u[k] is the control input andn[k] is a norm-
bounded uncertainty or noise. To facilitate analysis, eachRi

is a closed polyhedra and|n[k]|∞ ≤ 1.
This type of system is a conceptually simple extensio

of a linear system; each regionRi behaves as an affine sys
tem. PL systems are also easily simulated and implemen
on digital computers. Identifying the appropriateRi for a
given [x[k], u[k]] only requires matrix multiplication. By
adding additional noise inputs, a PL system can approxim
a nonlinear system to any degree of accuracy.

A partial ordering of model accuracy is determined b
the number of piecewise linear regions,l, and the amount
of noise in the model. Largerl and less noise lead to more
accurate models. There are several methods for measu
the amount of noise in the system. For systems with a sin
noise input, one method is

max
i∈1...l

∣∣∣∣
[

Bi

Di

] [
0; 1

]∣∣∣∣∞ .

More complex measures can weight theBi andDi or use
other norms.

3 MODELING EXAMPLE

To demonstrate the ideas from the previous section, a mo
library is created for a simple static nonlinearity. The sat
ration

y = 2

π
arctanu, (2)
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shown in figure 1, can be described by a variety of PL systems
The simplest model treats it as one region,l = 1, with noise,

y = 0u + n, |n| ≤ 1. (3)

While (3) does not describe the behavior of the nonlinearity
it does describe its bounds. This model is useful when the
output of the saturation has little effect on the overall system
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Figure 1:  The Saturation Nonlinearity

A more common approximation for saturations is a 3-
segment representation. When approximating (2) by a PL
system withl = 3, some assumptions must be made. First,
this approximation will hold for all valuesu. Second, the
model will be symmetric aboutu = 0. Finally, the maximum
size of the noise signal will be minimized. The model

y =



−0.87+ 0.13n u < −2.32
0.38u + 0.13n −2.32 ≤ u ≤ 2.32
0.87+ 0.13n u > 2.32

, (4)

shown in figure 2, satisfies these requirements. Note that th
saturated regions,|u| > 2.32 are not nominally equal to the
saturated values. For this model, they are offset to reduce th
amount of noise needed to cover the true saturation (2). A
shown by the dotted lines, there is always a noise that make
the approximate system equal the true system.

A more accurate model can be created by using a 5
segment approximation. Using the same assumptions as b
fore, the model, shown in figure 3, is

y =




−0.95+ 0.05n u < −6.14
0.06u − 0.55+ 0.05n −6.14 ≤ u < −1.29
0.49u + 0.05n −1.29 ≤ u ≤ 1.29
0.06u + 0.55+ 0.05n 1.29 < u ≤ 6.14
0.95+ 0.05n u > 6.14

(5)
9
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Figure 2:  3-Segment Saturation Approximation
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Figure 3:  5-Segment Saturation Approximation

All three of these models are valid representations of t
original nonlinearity (2). The more complex models conta
less uncertainty (noise), but may require more computat
during simulation.

4 MULTIRESOLUTION SIMULATION

Traditional simulation techniques yield one result for a
initial condition and noise signal. If several models exi
for a system, and each yields a different simulation resu
which one is correct? Also, the ability to change mode
during simulation is desired. One model may be accurate
one operating region and a second may describe a differ
region in detail.

When simulating uncertain systems, the result shou
be the set of all possible final conditions, not a single fin
condition. Since the system is uncertain, it is impossible
predict the final condition exactly. The simulation shou
also allow a set of initial conditions, so the results of
prior simulation can be used to initialize future runs. Mor
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accurate (less uncertain) models should yield smaller s
of final conditions than coarser models for the same s
of initial conditions. Finally, all models should be com-
patible. For any set of initial conditions, the simulation
results from all models should have some points in com
mon. Robust simulation, described in (Kantner 1997) an
(Kantner 1996), meets these requirements.

Robust simulation is the simulation of sets. For
given initial condition set and uncertainty description, th
set of all possible final conditions is calculated. For mode
libraries that share the same state and input variables (or h
mappings between different state and input description
any model can be used at any time step without recalculati
prior results. This allows the simulation technique to choos
at each time step, the most appropriate model for a giv
initial condition set, i.e. multiresolution simulation.

The ability to do dynamic model selection is a direc
result of using robust simulation. The result at any tim
step can be used as the initial condition for simulatin
any model one time step forward. The technique does n
provide guidelines for model selection; it only gives the
ability to change models. As long as all models correctl
describe the same system, the results are guaranteed,
construction of the algorithm, to be compatible.

This simulation technique exhibits polynomial compu
tational growth in all variables. As problem size grows
computational cost grows reasonably. For each time st
of simulation, roughlynl2 linear programs must be solved.
This technique is only applicable for models in the form
of (1) and is conservative. The set of final condition
is guaranteed to contain all possible final conditions, b
may also contain additional points that cannot be reache
If the results are too conservative, the simulation can b
systematically refined until the exact solution is obtained

5 SIMULATION EXAMPLE

Three 1-dimensional systems are used to demonstrate
multiresolution simulation ideas. While more complex ex
amples can easily be solved, these simple problems illustr
the types of analyses possible. Robust simulation, the alg
rithm used during simulation, has already been successfu
tested on higher order models (Kantner 1996).

5.1 Example 1

The first example demonstrates that in some circumstanc
even the coarsest model may give acceptable results. C
sider the stable system

x[k + 1] = 0.4x[k] + 0.05
2

π
arctanu[k] (6)
50
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with the feedback lawu[k] = −x[k]. This system is open
loop stable, and the input has very little control authority
All simulations are for 5 time steps starting fromx[0] = 100.

The first simulation of (6), whose results are show
in table 1, uses (3) to approximate the saturation. For th
system, even the simplest model gives reasonable resu
The final result,0.942≤ x[5] ≤ 1.107, differs by only 5%
from its center value and, as expected, contains the ex
result of 0.956. Note that for the first few time steps, th
lower bound is, after rounding, identical to the exact valu
This is because the worst case uncertainty (noise), whi
achieves the lower bound, is also the value needed to ma
the approximation match the true model.

Table 1:  Simulation Results for Simplest Model

Time Step Lower Bound Exact Upper Bound
0 100 100 100
1 39.95 39.95 40.05
2 15.93 15.93 16.07
3 6.32 6.32 6.48
4 2.47 2.48 2.64
5 0.94 0.96 1.11

Running the same simulation using the approximatio
(4) yields a final result of0.942≤ x[5] ≤ 0.963. This result
set is much smaller because the saturation only takes
values between 1 and 0.74 in the saturation region. Fina
using (5) to approximate the saturation gives0.953≤ x[5] ≤
0.961. As expected, the model with the least uncertain
gives the tightest bounds.

5.2 Example 2

The second example demonstrates that radically differe
results can be obtained from different, seemingly accura
models. The nominally unstable system

x[k + 1] = 1.1x[k] + 2

π
arctanu[k] (7)

is stabilized about the origin by the feedback lawu[k] =
−x[k]. What values canx[50] attain if 7.5 ≤ x[0] ≤ 8.5?

Table 2 shows results from the robust simulation usin
each of the three saturation approximations. Since the t
coarsest approximation, (3), does not account for the si
of the saturation, that model does not result in a stab
system. As shown in table 2, the simulation values diffe
greatly from the exact values.

For the 3-segment approximation, (4), which appea
to model the nonlinearity fairly well, some states approac
the origin and other states diverge. Model (5) shows that
states in the range7.5 ≤ x[0] ≤ 8.5 converge to the origin.
For this example, the 3-segment saturation approximati
is not sufficient; the 5-segment model is needed.
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Table 2:  Simulation Results for the Unstable System

Saturation Model minx[50] maxx[50]
Model (3) -280 2200
Model (4) -0.47 140
Model (5) -0.13 0.13

Exact 6.0 e-11 6.5 e-8

The results for models (4) and (5) demonstrate a
limitation of the modeling framework. Since the uncer-
tainty can enter as a constant offset, the simulation neve
converges to an equilibrium point, but always to a ball
around an equilibrium point. For model (4), this set is
−0.47 ≤ x ≤ 0.47. Even if x[0] = 0, the simulation result
would be|x[50]| ≤ 0.47. The size of this set is a function
of the dynamics around the fixed point and the size of the
model uncertainty. Model (5), which has much smaller
uncertainty, reaches the ball|x[50]| ≤ 0.13.

5.3 Example 3

A third example demonstrates multiresolution simulation.
Consider the nominally unstable system with a quantized
input

x[k + 1] = 1.9x[k] + q(u[k])
q(u) = u − (u + 0.05) mod 0.1 + 0.05. (8)

While q can be exactly represented as a PL mapping, it ha
10 PL regions for every unit of state space modeled. A PL
mapping valid for|x[k]| < 10 ∀k requires 200 PL regions.
A much simpler model for the quantizer is

q(x) = x + 0.05n (9)

Closing the loop with unity feedback and using approxi-
mation (9) for the quantizer gives

x[k + 1] = 0.9x[k] + 0.05n[k]

Simulating the initial condition set|x[0]| ≤ 100 for 1000
time steps gives the result|x[1000]| ≤ 0.50, the smallest
range attainable for this amount of uncertainty.
1
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A substantially better result can be obtained by changin
the quantizer approximation midway through the simulation
Another piecewise linear model for the quantizer is

q(x) =




x + 0.05n, x ≥ .55
0.5, 0.45x ≤ x < 0.55
0.4, 0.35x ≤ x < 0.45
0.3, 0.25x ≤ x < 0.35
0.2, 0.15x ≤ x < 0.25
0.1, 0.05x ≤ x < 0.15
0, −0.05x ≤ x < .05
0.1, −0.15x ≤ x < −0.05
0.2, −0.25x ≤ x < −0.15
0.3, −0.35x ≤ x < −0.25
0.4, −0.45x ≤ x < −0.35
0.5, −0.55x ≤ x < −0.45
x + 0.05n, x < −0.55

(10)

This model exactly represents the quantizer near the origi
and uses the same approximation as (9) for|x| > 0.55.

After running the first 100 steps of the simulation
using approximation (9), the range|x[100]| ≤ 0.503 is
obtained, roughly the smallest region attainable when usin
approximation (9). Since the region|x[100]| ≤ 0.503
is valid for any model of the system, it can be used to
initialize the simulation for a different model. Switching to
approximation (10) for remainder of the simulation gives
the result|x[1000]| ≤ 0.095. This range is less than one
fifth the size of the result when only model (9) is used.

The multiresolution simulation not only gives a better
result, but also greatly reduces computational cost. Whil
the same result could be obtained by using model (10
for the entire simulation, the computational cost is much
greater. By using (9) for the first 100 steps, about 2500
fewer linear programs are solved. Since the number o
linear programs solved grows asO(knl2), this savings is
even larger for more complex systems.

6 CONCLUSIONS

Piecewise linear modeling and robust simulation provid
a practical numerical framework for analyzing uncertain
nonlinear systems. Libraries of models for subsystem com
ponents are easily generated, and uncertainty is explicit
accounted for during the simulation process.

Multiresolution simulation that explicitly includes un-
certainty is demonstrated. As models are changed, potent
errors are accounted for and propagated through the sim
lation. Even for the simple demonstration system, dramat
reductions in computation are achieved.

While no guidelines for model selection are given, the
effects of poor decisions are shown. Results can vary grea
with only small changes in model accuracy. Methods fo
55
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systematically choosing the appropriate model for simulatio
are also being developed.
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