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ABSTRACT

We briefly describe genetic algorithms (GAs) and focu
attention on initial population generation methods for tw
dimensional knapsack problems.  Based on wo
describing the probability a random solution vector 
feasible for 0-1 knapsack problems, we propose a sim
heuristic for randomly generating good initial population
for genetic algorithm applications to two-dimensiona
knapsack problems.  We report on an experime
comparing a current population generation technique w
our proposed approach and find our proposed appro
does a very good job of generating good initia
populations.

1 INTRODUCTION

Genetic algorithms are search procedures inspired 
biology and the workings of natural selection.  Conceiv
by John Holland and his colleagues, GAs are now appl
in many diverse applications, for instance, mathematic
optimization, simulation parameterization, and real-tim
control.  The broad focus of this paper is GA applied 
optimization problems, and in particular initial populatio
generation methods for a GA.  Good initial population
facilitate a GA’s convergence to good solutions while po
initial populations can hinder GA convergence.  W
propose an approach for obtaining good populations in 
context of two-dimensional knapsack problems of th
following form:

Maximize  Σj Cj xj      

s.t. Σj Aij xj  < bi    i=1,2 (1)
xj  >  0  ∀ j

This paper is organized as follows.  Section 2 provid
a brief overview of GAs and section 3 discusses init
population generation methods for a GA.  Section 
suggests a new, heuristic approach to generating initial 
populations based on knowledge of the optimizatio
problem being solved.  Section 5 describes how we stu
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this approach while section 6 presents the results.  Final
section 7 summarizes this work and provides concludin
comments.

2 OVERVIEW OF GENETIC ALGORITHMS

The GA name “originates from the analogy between th
representation of a complex structure by means of a vec
of components, and the idea, familiar to biologists, of th
genetic structure of a chromosome” (Reeves, 1993).  
biology, natural selection reinforces characteristics mo
amenable to a species survival. Genes within th
chromosomes of the stronger members, corresponding
the more desirable characteristics, pass to subsequ
generations through the reproduction process.

This paradigm fits optimization applications.  Problem
solutions (phenotypes) are encoded (genotypes), usually
binary format (genes).  The set of solutions unde
consideration form a population with each solution
considered a chromosome.  The fitness of each membe
generally the functional value of the phenotype, althoug
specific applications may modify the fitness function, fo
example, to penalize problem constraint violation
(penalty-based fitness function) in constrained
optimization.

Fit chromosomes combine to produce chromosome
for subsequent populations.  Member pairs of th
population are selected for reproduction, usually based 
some function of their individual fitness value.  Gene
from each parent are combined according to som
predefined strategy to produce offspring (derivative
chromosomes).  The next generation is based on select
parents and offspring for survival again according to som
predefined strategy.  Non-selected chromosomes “die” a
are removed from consideration.

The fundamental concept in GA optimization
applications is that better solutions share “good” gen
combinations, or schema.  Better schema produce fitt
chromosomes in each generation and carry over during t
reproduction process.  Over many generations, the
schema dominate and yield a population containing th
best, possibly even the optimal, solutions.
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There is no guarantee a GA will converge to a
optimal solution, although experience suggests that
properly parameterized GA performs quite we
Parameters involved in a GA generally include:  populati
size, number of generations to simulate, mating select
method, diversification or mutation rate, and th
reproduction strategy.  Our focus is on generating init
populations.

The initial population for a GA is a set of solutions t
the optimization problem.  Just as an initial starting po
dictates the quality of a gradient-based non-line
optimization algorithm, the initial population can affec
GA solution convergence.  Some characteristics of a
population are objective function value, feasibility of th
solution, and level of infeasibility for any infeasible
solutions.

3 POPULATION GENERATION AND
REPAIR METHODS

There are a variety of approaches to generating ini
populations.  We consider a common approach and sug
a new approach

3.1 Random Generation

A common (often default) method of population generati
is random generation.  Each gene for a chromoso
assumes a value of 1 with probability p and a value of 0
with probability 1-p. Quite commonly Pr(X=1)=0.5.  This
approach is efficient and provides a population coveri
the feasible region, but the entire initial population may 
infeasible.  This means subsequent generations may rem
infeasible with feasible solutions evolving slowly.  A
fitness function penalizing infeasibility is common
However, random solutions can be far from feasible a
have large objective function values yielding poo
performance for penalty-based fitness functions (Erav
1999).

3.2 Generation Based on Problem Structure

We suggest using information about the problem struct
to arrive at better probability values for building initia
populations randomly.  This approach, and its motivati
are discussed next.

4 A NEW HEURISTIC FOR RANDOM
POPULATION GENERATION

We propose that initial populations for GA applications b
randomly generated with Pr(X=1) based on proble
knowledge.  In particular, we suggest finding some feasi
solution to the two-dimensional knapsack problem with
quick running heuristic and use the proportion of acti
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decision variables (Xj =1) as Pr(X=1).  This approach is
motivated by Reilly (1998).

4.1 Proportion Of Feasible Solutions
For Knapsack Problems

Reilly (1998) shows how to estimate the proportion o
feasible solutions for the 0-1 knapsack problem an
considers two-dimensional knapsack problems when th
coefficients of the constraints are correlated.  The ke
points of his effort are based on 0-1 knapsack problem
(equation (1) with i=1).

Let

b t a tj
j

= < <∑ , .0 1

Then

F a x t aj j j
jj

= − ∑∑
is a random variable asymptotically normally distributed
with mean µ µF An p t= −( )  and variance

σ σ µF A An p t t2 2 21 4= + − +(( ( )) / ) , where p is

Pr(X=1) (normally Pr(X=1)=0.5 and is used by Reilly
(1998)), t is the ratio used to establish the right-hand sid
values of a sample problem (the constraint slackne
measure), and µA and σA are the mean and standard
deviation of the distribution defined for the constraint
coefficient vector, A. The probability of randomly
generating a feasible solution is

Pr( ) ( / )F F F≤ = −0 Φ µ σ ,

where Φ is the cumulative distribution function for the
standard normal random variable (Reilly 1998).

Tables 1 and 2 provide the probability that a randoml
generated problem is feasible for a range of slackne
ratios, t, and Pr(X=1) for two different distributions.  (the
distributions in our experiment).  Three important points
are apparent.  First, t dictates the probability of a feasible
solution more than the constraint coefficient distribution
Second, tighter constraints mean using a smaller Pr(X=
to ensure a reasonable feasibility probability.  And finally
feasible solutions are easy to generate with loos
constraints.

If A 1~U(1,40) and A2~U(1,15) for (1) then the
probabilities in Tables 1 and 2 bound above the proportio
of random solutions feasible with respect to both
constraints.  However, correlation between thes
constraints affects these probabilities, and in fact onl
under perfect positive correlation are these bounds attain
(the constraints are identical).  Reilly (1998) shows that a
correlation decreases so does the probability a rando
solution is feasible for the problem.
4
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Table 1:  Probability of Feasible Random Solutions for
A~U(1,40)

Slackness Ratio - t
Pr(X=1) 0.30 0.40 0.50 0.60 0.70 0.80

0.10 1.00 1.00 1.00 1.00 1.00 1.00
0.15 1.00 1.00 1.00 1.00 1.00 1.00
0.20 0.98 1.00 1.00 1.00 1.00 1.00
0.25 0.84 1.00 1.00 1.00 1.00 1.00
0.30 0.50 0.97 1.00 1.00 1.00 1.00
0.35 0.18 0.83 1.00 1.00 1.00 1.00
0.40 0.04 0.50 0.97 1.00 1.00 1.00
0.45 0.00 0.19 0.81 1.00 1.00 1.00
0.50 0.00 0.04 0.50 0.96 1.00 1.00
0.55 0.00 0.01 0.20 0.80 0.99 1.00
0.60 0.00 0.00 0.05 0.50 0.95 1.00
0.65 0.00 0.00 0.01 0.21 0.79 0.99
0.70 0.00 0.00 0.00 0.06 0.50 0.94
0.75 0.00 0.00 0.00 0.01 0.22 0.78
0.80 0.00 0.00 0.00 0.00 0.07 0.50
0.85 0.00 0.00 0.00 0.00 0.01 0.23
0.90 0.00 0.00 0.00 0.00 0.00 0.08
0.95 0.00 0.00 0.00 0.00 0.00 0.02

Table 2: Probability of Feasible Random Solutions for
A~U(1,15)

Slackness Ratio - t
Pr(X=1) 0.30 0.40 0.50 0.60 0.70 0.80

0.10 1.00 1.00 1.00 1.00 1.00 1.00
0.15 1.00 1.00 1.00 1.00 1.00 1.00
0.20 0.98 1.00 1.00 1.00 1.00 1.00
0.25 0.84 1.00 1.00 1.00 1.00 1.00
0.30 0.50 0.97 1.00 1.00 1.00 1.00
0.35 0.18 0.83 1.00 1.00 1.00 1.00
0.40 0.04 0.50 0.97 1.00 1.00 1.00
0.45 0.00 0.19 0.82 1.00 1.00 1.00
0.50 0.00 0.04 0.50 0.96 1.00 1.00
0.55 0.00 0.01 0.19 0.80 0.99 1.00
0.60 0.00 0.00 0.05 0.50 0.95 1.00
0.65 0.00 0.00 0.01 0.21 0.79 0.99
0.70 0.00 0.00 0.00 0.05 0.50 0.94
0.75 0.00 0.00 0.00 0.01 0.22 0.78
0.80 0.00 0.00 0.00 0.00 0.06 0.50
0.85 0.00 0.00 0.00 0.00 0.01 0.23
0.90 0.00 0.00 0.00 0.00 0.00 0.07
0.95 0.00 0.00 0.00 0.00 0.00 0.02

4.2 Using Problem Information To Infer
Reasonable Probability Values

Idealistically, one might pre-process a problem, determi
the slackness ratio values, determine the interconstra
correlation, and compute a reasonable value for Pr(X=
This value provides an expected proportion of the decisi
variables to set to a value of 1.  We suggest an eas
approach. Solve the problem with a greedy heuristic, u
the ratio of active (Xj=1) to total decision variables as
Pr(X=1), and then randomly generate the initial populatio
Our conjecture is that this approach will yield a goo
portion of feasible solutions, and moreover these solutio
should be “good” both in the sense of objective functio
value and in terms of near-feasibility.
545
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5 THE EXPERIMENT

Discrete distributions were used to generate two
dimensional knapsack sample problems, specifically C 
U(1,100), A1 ~ U(1,40), and A2 ~ U(1,15).  Problem
correlation structure was controlled across the comple
range of feasible correlation structures (45 feasibl
correlation structures).  Additionally, four settings for the
right-hand side coefficients were considered: t1={0.3,
0.7} and t2={0.3, 0.7}.  A total of 180 problems were
generated. This generation scheme was used in H
(1996) so optimal solutions were available for the
problems generated.

For each problem, 100 solutions were generate
randomly and according to the proposed heuristic
Random numbers were synchronized between th
approaches. Each solution was evaluated and a level 
infeasibility determined, if the solution was in fact
infeasible. Of interest is the frequency with which eac
method yields infeasible solutions, the overall quality o
the solution generated, and how close to feasibility wer
infeasible solutions.  The heuristic of Toyoda (1975) wa
used to solve the problems to set Pr(X=1).

6 RESULTS

The proposed heuristic approach faired extremely well an
represents a reasonable approach for GA populatio
generation.  As Tables 1 and 2 suggest, the challenge is
produce good populations for the more difficult, tightly
constrained problems.  Table 3 summarizes how often ea
approach, the random and our proposed heuristic, produc
feasible solutions.

Table 3: Percentage Feasible Solutions Produced by
Each Approach

Approach

Slackness Random Heuristic
t1 = t2 = 0.3 0.0 % 20.2 %

t1 ≠ t2 0.1 % 6.7%
t1 = t2 = 0.7 100 % 41.5 %

The random approach, with Pr(Xj = 1) = 0.5, performs as
predicted by Tables 1 and 2.  The heuristic uses 
dynamically set Pr(Xj = 1) improving over the random
approach when constraints are tight although the approa
does yield more infeasible solutions when both constrain
are loose.

Table 3 results can be misleading since infeasibl
solutions vary by degree of infeasibility.  A GA employing
a penalty-based fitness measure may handle near-feasi
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solutions quite well.  Table 4 summarizes the infeasibil
levels using the following function for each constraint:

2,1,0,/max =
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Whenever t=0.3, random solutions are very infeasib
Infeasible heuristic solutions are close to feasible.  Th
better heuristic solutions facilitate a penalty-based fitne
function.

Table 4:  Average Infeasibility Ratios, fi, for Infeasible
Solutions

Approach
Random Heuristic

Slackness f1 f2 f1 f2

t1 = t2 = 0.30 0.67 0.68 0.29 0.29
t1 ≠ t2 0.34 0.33 0.27 0.25

t1 = t2 = 0.70 0.00 0.00 0.06 0.07

Solution quality is also measured by objective functio
value.  Table 5 summarizes the average objective func
value by constraint slackness settings.

Table 5:  Average Objective Function Values by Constra
Slackness Settings

t2 Values
t1 Values Approach 0.30 0.70

Random 2507.40 2491.96
0.30 Heuristic 1837.40 2255.64

Random 2557.11 2490.48
0.70 Heuristic 2270.49 3464.43

Since most (if not all) randomly generated solution
when either t1 = 0.3 or t2 = 0.3 are infeasible, the
corresponding objective function values are inflated (t
many Xj = 1).  In some cases, these values are not m
larger than the heuristic solution values, whose solutio
are feasible or close to feasibility.  When all constraints 
loose, the heuristic yields stronger solutions than t
random approach (higher objective function values, ve
close to feasibility), despite the 100% feasibility of th
random approach. This is due to the setting of Pr(Xj = 1)
values by the heuristic

Table 6 summarizes the heuristic’s Pr(Xj = 1) values
by constraint slackness settings.  When any constrain
tight, Pr(Xj = 1) is reduced.  Reilly’s (1998) formula
predicts a higher probability of attaining a feasible soluti
when Pr(Xj = 1) is reduced in this fashion.  The proportio
of feasible solutions attained agreed with this predicti
formula (correlation over 0.98 between achieved a
predicted proportion of feasible solutions).  Notice whe
constraints are loose, the heuristic produces a very h
546
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Pr(Xj = 1) value.  This causes some of those problems to b
infeasible, but as demonstrated those solutions are still ve
close to feasibility and yield very good objective function
values.

Table 6:  Average Pr(Xj = 1) Values by
Constraint Slackness Settings

t2 Values
t1 Values 0.30 0.70

0.30 0.366 0.454
0.70 0.442 0.693

Reilly shows that interconstraint correlation, ρ(A1 A2),
effects solution feasibility probabilities.  We examine the
effect of ρ(A1 A2) in Table 7.

Table 7: Infeasibility Ratios, fi, and Average Pr(Xj = 1)
Values by ρ(A1 A2) Setting

Target ρ(A1 A2) Values
-0.99 -0.49 0.0 0.49 0.99

f1 0.16 0.17 0.22 0.27 0.30
f2 0.12 0.18 0.20 0.27 0.30

Pr(Xj = 1) 0.43 0.47 0.49 0.52 0.53

As ρ(A1 A2) drops, problems get more difficult to
solve both in terms of proportion of feasibility (based on
Reilly (1998)) and in solution procedure performance (Hill,
1996).  As ρ(A1 A2) drops, the heuristic reduces Pr(Xj = 1)
values and actually reduces infeasibility ratios.  A
corresponding table for the random generation approac
would show all fi values around 0.33 and Pr(Xj=1)=0.5
throughout the table.

7 SUMMARY AND CONCLUSIONS

GAs are an increasingly popular heuristic method for
optimization applications and meta-heuristic applications
Reilly’s (1998) discussion of how problem structure effects
solution space density prompted the GA initial population
heuristic approach we propose.  Compared to defau
random generation methods, this heuristic performs
especially well.  The near-feasible solutions produced b
the heuristic, especially under the tougher conditions o
tight constraints and decreased correlation betwee
constraints, should be especially attractive to penalty-base
fitness function applications of GA.

A next logical step is to compare GA performance
using the initial population produced by our heuristic
against other initial population methods.  Our conjecture is
that this proposed heuristic will provide an initial
population of sufficient quality and diversity to produce
favorable convergence to good solutions.
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