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ABSTRACT In order to overcome this problem, researchers have
proposed the use of metamodels. The main objective of a
In this paper the use of metamodels to approximate the simulation metamodel is to accurately represent the
reverse of simulation models is explored. This purpose of relationship between inputs and outputs over wide ranges
the approach is to achieve the opposite of what a of interest, and to be more computationally efficient than
simulation model can do. That is, given a set of desired simulation (Kilmer, Smith, and Shuman 1997). If the
performance measures, the metamodels output a design t@imulation runs are time-consuming and expensive, the
meet management goals. The performance of severaladvantages of using a metamodel are evident. After the
neural network simulation metamodels was compared to metamodel has been built, there may not be a need to run
the performance of a stepwise regression metamodel inthe expensive and time consuming simulations, thus
terms of accuracy. It was found that in most cases, neuralproviding a quick way of answering "what if " type of
network metamodels outperform the regression questions.
metamodel. It was also found that a modular neural Two approaches have been used for developing
network performed the best in terms of minimizing the simulation  metamodels: the  direct  simulation
error of prediction. metamodeling approach, and the reverse simulation
metamodeling approach (Figure 1). When building the
1 INTRODUCTION metamodel using the direct approach, the inputs of the
simulation (design parameters) are used as inputs for the
System design/redesign is a complex process in which metamodel, and the outputs of the simulation (performance
models are used to make decisions on changes to existingneasures) are used as desired outputs for the metamodel.
or proposed systems. The goal of the design process is toWhen building a reverse simulation metamodel, the
design a system that meets or exceeds certain performanceutputs of the simulation (performance measures) are used
measures without violating any constraints. Simulation as inputs to the metamodel, and the inputs of the simulation
modeling is one of the most popular tools for the design (design parameters) are used as desired outputs of the
and analysis of complex systems. This popularity is due to metamodel. The advantage of using a reverse simulation
its flexibility, its ability to model systems more accurately, metamodel as a design tool is that the process is no longer
and its ability to model the time dynamic behavior of the iterative. The decision-maker inputs the required
system. With simulation modeling, however, the performance measures and the reverse metamodel outputs
relationships between the design parameters andthe necessary parameters to achieve those measures. The
performance measures are not explicitty known. graphical representation of both direct and reverse
Therefore, system design using simulation becomes a trial metamodeling is shown in Figure 1.
and error process in which a set of design parameters are  The objective of this paper is to develop a
used in the simulation model to predict a set of methodology for using simulation and neural networks to
performance measures. |If the performance measures aréuild a reverse-simulation metamodel that will be used as a
acceptable, a good design has been identified, otherwisedecision support tool when designing a new system or
the process is repeated until a satisfactory set of redesigning an existing one. This decision tool will
performance measures is achieved. Because of thesuggest the system’s design parameters when the required
iterative nature of this procedure, this process can be time performance measures are specified. In this paper several
consuming and expensive.
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Input Vector System Output Vector Domroese, M. 1990; Chryssolouris, G. and Domroese, M.
1991).

Chyssolouris, Lee, and Domroese (1990) and
Chyssolouris and Domroese (1991) explored the use of
neural networks for identifying the relative importance of

Simulation pertinent manufacturing criteria for given performance
i| — P Model | ” Y1) measures. The simulation model used in both papers is a job
shop. The simulation was performed five times, each time
with a different job shop configuration. A neural network

Real World
z| ’ System > PV

Forward ; ; ; :
Z| >  Simulation ) that usc_—zd the generalized delta rule was trained using the five
simulation runs. The performance measures were inputted
Metamodel . .
into the neural network and the network was trained to
achieve the job shop configuration associated with those
performance measures. Chyssolouris and Domroese
Reverse d th | K rf h f fi
< Simulation € v(x) compared the neural network performance to that of a first
Metamodel order linear regression. It was found that the neural network
outperformed the first order linear regression.
All variables are represented as Vectofs Mollaghasemi, LeCroy, and Georgiopoulos (1998)
x1 v applied a neural network metamodel to a real world
Y1(X) = y(X) +€4x) application involving the test operations of a major
Y4X) = y4(X)+ €4(x) semiconductor manufacturing plant. Given a set of desired
\ YA = V() +ex) + e4x) performance measures in terms of cycle time, WIP, and
Xlr: X +ee X) " ¢ estimati utilization of three different testers, the metamodel suggested
wherei(x) is the error of estimation a suitable design in terms of scheduling rules, and the number

Figure 1: Graphical and Mathematical Representation of Of each type of tester to achieve these objectives. The results
Direct and Reverse Simulation Metamodels of the metamodel were validated by comparing them with the

results obtained from the simulation model. The authors

neural network topologies are investigated and compared reported encouraging results.
to a stepwise regression metamodel. The performance
measure used is the normalized error of prediction. 3 EXPERIMENTAL DESIGN

2 RELATED WORK In order to demonstrate the effectiveness of using a reverse
metamodel as a decision support tool, a simulation of a

There has been many neural networks Applications in the Simple re-entrant manufacturing model with five machine

Industrial Engineering area. Ramesh Sharda (1998) cells running three different parts was created. Each part

summarized what has been done in the Operations Researcgoes through the following machine cell sequence: 1-2-3-

field until 1996. He referenced more than 140 papers using4-1-2-3-4-1-2-3-4-5  before  exiting the  system.

neural networks in industrial engineering applications. Much Exponential processing times were used to model the

work has also been done in the area of simulation and Processing times. The mean processing times for each part

artificial intelligence. Oren (1994) referenced 198 papers in can be found in Table 1.

the application of artificial intelligence and simulation. But

most of the work done was in the knowledge-based systems Table 1: The Mean Processing Times (in Minutes)

and simulation. Within the area of simulation and neural ~ for the Re-Entrant Model

networks two different areas of simulation metamodels have Cell [ Cell TCell TCelllCell 5

surfaced in the last decade: The direct simulation 1 2 3 4

metamodeling, and the reverse simulation metamodeling. In PartA Level 1 110 |8 14 | 12

this paper, we will only discuss the reverse simulation PartALevel2 |12 1 9 12 | 11

metamodels. For direct simulation metamodels, the reader is PartALevel3 |14 |10 | 12 | 10l 20

referred to Kilmer, Smith, and Shuman (1997) and Badiru,

and Sieger (1996). PartB Level1 |9 9 14 | 13
The use of neural networks as a metamodeling PartBlevel2 | 11 | 10 | 14 | 12

technique to do the reverse of simulation modeling has  |PartBlevel3 | 13 | 11 | 14 | 11] 20

been reported in three papers (Mollaghasemi, LeCroy, and  [PartClevell |11 |7 14 |13

Georgiopoulos 1998; Chyssolouris, G. Lee, M., and PartClevel2 | 13 | 8 | 14 | 12
PartClevel3 | 15 | 9 14 | 11 20
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The following is the list of inputs and outputs of the
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simulation:

INPUTS

1

Interarrival time: two levels were used (20 or
30 minutes)

2 Number of machines in cells 1, 2, 3, and 4:
three levels were used in each cell (2, 3, or 4
machines)

3 Number of machines in cell 5: two levels (1
or 2 machines)

4  Scheduling Policy: three levels were used
(First In First Out, lowest processing time, or
the part that is closest to completion)

OUTPUTS

1 Machine utilization of each of the five
machine cells (5 output variables)

2 Cycle time of each of the three parts (3 output
variables)

3 Average work in process inventory (WIP) ( 1

Although this model is comparatively simple when
compared with real world models, the experimental design
space of the above model consists of 972 data points.
Therefore, in a real life situation the number of possible
combinations could be much
computational time is still magnified by the fact that
multiple replications of each simulation run are required.

input

output variable)

3.1 Neural Network Metamodels

Several neural network topologies were investigated:

1

Backpropagation neural network with a
sigmoidal activation function using the delta
rule learning algorithm.

General regression neural network which is a
general purpose network paradigm used
mainly for system modeling and prediction.
Three different summation functions were
used: Eucledian, city block, and projection
summation function.

Modular neural network which consists of
several backpropagation networks competing
to learn different aspects of the problem.
Four different learning rules were used:
Quickprob, delta rule, delta bar delta, and
maxprob.

Learning vector quantization which is a
classification network which assigns vectors

to one of several classes. It consists of a

larger. The

Kohonen layer which learns and performs the
classification.

5 Radial basis function network which is a
general purpose network paradigm used
mainly for system modeling, prediction, and
classification. Three different summation
functions were used: Eucledian, city block,
and projection summation function

A total of 10 different topologies were examined (1
Backprobagation, 3 general regression networks, 4
modular neural networks, 1 learning vector quantization,
and 3 Radial basis function).

To build the metamodel, an orthogonal array
experimental design consisting of 18 data points was used.
For each setup 10 replication were made and the average of
the 10 replications were computed. The input-output data
set generated by the simulation was then used to train the
metamodel. The outputs of the simulation (machine
utilization of each of the five machine cells, cycle time of
each of the three parts, and average work in process
inventory (WIP)) were used as inputs when training the
neural network metamodels. The inputs to the simulation
(interarrival time, number of machines in cell 1, cell 2, cell
3, cell 4, and cell 5, and the scheduling Policy) were used
as outputs when training the neural network Metamodels
(Figure 2).

After training, the performances of the metamodels
were evaluated using all the 972 data points. All the data
points were used for evaluation to give a good
understanding of the generalization capabilities of the
metamodel. Generalization is the ability of the metamodel
to predict the output of a set of inputs that it was not
trained with. The mean square error of prediction was
calculated for all the responses.

Cell 1 machine
Utilization

Interarrival Time

Cell 2 machine

Utilization \ Number of machineg
in Celll
Cell 3 machine
Utilization ;
\ The Neural Numbiﬁrg;??chmes
Cell4amachine | —3 Network

Utilization

Number of machineg
in Cell 3

Cell 5 machine
Utilization

Number of machines
in Cell 4

Part 1 Cycle Time

Part 2 Cycle Time
Part 3 Cycle Time

wIP

Number of machines
in Cell 5

Schedulig Rule

Figure 2: The Reverse Simulation Metamodel
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3.2 Regression Metamodel —
ORadial Basis

The same data that was used for training the neural § 061 — Function

network metamodels was used to generate the regression] £ 05- ] D General

metamodels. A stepwise regression was used to generate 3 E — | Regression |

linear approximation of the each of the controllable factors 5 041

using the orthogonal array design of 18 data points. The S 034

outputs of the simulation were used as independent i

variables (¥) when fitting the regression metamodels. The § 0.2 1

inputs to the simulation were used as dependent variables T 0.1

(f(x)) when fitting the regression Metamodels. To fit the %

regression metamodel a linear stepwise regression model| = O = -— ——

was used. After fitting the regressions to the data points, § 25 § 25 § 25

the performance of the metamodels was evaluated using all 3 £ ‘§ 5 £ ‘§ S g ‘§

the available 972 data points. The mean square error of g € z £ € z u‘:j € z

prediction was calculated for all the responses. @ iz @

4 RESULTS Figure 4: The Learning Rule Contribution to the

Normalized Error of Prediction

It was found that the neural network metamodels (except for

Linear Vector Quntization and Radial Basis Function using a : :
Eucledian summation function) outperformed the stepwise C 06- DEES&%L?""S'S
regression metamodel. The modular neural network using S — los |
the delta learning rule performed the best in terms of L 051 — ] Rggfer:sion
prediction accuracy (Figure 3). It was also found that for the 3 0.4 ]
modular neural network and the backpropagation neural 5
network, the choice of the learning rule greatly affects the S 0.3
performance of the neural network (Figure 4). For the radial w
basis function, it was found that the network is not very 5 0.2
sensitive for the choice to the summation function. The S 014
general regression neural network was more sensitive to the %
choice of the summation function (Figure 5). z 0 p P p !
§Sc ¥S8c §Sc
538L oS82 88S
Modular $EE ZES SES
Liviodula E&;E’ -L—)U:)Lf U:j(?)lf
O Backpropagation
g Figure 5: The Summation Function Contribution to the
£ 0.80 - Normalized Error of Prediction for the General Regression
& 0.70 | ] and Radial Basis Function Neural Networks
L]
& 0.60 - .
= 050 | None of the metamodels were able to predict the type
B | of Scheduling Policy Used. The best correct classification
£ 040 - was 51%. Increasing the number of training data points to
2 0.30 - 36 points improved the correct classification rate to 66%.
& 0.20 4 Increasing the number of training points to 72 improved
= 0.10 - the correct classification rate to 71% (Figure 6). This
E ' ] indicates that the original number of data points used (18)
o 0.00 o o r:_ = was not enough to accurately predict the scheduling policy.
= oo E 5] Although, 18 points were enough to train the neural
= = = % network to recognize the quantitative data (number of
& = = = machines in each cell and interarrival time), they were not
y
enough to recognize the qualitative data (type of

Figure 3: The Normalized Prediction Error for the Neural Scheduling policy). This suggests that two neural networks
Network Metamodels and the Stepwise Regression may be needed for developing the metamodels for this

Metamodel
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simulation model: one to predict the quantitative data, and Barton, Russell R., Metamodels for Simulation Input-
the second to predict the qualitative data. Output Relations,Proceedings of the 1992 Winter
Simulation Conferenc&89 - 299

Barton, Russell R., Simulation Metamoddirpceedings
80% - of the 1998 Winter Simulation Conferenc&/ol. 1,
167 - 176
0%+ Choueiki, M. Hisham, Mount-Cambell, Clark A., and
E Ahalt, Stanley C., Building a Quasi Optimal Neural
8 60% Network to Solve the short-term Load Forecasting
ﬁ Problem, IEEE Transactions on Power Systems,
B %] November, 1997, Vol. 12 no.4, 1432-1439
- Choueiki, M. Hisham, and Mount-Cambell, Clark A,
E"O%” Training Data Development with the D-Optimality
O gl Criterion, under review for IEEE Transactions of
B Neural Network
E o0 | Chryssolouris, G. and Domroese M., The use of neural
E networks in determining operational policies for
P 100 manufacturing systemsJournal of Manufacturing
Systems]990, Vol. 10 no. 2, 166-175
% | | Chryssolouris, G. Lee, M., and Domroese M., Use of
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Fishwick, Paul A., Neural network models in simulation: A
comparison with traditional modeling approaches,
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Conference1989, 702-710

Hornik, Kurt, Multilayer Feedforward Networks are
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Vol. 2, 359-366

Hurrion, R., Using a Neural Network to Enhance the
Decision Making Quality of a Visual Interactive
Simulation Model,Journal of Operations Research
Society,1992. Vol. 43 no. 4, 333-341

Kelton, W. D., Sadowski, R. P., and Sadowski, D.
A.,Simulation with ArenaMcGraw-Hill 1998

Kilmer, Robert A., Application of neural networks to
combat simulationMath Comp Modeling1996, Vol.

23 no. 1, 91-99

Kilmer, Robert A., Smith, Alice E., and Shuman, Larry J.
Neural Networks as a Metalmodeling technique for
discrete event stochastic simulatiemder review for
Computers & Industrial Engineerin.1998

Kilmer, Robert A. Smith, Alice, and Shuman, Larry J., An
emergency department simulation and neural network
metamodel Journal of the society for health systems,
1997, Vol. 5 no. 3, 63-79

Kilmer, Robert A. and Smith, Alice, Using Artificial
Neural Networks to approximate a discrete event
stochastic simulation modelntelligent Engineering
Systems Through Artificial Neural Networks993,
Vol. 3, 631-636

Kleijnen, J., Regression metamodels for generalizing
simulation resultslEEE transactions on systems, man,
and cyberneticsl979, Vol. 9 no. 2, 93-96

Figure 6: The Effect of Increasing the Number of Training
Data on the Correct Scheduling Policy Classification

CONCLUSIONS

The purpose of this research was to provide a methodology
of how to build and examine a reverse simulation
metamodel. Thus future research is needed to determine
the best metamodel for other types of problems.
Preliminary results show that neural network metamodels
can outperform their regression counterparts.

Currently, our research is directed toward developing a
methodology for building a neural network metamodel
based on the type of design parameter, namely qualitative
or quantitative, and the level of complexity of the solution
surface. Our current research will provide a methodology
for choosing the neural network training and testing data
sets. The research will also provide a methodology for
training the neural network.
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