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ABSTRACT 1994b), and Jacobson et al. (1999) provide extensive

reviews of simulation optimization techniques including,
Discrete-event simulation models are often constructed so but not limited to, R&S and MCPs.
that an analyst may compare two or more competing R&S procedures are statistical methods specifically
design alternatives. This paper presents a survey of thedeveloped to select the best system or a subset that
literature for two widely-used statistical methods for contains the best system design from a sdét @mpeting
selecting the best design from among a finite sek of alternatives (Goldsman and Nelson 1994). In general,
alternatives: ranking and selection (R&S) and multiple these methods ensure the probability of a correct selection
comparison procedures (MCPs). A comprehensive survey at or above some user-specified level. MCPs specify the
of each topic is presented along with a summary of recent use of certain pairwise comparisons to make inferences in
unified R&S-MCP approaches. In addition, an example of the form of confidence intervals (Fu 1994a) about
the application of Nelson and Matejcik’'s (1995) combined relationships among all designs. In short, R&S provides

R&S-MCP procedure is given. the experimenter with the best system design while MCPs
provide information about the relationships among the

1 INTRODUCTION designs (e.g., how much better the best design is in
comparison to the alternatives).

The most common goal of discrete-event simulation For a general overview of R&S and MCPs, several

models is to choose the best system design from among asources exist. Law and Kelton (1991) provide an excellent

set of competing alternatives.Simulation optimization introduction to R&S with corresponding references to more

provides a structured approach to determine optimal input mathematically intense treatments. Likewise, Sanchez
parameters (i.e., the best system design), where optimality(1997) gives an overview of R&S with several sample
is measured by a function of (steady state or transient) scenarios and an extensive list of references. Goldsman
output performance measures associated with a simulation(1983) provides a good perspective of R&S as it stood in
model (Jacobson et al. 1999). In the 1970s and 1980s mostelation to simulation in the early 1980s. Wen and Chen
simulation optimization techniques were applicable when (1994) present single-stage sampling procedures for
the input parameters to be optimized were continuous. different MCPs. Goldsman and Nelson (1994, 1998)
These techniques were path search based, involvingprovide comprehensive state-of-the-art reviews of R&S
gradient estimation techniques (e.g., response surfaceand MCPs in simulation. Where possible, they attempt to
methodology, perturbation analysis) imbedded in a unify R&S and MCP perspectives. Goldsman et al. (1991)
stochastic approximation algorithm (Jacobson and compares R&S to MCPs and interactive analysis. In
Schruben 1989). Over the last decade, however, two addition, two excellent texts are available: Bechhofer et al.
statistical techniques, ranking and selection (R&S) and (1995) details R&S and provides practical hints for
multiple comparison procedures (MCPs), have gained practitioners while Hsu (1996) details the theory and
popularity in simulation optimization. These techniques application of MCPs.

are applicable when the input parameters are discrete and  The following notation will be used throughout this
the number of designs to be compared is both discrete anddiscussion:  LetY; represent thgth independent and
small (i.e., 2 to 20). The particular method that is identically distributed (i.i.d.) simulation output (replication
applicable is dependant upon the type of comparison or batch mean) of a performance measure fromitine
desired by the analyst and the properties of the simulation design alternative, far=1, 2, ... kandj =1, 2, ...,n. Let
output data. Jacobson and Schruben (1989), Fu (1994ay; = E[Y;] denote the expected value of the output from the
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ith design alternative and let® = Var[Y;] denote its very small, then the experimenter may view the
variance. Leyy < M < ... < Wy denote the ordered but ~ populations as essentially the same and not have a
unknown expected values for the outputs of tke preference between the two. To quantify this, delinthe
alternatives. LeY; = (Yy, Yg;, ..., Yij) be thek x 1 vector indifference zone. Ifyq — My < 9, the experimenter is

of outputs across all design alternatives for oujpanhd said to be indifferent to choosingy or py.q. Define the
assume tha¥,, Y, ... are i.i.d. with multivariate normal probability of correct selection as P{CS} =R > ), O
distribution Y; ~ N(i4, Z) where is the unknown mean  # k| Mg — Mg > 8} > P where , P} are pre-specified by

vector, B = (Mg, Mz, ..., HW)', and Z is the unknown the experimenter. Since P{CS} =Idould be achieved by
variance-covariance matrix. In addition, the use of the simply choosing a population at randomk &/ P < 1 is
subscript “-” indicates averaging with respect to that required.

subscript. For example, the average design alternative The original indifference zone R&S procedure
output performance measure value across all replicationsproposed by Bechhofer (1954) assumes unknown means,

(or batch means) is denoted dy = Y4 In. Hi, .-, t and known, commorvariance,c? for all i

The remainder of this paper is organized as follows: PoPulations i(= 1, ..., k). Bechhofer's procedure is a
Section 2 addresses R&S procedures (indifference zone,Single-stageprocedure.  That is, the total number of
subset selection, and other approaches). Section 3 cover@Pservations requiredy, is determineda priori by the
MCPs (paired-t, Bonferroni, all-pairwise comparisons; all- €Xperimenter's choice .of6{ P}. Spec.mcally, N =
pairwise multiple comparisons; multiple comparisons with [{Ckp-0/8)’0) where gp- is a constant defined in a table
a control; and multiple comparisons with the best). Section (see, for example, Bechhofer 1954) dndlis the ceiling
4 provides insight into R&S-MCP unification, including function of x. After takingN independent observations
combined R&S-MCP techniques. Section 5 presents an from each of thek populations, the population with the
application of Nelson and Matejcik's (1995) combined largest sample mean is selected as the best.

procedure. Conclusions and future directions for R&S and Indifference zone R&S procedures need not be single-

MCPs are provided in Section 6. stage. Indeed, following Bechhofer (1954), several articles
approach the problem asnaulti-stageproblem. That is,

2  RANKING AND SELECTION the experimenter makes a user-specified number of

observations, checks certain stopping criteria and then

Ranking and selection is a commonly prescribed method either continues sampling or stops and selects the best
for selecting the best system from among a set of system. Paulson (1964) and Bechhofer et al. (1968)
competing alternatives. The fundamentals for R&S were present such methodologies. The major disadvantage of
first proposed by Bechhofer (1954). A majority of the these approaches is the continued requirement for
work in R&S can be classified into two general Ccommon, known variance among populations. When a
approaches: indifference zone selection and subsetsimulation analyst is modeling a system that does not
selection. Indifference zone selection is treated in Section physically exist, it is often impossible to know the output

2.1, while Section 2.2 treats subset selection approachesperformance measure’s variance. In addition, modeling an
Section 2.3 treats those R&S procedures which fall outside existing system still may not allow the analyst to know the

of the two general approaches. output performance measure’'s variance because of the
potentially high cost or practical infeasibility of data
2.1 Indifference Zone Procedures collection. Moreover, even when the variance is known,

ensuring common variance across system designs may be

In 1954, Bechhofer introduced the concept of R&S. He difficult. For these reasons, modern indifference zone
describes a problem in which the goal is to select the R&S procedures typically requiresither equal nor known
population with the largest mean for some population variances.
statistic from a set ofk normal populations. This Although a small number of articles (e.g., Zinger and
population is referred to as the “best.” Typically, an St. Pierre 1958 and Zinger 1961) present procedures for
experimenter takes a certain number of observations fromunequal, but knownvariances, no articles presented an
each population (}j and selects the best population using indifference zone methodology which requiresither
statistics from these observations. Since the observationsequal nor knownvariances until Dudewicz and Dalal in
are realizations of random variables, it is possible that the 1975. Their research represented a major step forward in
experimenter will not select the best population. However, R&S methodology, making the application of indifference
if the best population is selected, the experimenter is thenzone techniques particularly suitable to discrete-event
said to have made the correct selection (CS). simulation. They present a two-stage procedure in which
In addition, an experimenter may be indifferent (at the experimenter chooses P, and n, wheren, is the
some level) in the selection of a population when two number of observations to be made during the first stage of
populations are nearly the same. That igigf — W) IS the procedure. The first stage variances are then used to
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determine the number of second stage observationsrequired equal and knownvariances among design
required. A weighted average of the first and second stagealternatives.  For this reason, subset selection R&S
sample means is then used to select the best system (i.eprocedures have rarely been applied to discrete-event
the system with the largest weighted average). Dudewicz simulation. However, Sullivan and Wilson (1989) present
(1976) presents the same procedure with applications toa procedure that allowsnknown and unequafariance, as
simulation. Rinott (1978) presents a modification to the well as the specification of an indifference zone. Although
second stage of Dudewicz and Dalal (1975) that in some this procedure makes subset selection more attractive for
cases yields a greater P{CS}, but may prescribe more total simulation, indifference zone procedures are still more
observations. popular. In most cases, an analyst wishes to determine the
Koenig and Law (1985) extend the indifference zone best system, not identify a subset containing the best (Ho et
approach for use as a screening procedure. They present al. 1992). In addition, if one wishes to identify a subset
method for selecting a subset of smguser-specified) of containing the best, specialized indifference zone
the k systems so that with probability at least, Fhe procedures allow tha priori specification of the subset’s
selected subset will contain the best system. The size (Koenig and Law 1985).
procedure for this method requires only the selection of a
different table constant when computing the second stage2.3 Other R&S Approaches
sample size as compared to Dudewicz and Dalal (1975).
They also present a slightly different screening procedure As R&S procedures have become more popular, several

with the goal of selecting the (user-specified) best &f researchers have attempted to model the problem in a
systems without regard to rank. This procedure requires different manner. Chen (1988) and Goldsman (1984a,
minor modifications to the definitions o and P for 1984b) both model the problem as that of selecting the
implementation. multinomial cell which has the largest underlying

It is interesting to note that the indifference zone probability. Chen focuses on subset selection problems
procedures discussed thus far select the best system as &sing this model while Goldsman focuses on indifference
univariate problem (i.e., with a single output measure of zone problems. Goldsman (1985) explores the use of
system performance). Obviously, an experimenter could standardized time series theory to determine variance
weight several output performance measures to form a estimators for R&S methodologies.
single measure of effectiveness (see, for example, Morrice More recently, Chen (1995) and Chen et al. (1996)
et al. 1998, Swisher 1999). However, Dudewicz and have formulated the R&S problem as an multi-stage
Taneja (1978) present a multivariate procedure which doesoptimization problem in which clearly inferior designs are
not require reduction to a univariate model. Goldsman discarded in the earlier stages. They use Chernoff bounds
(1987) presents extensions of Bechhofer’s original work to to estimate the gradient information and then apply the
multivariate (two-factor) models. Further extension of the steepest descent method to solve the problem. Chen et al.
multivariate procedure for R&S remains an open research (1997) extend this work by presenting a different method
area. for estimating the gradient information. Chen et al. (1998)

Gray and Goldsman (1988) provide an application of present a further extension of this work that accounts for
indifference zone R&S for choosing the best airspace simulation experiments with different system structures.
configuration for a major European airport. Goldsman Through numerical experimentation they find this
(1986) also provides a tutorial for those interested in the approach to be more efficient than Chen et al. (1997).

basics of the indifference zone approach. Chick (1997) presents a Bayesian analysis of selecting
the best simulated system. Inoue and Chick (1998)
2.2 Subset Selection Procedures compare Bayesian and frequentist approaches for selecting

the best system. Chick and Inoue (1998) extend Chick’s
In contrast to indifference zone procedures, Gupta (1956) (1997) work to the study of sampling costs and value of
presents a procedure for producing a subsedrafom size information arguments to improve the computational
that contains the best system, with user-specified efficiency of identifying the best system.
probability P without the specification of an indifference
zone (i.e.,d = 0). This procedure and others like it are 3 MULTIPLE COMPARISON PROCEDURES
known as subset selection R&S procedures. An
application of this procedure to motor vehicle fatality data In contrast to R&S procedures in which the goal is to make
can be found in Gupta and Hsu (1977). Gupta and Santnera decision, the goal of MCPs is to identify the differences
(1973) and Santner (1975) extend the original methodology between systems’ performance (not guarantee a decision).
to allow for user specification of a maximum size for the Four general classes of MCPs have been developed:
subset. Like the original indifference zone R&S pairedt, Bonferroni, all-pairwise comparisons is discussed
procedures, the original subset selection proceduresin Section 3.1, all-pairwise multiple comparisons (MCA) is
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covered in Section 3.2, multiple comparisons with a simultaneous confidence intervals in comparison to a fixed
control (MCC) is discussed in Section 3.3, and Section 3.4 control. This method is particularly useful when one

treats multiple comparisons with the best (MCB). Note wishes to compare design alternatives to the current design
that MCB is by far the most widely used of these (Bratley et al. 1987). Yang and Nelson (1991) provide a

methodologies. revision for MCC which allows the use of CRN and
control variates. Bofinger and Lewis (1992) expand the
3.1 Paired-t, Bonferroni, All-Pairwise Comparisons traditional MCC procedure by describing two-stage MCC

procedures. Damerdji and Nakayama (1996) describe a
Fu (1994a) refers to pairgd-Bonferroni, all-pairwise two-stage MCC procedure that allows different probability
comparisons as the brute force approach to MCPs. In thisdistributions among alternatives.
approach, one simply examines all possible pairwise
confidence intervals for system designs. That is, 3.4 MCB

—p)OMio-Yi) =+t ., //n for alli-j pairs. Here, L
(W H’? (Yio=Yid £t, Lalz Jn i 1P MCB procedures have their origin in Hsu (1984) and Hsu
there will be k(k-1)/2 confidence intervals constructed. 4,4 Nelson (1988). MCB's intent is similar to that of R&S
Due to the Bonferroni inequality, each confidence interval procedures: determine the best system from a set of
must be made at level (@)/[k(k-1)/2] in order to have @  ajternatives. MCB attacks this problem by forming

confidence interval of at least (- for all intervals simultaneous confidence intervals on the parameters
simultaneously. Clearly, for any more than 10 alternatives, p -max,,, g, fori =1,2, ..k TheseK-1) confidence

the width of the individual confidence intervals becomes . Is bound the diff b h d
quite large. Unfortunately, unless there is a clear winner intervals bound the difierence between the expecte

among the systems (i.e, a system with the confidence performance of each system and the best of the other

interval for the difference with all other pairs that is strictly systems. To apply MCB in discrete-event simulation, the

positive), one gains little inference from this procedure. s!mulat!on runs must be independently s_eeqled and the
simulation output must be normally distributed, or

3.2 MCA averaged so that the estimators used are (approximately)
' normally distributed.
Yang and Nelson (1989, 1991) and Nelson and Hsu

brute-force method, except that instead of constructing .(1993) present mod|f|cat|ons to the MCB procedure that
incorporate two variance reduction techniques (control

separate confidence intervals and using Bonferroni to - . .
b g variates and CRN). Their results suggest that using

determine an overall confidence bound, a simultaneous set ariance reduction. can lead to corect selections with
of confidence intervals at an overall }evel is formed. varl uctl ' Wi

Tukey's simultaneous confidence intervals are higher probabilities. Nelson’s (1993). robust MCB
_ procedure allows CRN under the assumption the variance-
(4 = 1) O(Yio=Y 1) £ 1y S/J/ for alli # j wheresiis covariance matrix exhibits sphericity (see Section 4).
Nakayama (1997b, 1999) presents a two-stage MCB
_ _ e _ procedure that also uses CRN for steady-state simulations,
uppera quantile of the studentized range distribution with  and shows that it is asymptotically valid. Goldsman and
k systems and(n-1) degrees of freedom (see tables in Ne|son (1990) present a MCB procedure for steady state
Hochberg and Tamhane 1987). _ simulation experiments. They also present results on how
Like the previous method, MCA requirdgk-1)/2 the batch size can impact the probability of a correct

confidence intervals be constructed. In contrast to the gglection when using the simulation technique of batch
brute force method, MCA obtains an overall simultaneous means. Nakayama (1995) presents general results on

confidence level with the same confidence half-widths for 555ying MCB  using batch means in steady-state
each pairwise comparison, while the brute-force method gjmulations. Yuan and Nelson (1993) discuss MCB
obtains a different confidence half-width for each pairwise procedures for steady-state simulations, where the
comparison and uses Bonferroni to establish a bound ongjmylation outputs are assumed to follow an auto-
the overall confidence. Yang and Nelson (1991) provide a regressive process with normally distributed residuals.
revision for MCA which allows the use of common pamerdji et al. (1996) present a procedure for selecting the

MCA has its origins in Tukey (1953) and is similar to the

the pooled sample standard deviation ang, ., is the

random numbers (CRN) and control variates. best system for transient simulations with known
variances. Nakayama (1996, 1997a) presents a single-
3.3 MCC stage MCB procedure that is asymptotically valid for

) ) ) steady-state simulations, hence extending the domain of
There are circumstances under which an experimenter gppjicability of previous MCB procedures. Kolonja et al.

wishes to compare a set of alternatives to a pre-defined (1993) describes an application of MCB using CRN to a
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4 UNIFIED PROCEDURES

Recently, there has been an effort to unify the fields of
R&S and MCPs. The first reference to such a movement is
Gupta and Hsu (1984). They propose a methodology for
simultaneously executing R&S and MCB. Matejcik and

Nelson (1993, 1995) establish a fundamental connection
between indifference zone procedures and MCB. The idea
of combining indifference zone approaches with MCB is

replications (or batch means) required. For this reason,
simultaneous R&S-MCB procedures that exploit CRN
should require fewer total observations to obtain the same
confidence level and whisker length (Nelson and Matejcik
1995).

ProcedureCY is based upon Clark and Yang's (1986)
indifference zone R&S procedure. As one of the few R&S
procedures that allows CRN, Clark and Yang (1986) use
the Bonferroni inequality to account for the dependence

appealing to the simulation analyst. Such an approach notinduced by CRN. It is therefore a conservative procedure

only selects the best system with pre-specified confidence,
but it provides inferences about the relationships between
systems which may facilitate decision-making based on
secondary criteria that are not reflected in the output
performance measure selected.

Nelson and Matejcik (1995) show that most
indifference zone procedures can simultaneously provide
MCB confidence intervals with the width of the intervals
(whisker length) corresponding to the indifference zone.
Therefore, both indifference zone selection and MCB
inference can be derived from the same experiment with a
pre-specified MCB whisker lengthy = 8. They describe
four R&S-MCB procedures which depend on having
normally distributed data, but do not require known or
equal variance:

1. Rinott's Procedure (Procedur,

2. Dudewicz and Dalal's Procedure (Procedure
DD),

3. Clark and Yang's Procedure (Proced@¥),
and

4. Nelson and Matejcik's Procedure (Procedure
NM).

ProcedureR is an extension of Rinott’'s (1978) two-
stage indifference zone R&S procedure as described in
Section 2. It requires, (whereny is the first-stage sample
size) i.i.d. samples from each of theindependently-
simulatedsystems. The marginal sample variance for each
system is then computed and used to determine the final
sample size for each systeM,(fori =1, 2, ...,K). After
takingN; — ny additional i.i.d. observations from each of the
k systems, independent of the first-stage samples and

that typically prescribes more total observations than are
actually necessary to make a correct selection (Nelson and
Matejcik 1995). Like Procedur&®, ProcedureCY is
performed in two stages. In the first stage, i.i.d. samples
from each of thek systems are takemsing CRN across
systems The sample variances of the differences are then
used to compute the final sample sikg(note thatN does

not vary across systems). After taking the remaiming

ny i.i.d. observations, again using CRN across systems, the
system with the largest sample mean is selected as best and
the MCB confidence intervals are formed.

Nelson and Matejcik (1995) observe that Procedure
CY can be effective in reducing the total number of
samples required to make a correct selection in comparison
with Procedure® andDD. However, they also note that
the benefit gained from using Proced@¥ is diminished
when the number of systems to be compakeds large.
This is because the conservatism of the procedure from the
Bonferroni inequality increases ksncreases and, at some
point, overwhelms the benefit induced by CRN. To
overcome this problem, they present Procediie

ProcedureNM is motivated by Nelson’s (1993) robust
MCB procedure. Since this procedure will be used to
illustrate the application of R&S and MCPs in Section 5, it
will be treated in greater detail than the previous
procedures. ProcedumdM assumes that the unknown
variance-covariance matrig, exhibits a structure known
as sphericity Sphericity implies that the variances of all
pairwise differences across systems are equal, even though
the marginal variances and covariances may be unequal.
Sphericity generalizesompound symmetryNelson and
Matejcik 1995). Several researchers have proposed that
compound symmetry accounts for the variance reduction

independent of the other second-stage samples, the systeneffects of CRN (see Tew and Wilson 1994, Nozari et al.
with the largest overall sample mean is selected as best. In1987, and Schruben and Margolin 1978 for more details).

addition, MCB confidence intervals op, —max;,; u; are

formed. Likewise, Procedui2D (based on Dudewicz and

Dalal 1975) is performed in the same manner with the only
difference being in the calculation of the sample means.
While Procedure® andDD provide both R&S selection

and MCB inference, their requirement for independence
among all observations precludes the use of CRN. The
total sample size required to obtain the desired confidence

level is dependent on the sample variances of the systems.

In particular, the larger the sample variance, the more
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Procedurd\M is valid wherns satisfies sphericity, however
Nelson and Matejcik (1995) show it to be extremely robust
to departures from sphericity. The procedure is as follows:

1. Let

is

Specify w (w
g= Tk(}f(llz—l)(no -1),050 1

the (lea)-quantile of the maximum of a
multivariate t random variable withk-1

dimensions, K-1)(no-1) degrees of freedom,
and common correlation 0.50.

0), a, and ny.

(1-a)
where T, 1y ng-1,050
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2. Takeiid.sample¥,,Y,,....Y,,, from each of the
k competing systemssing CRN across systems
3. Compute the sample variance of the difference
under the condition of sphericity as
S? = 2515 Y (Y — Yo=Yy + Y
(k=-D(n-2)
4. Compute the final required sample size (constant
for all k alternatives) as
N = max{n,, [{gSw)?0}.
5. Take N — ny additional i.i.d. observations from
each system, using CRN across systems.
6. Compute the overall sample means for each
system as
YiD:%Z?:lYij fori=1,2, ..k
7. Select the system with the largeét as the best
alternative.
8. Simultaneously, form the MCB confidence
intervals as

1, = maxp; O[=(Yio=max jo=w)", (Yio=maxY o+ w) ]
J# j#i j#
fori=1,2,...k
where x = min{0, x} andx" = max{0,x}.

(1-a)

Note that the value off,Z iy -10s0o IN Step 1 of

ProcedureNM can be derived from Table 4 of Hochberg
and Tamhane (1987) or Table B.3 of Bechhofer et al.
(1995). For values that fall outside of the tables, the
FORTRAN program of Dunnett (1989) can be used.

Nelson and Matejcik (1995) report results that suggest
that ProcedurdNM is superior to Procedurd® DD, and
CYin terms of the total observations required to obtain the
desired confidence level. ProcediN®!s only potential
drawback is that the assumption of sphericity may not be
satisfied (either exactly or approximately) in many
situations (Nelson and Matejcik 1995). To evaluate the
procedure’s robustness to departures from sphericity,
Nelson and Matejcik (1995) performed an empirical study.
They found that when the desired P{CS} = 0.95, the actual
probability attained ranged from 0.88 to 1.0 with a mean of
0.94. Provided the assumption of the data’s normality is
not significantly violated, this performance suggests that
the procedure is sufficiently robust for use in practice.
They suggest that the analyst consider slightly inflating the
nominal coverage probability (@) to ensure adequate
coverage. They also conclude that even when slightly
inflating the nominal coverage probability, Procediid
should still outperform Procedur€Y in terms of the
required sample size.
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5 APPLICATION OF PROCEDURE NM

Combined R&S-MCB procedures are more attractive for
use in simulation optimization than using either R&S or
MCB individually since combined procedures provide both
R&S selection and MCB inference with little or no
additional computational overhead. Proceduik&(Nelson

and Matejcik 1995) is the most efficient of the existing
combined procedures. For this reason, Swisher (1999)
selects it as the simulation optimization technique to apply
to the determination of the optimal clinic design for a two-
physician family practice clinic from among a group of
seventeen competing alternative designs. Clinic design
optimality is defined in terms of a multiattribute
performance measure referred to as the clinic effectiveness
(CE) measure. This is a scalar measure derived from
several clinic output performance measures encompassing
both clinic profit (revenues — expenses) and patient service
levels (e.g., amount of patient waiting). In general, clinic
profit is penalized for poor patient service.

Procedure NM allows the specification of an
indifference zone (which also specifies the MCB whisker
length,w). A value ofd =w = 10 was used to select the
optimal clinic design from among the seventeen competing
alternatives. Since a P{CS} = () = 0.95 was desired, a
more conservative value of 0.03 was used, as
suggested by Nelson and Matejcik (1995). Gingr 30,

w =& = 10, anda = 0.03, g =T %" . =2.7910(as

16,464,0.50

derived from Dunnett’'s 1989 procedure). The sample
variance under the condition of sphericif, is 882.80
andN = max{30, {{[gSw)[} = 69. Therefore, 39N — ng)
observations were generated for each of the seventeen
clinic designs by simulating 417 clinic days (27 deleted
transient observations + 390 usable steady-state
observations) using CRN across designs and forming 39
batches of sizdh = 10. Using the formulas provided in
Section 4, the overall sample means for the CE measure of
each design alternative was computed and the MCB
intervals formed (see Table 1).

ProcedureNM selects clinic design 4 as the best clinic
design. From a R&S perspective, this means that with
probability greater than or equal to 0.97, clinic design 4 has
meanj, within 8 = 10 of the design with the true largest
mean, ly;;.  Examination of the MCB intervals provides
inferences on the (assumed) superiority of design 4.
Interestingly, four other designs (7, 8, 9, and 12) have
MCB intervals that contain 0. This means, from an MCB
perspective, there is no one clearly superior design.
Designs 4, 7, 8, 9 and 12 are all clearly superior to the
remaining systems whose upper MCB bound is 0, however
there is no clear winner among them. Note that had one
design possessed a lower MCB bound of 0, while the rest
were upper-bounded by 0, then that design would have
been selected as best by MCB.
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Table 1: Overall Sample Means and MCB Results for  clinical decision-maker to choose clinic design 7, despite

Procedurd\M the fact that clinic design 4 was selected as the best by
B Lower Upper ProcedureNM's R&S result. If only a R&S approach had
Design Yio MCB ?D_ max\=(jm MCB been used to evaluate the clinic designs, the clinical
Limit j#i Limit decision-maker would have selected an excellent design in
1 388.17] -28.00 18.00 0 terms of CE. However, that choice may cost the clinic
5 392 41| 23.76 13.76 0 $140 per day in proﬁt cor_npared to an equally good (from
3 30418 -21.99 11.99 0 an MCB perspective) cho_lce. In this case, the value of _the
a 206171 976 024 1024 gg\p/)ilgcl?st!on of a combined R&S-MCB procedure is
5 380.70| -35.47 -25.47 0
6 386.07| -30.10 -20.10 0 6 CONCLUSIONS
7 405.93| -10.24 -0.24 9.76
8 398.74| -17.43 -7.43 2.57 Ranking and selection and multiple comparison procedures
9 405.32| -10.85 -0.85 9.15 provide excellent tools for selecting the best lof
10 | 382.72] -33.45 -23.45 0 competing alternatives in discrete-event simulation. R&S
11 381.11| -35.06 -25.06 0 approaches allow the simulation analyst to screen
12 401.98| -14.19 -4.19 5.81 alternatives so that he/she may fully study a subset of size
13 392.53| -23.65 -13.65 0 m. They also allow the analyst to choose the bedt of
14 392.07| -24.10 -14.10 0 alternatives, given an indifference zone, at or above a user-
15 393.78| -22.39 -12.39 0 specified probability. MCPs provide inference about the
16 378.67| -37.50 -27.50 0 relationships among alternatives. The typical simulation
17 378.28| -37.90 -27.90 0 analyst would likely benefit most from applying the unified

R&S-MCB procedures proposed by Matejcik and Nelson

One of the benefits of using a combined R&S-MCB (1993, 1995) and Nelson and Matejcik (1995). These
procedure is that the analyst gains inferences on systemgdrocedures allow the analyst to select the best system and
other than the best, which may lead to the selection of angain insight about how much better the best is in
inferior system (if it is not inferior by much) based on comparison to the rest of the alternatives.  Unified
some secondary criteria not reflected in the performance methodologies such as these should dominate the R&S and
measure of interest (Matejcik and Nelson 1993). Although MCP literature in the future. In addition, further research
profit is a component of the performance measure usedin the area of multivariate R&S procedures would be
(CE measure), no real inference on clinic proﬁt can be beneficial for those situations in which the analyst cannot
made from examining the CE measure. Therefore, a €asily reduce the performance measures to a univariate
decision-maker would likely be interested in examining measure. Unfortunately, it appears there is no current
clinic profit as a measure separate from the CE measure forsignificant research being done in this area.
the five clinic designs whose MCB interval covers zero.

Table 2 provides the mean daily clinic profit (without any REFERENCES
patient service penalties) for each of the five best clinic

designs. Bechhofer, R.E. 1954. A single-sample multiple decision
procedure for ranking means of normal populations
Table 2: Mean Daily Clinic Profit for the Five Best with known variances. Annals of Mathematical
Clinic Designs Statistics25:16-39.
— - . - Bechhofer, R.E., J. Kiefer, and M. Sobel. 1968.
Clinic Design Mean Daily Profit (3) Sequential Identification and Ranking Procedures
4 851.92 The University of Chicago Press, Chicago, lllinois.
’ 990.78 Bechhofer, R.E., T.J. Santner, and D.M. Goldsman. 1995.
8 931.89 Design and Analysis of Experiments for Statistical
9 833.88 Selection, Screening, and Multiple Comparisodehn
12 972.08 Wiley & Sons, Inc., New York.
Bofinger, E. and G.J. Lewis. 1992. Two-stage procedures
Note that clinic design 7 produces approximately $140 for multiple comparisons with a controlAmerican
per day more clinic profit than the design selected as the  journal of Mathematical and Management Sciences
best (clinic design 4). In addition, clinic design 7’s overall 12(4): 253-275.

sample mean is less than 25 cents less than design 4's
overall sample mean (see Table 1). In short, the MCB
inference provided by ProcedumdM would lead the
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