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ABSTRACT

Discrete-event simulation models are often constructed
that an analyst may compare two or more compet
design alternatives.  This paper presents a survey of 
literature for two widely-used statistical methods fo
selecting the best design from among a finite set ok
alternatives:  ranking and selection (R&S) and multip
comparison procedures (MCPs).  A comprehensive sur
of each topic is presented along with a summary of rec
unified R&S-MCP approaches.  In addition, an example
the application of Nelson and Matejcik’s (1995) combine
R&S-MCP procedure is given.

1 INTRODUCTION

The most common goal of discrete-event simulati
models is to choose the best system design from amon
set of competing alternatives.  Simulation optimization
provides a structured approach to determine optimal in
parameters (i.e., the best system design), where optima
is measured by a function of (steady state or transie
output performance measures associated with a simula
model (Jacobson et al. 1999).  In the 1970s and 1980s m
simulation optimization techniques were applicable wh
the input parameters to be optimized were continuo
These techniques were path search based, involv
gradient estimation techniques (e.g., response surf
methodology, perturbation analysis) imbedded in 
stochastic approximation algorithm (Jacobson a
Schruben 1989).  Over the last decade, however, t
statistical techniques, ranking and selection (R&S) a
multiple comparison procedures (MCPs), have gain
popularity in simulation optimization.  These technique
are applicable when the input parameters are discrete 
the number of designs to be compared is both discrete 
small (i.e., 2 to 20).  The particular method that 
applicable is dependant upon the type of comparis
desired by the analyst and the properties of the simulat
output data.  Jacobson and Schruben (1989), Fu (19
492
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1994b), and Jacobson et al. (1999) provide extens
reviews of simulation optimization techniques including
but not limited to, R&S and MCPs.

R&S procedures are statistical methods specifical
developed to select the best system or a subset t
contains the best system design from a set of k competing
alternatives (Goldsman and Nelson 1994).  In gener
these methods ensure the probability of a correct select
at or above some user-specified level.  MCPs specify t
use of certain pairwise comparisons to make inferences
the form of confidence intervals (Fu 1994a) abou
relationships among all designs.  In short, R&S provide
the experimenter with the best system design while MC
provide information about the relationships among th
designs (e.g., how much better the best design is 
comparison to the alternatives).

For a general overview of R&S and MCPs, sever
sources exist.  Law and Kelton (1991) provide an excelle
introduction to R&S with corresponding references to mo
mathematically intense treatments.  Likewise, Sanch
(1997) gives an overview of R&S with several sampl
scenarios and an extensive list of references.  Goldsm
(1983) provides a good perspective of R&S as it stood 
relation to simulation in the early 1980s.  Wen and Che
(1994) present single-stage sampling procedures 
different MCPs.  Goldsman and Nelson (1994, 199
provide comprehensive state-of-the-art reviews of R&
and MCPs in simulation.  Where possible, they attempt 
unify R&S and MCP perspectives.  Goldsman et al. (199
compares R&S to MCPs and interactive analysis. 
addition, two excellent texts are available:  Bechhofer et 
(1995) details R&S and provides practical hints fo
practitioners while Hsu (1996) details the theory an
application of MCPs.

The following notation will be used throughout this
discussion:  Let Yij represent the jth independent and
identically distributed (i.i.d.) simulation output (replication
or batch mean) of a performance measure from the ith
design alternative, for i = 1, 2, …, k and j = 1, 2, …, n.  Let
µi = E[Yij] denote the expected value of the output from th
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ith design alternative and let σi
2 = Var[Yij] denote its

variance.  Let µ[1] < µ[2] < … < µ[k] denote the ordered bu
unknown expected values for the outputs of the k
alternatives.  Let Yj = (Y1j, Y2j, …, Ykj)´ be the k x 1 vector
of outputs across all design alternatives for output j and
assume that Y1, Y2, … are i.i.d. with multivariate normal
distribution Yj ~ N(µµµµ, ΣΣΣΣ) where µµµµ is the unknown mean
vector, µµµµ = (µµµµ1, µµµµ2, …, µµµµk)´, and ΣΣΣΣ is the unknown
variance-covariance matrix.  In addition, the use of t
subscript “·” indicates averaging with respect to th
subscript.  For example, the average design alterna
output performance measure value across all replicati
(or batch means) is denoted by nYY n

j iji /1∑= =⋅ .

The remainder of this paper is organized as follow
Section 2 addresses R&S procedures (indifference zo
subset selection, and other approaches).  Section 3 co
MCPs (paired-t, Bonferroni, all-pairwise comparisons; a
pairwise multiple comparisons; multiple comparisons wi
a control; and multiple comparisons with the best).  Sect
4 provides insight into R&S-MCP unification, including
combined R&S-MCP techniques.  Section 5 presents 
application of Nelson and Matejcik’s (1995) combine
procedure.  Conclusions and future directions for R&S a
MCPs are provided in Section 6.

2 RANKING AND SELECTION

Ranking and selection is a commonly prescribed meth
for selecting the best system from among a set 
competing alternatives.  The fundamentals for R&S we
first proposed by Bechhofer (1954).  A majority of th
work in R&S can be classified into two genera
approaches:  indifference zone selection and sub
selection.  Indifference zone selection is treated in Sect
2.1, while Section 2.2 treats subset selection approac
Section 2.3 treats those R&S procedures which fall outs
of the two general approaches.

2.1 Indifference Zone Procedures

In 1954, Bechhofer introduced the concept of R&S.  H
describes a problem in which the goal is to select 
population with the largest mean for some populati
statistic from a set of k normal populations.  This
population is referred to as the “best.”  Typically, a
experimenter takes a certain number of observations fr
each population (Yij) and selects the best population usin
statistics from these observations.  Since the observat
are realizations of random variables, it is possible that 
experimenter will not select the best population.  Howev
if the best population is selected, the experimenter is th
said to have made the correct selection (CS).

In addition, an experimenter may be indifferent (
some level) in the selection of a population when tw
populations are nearly the same.  That is, if µ[k] – µ[k-1] is
493
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very small, then the experimenter may view the
populations as essentially the same and not have 
preference between the two.  To quantify this, define δ, the
indifference zone.  If µ[k] – µ[k-1] < δ, the experimenter is
said to be indifferent to choosing µ[k] or µ[k-1].  Define the
probability of correct selection as P{CS} = P{µ[k] > µ[i], ∀ i
≠ k | µ[k] – µ[ i] > δ} > P* where {δ, P*} are pre-specified by
the experimenter.  Since P{CS} = 1/k could be achieved by
simply choosing a population at random, 1/k < P* < 1 is
required.

The original indifference zone R&S procedure
proposed by Bechhofer (1954) assumes unknown mean
µ1, …, µk, and known, common variance, σ2, for all i
populations (i = 1, …, k).  Bechhofer’s procedure is a
single-stage procedure.  That is, the total number of
observations required, N, is determined a priori by the
experimenter’s choice of {δ, P*}.  Specifically, N =
(ck,P*σ/δ)2, where ck,P* is a constant defined in a table
(see, for example, Bechhofer 1954) and x is the ceiling
function of x.  After taking N independent observations
from each of the k populations, the population with the
largest sample mean is selected as the best.

Indifference zone R&S procedures need not be single
stage.  Indeed, following Bechhofer (1954), several article
approach the problem as a multi-stage problem.  That is,
the experimenter makes a user-specified number o
observations, checks certain stopping criteria and the
either continues sampling or stops and selects the be
system.  Paulson (1964) and Bechhofer et al. (1968
present such methodologies.  The major disadvantage 
these approaches is the continued requirement fo
common, known variance among populations.  When 
simulation analyst is modeling a system that does no
physically exist, it is often impossible to know the output
performance measure’s variance.  In addition, modeling a
existing system still may not allow the analyst to know the
output performance measure’s variance because of th
potentially high cost or practical infeasibility of data
collection.  Moreover, even when the variance is known
ensuring common variance across system designs may 
difficult.  For these reasons, modern indifference zone
R&S procedures typically require neither equal nor known
variances.

Although a small number of articles (e.g., Zinger and
St. Pierre 1958 and Zinger 1961) present procedures f
unequal, but known variances, no articles presented an
indifference zone methodology which requires neither
equal nor known variances until Dudewicz and Dalal in
1975.  Their research represented a major step forward 
R&S methodology, making the application of indifference
zone techniques particularly suitable to discrete-even
simulation.  They present a two-stage procedure in whic
the experimenter chooses δ, P*, and n0 where n0 is the
number of observations to be made during the first stage 
the procedure.  The first stage variances are then used 
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determine the number of second stage observati
required.  A weighted average of the first and second st
sample means is then used to select the best system 
the system with the largest weighted average).  Dudew
(1976) presents the same procedure with applications
simulation.  Rinott (1978) presents a modification to t
second stage of Dudewicz and Dalal (1975) that in so
cases yields a greater P{CS}, but may prescribe more t
observations.

Koenig and Law (1985) extend the indifference zo
approach for use as a screening procedure.  They prese
method for selecting a subset of size m (user-specified) of
the k systems so that with probability at least P*, the
selected subset will contain the best system.  T
procedure for this method requires only the selection o
different table constant when computing the second st
sample size as compared to Dudewicz and Dalal (197
They also present a slightly different screening proced
with the goal of selecting the m (user-specified) best of k
systems without regard to rank.  This procedure requi
minor modifications to the definitions of δ and P* for
implementation.

It is interesting to note that the indifference zon
procedures discussed thus far select the best system 
univariate problem (i.e., with a single output measure 
system performance).  Obviously, an experimenter co
weight several output performance measures to form
single measure of effectiveness (see, for example, Mor
et al. 1998, Swisher 1999).  However, Dudewicz a
Taneja (1978) present a multivariate procedure which d
not require reduction to a univariate model.  Goldsm
(1987) presents extensions of Bechhofer’s original work
multivariate (two-factor) models.  Further extension of th
multivariate procedure for R&S remains an open resea
area.

Gray and Goldsman (1988) provide an application 
indifference zone R&S for choosing the best airspa
configuration for a major European airport.  Goldsma
(1986) also provides a tutorial for those interested in 
basics of the indifference zone approach.

2.2 Subset Selection Procedures

In contrast to indifference zone procedures, Gupta (19
presents a procedure for producing a subset of random size
that contains the best system, with user-specifi
probability P* without the specification of an indifference
zone (i.e., δ = 0).  This procedure and others like it ar
known as subset selection R&S procedures.  
application of this procedure to motor vehicle fatality da
can be found in Gupta and Hsu (1977).  Gupta and San
(1973) and Santner (1975) extend the original methodolo
to allow for user specification of a maximum size for th
subset.  Like the original indifference zone R&
procedures, the original subset selection procedu
494
s
e

.e.,
z
to

e
al

t a

e
a
e
).
e

s

s a
f
d
a
e

s

h

f

e

)

er
y

s

required equal and known variances among design
alternatives.  For this reason, subset selection R&
procedures have rarely been applied to discrete-eve
simulation.  However, Sullivan and Wilson (1989) presen
a procedure that allows unknown and unequal variance, as
well as the specification of an indifference zone.  Althoug
this procedure makes subset selection more attractive 
simulation, indifference zone procedures are still mor
popular.  In most cases, an analyst wishes to determine 
best system, not identify a subset containing the best (Ho
al. 1992).  In addition, if one wishes to identify a subse
containing the best, specialized indifference zon
procedures allow the a priori specification of the subset’s
size (Koenig and Law 1985).

2.3 Other R&S Approaches

As R&S procedures have become more popular, seve
researchers have attempted to model the problem in
different manner.  Chen (1988) and Goldsman (1984
1984b) both model the problem as that of selecting th
multinomial cell which has the largest underlying
probability.  Chen focuses on subset selection problem
using this model while Goldsman focuses on indifferenc
zone problems.  Goldsman (1985) explores the use 
standardized time series theory to determine varian
estimators for R&S methodologies.

More recently, Chen (1995) and Chen et al. (1996
have formulated the R&S problem as an multi-stag
optimization problem in which clearly inferior designs are
discarded in the earlier stages.  They  use Chernoff boun
to estimate the gradient information and then apply th
steepest descent method to solve the problem.  Chen et
(1997) extend this work by presenting a different metho
for estimating the gradient information.  Chen et al. (1998
present a further extension of this work that accounts f
simulation experiments with different system structures
Through numerical experimentation they find this
approach to be more efficient than Chen et al. (1997).

Chick (1997) presents a Bayesian analysis of selectin
the best simulated system.  Inoue and Chick (199
compare Bayesian and frequentist approaches for select
the best system.  Chick and Inoue (1998) extend Chick
(1997) work to the study of sampling costs and value o
information arguments to improve the computationa
efficiency of identifying the best system.

3 MULTIPLE COMPARISON PROCEDURES

In contrast to R&S procedures in which the goal is to mak
a decision, the goal of MCPs is to identify the difference
between systems’ performance (not guarantee a decisio
Four general classes of MCPs have been develope
paired-t, Bonferroni, all-pairwise comparisons is discusse
in Section 3.1, all-pairwise multiple comparisons (MCA) is
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covered in Section 3.2, multiple comparisons with 
control (MCC) is discussed in Section 3.3, and Section 3
treats multiple comparisons with the best (MCB).  No
that MCB is by far the most widely used of thes
methodologies.

3.1 Paired-t, Bonferroni, All-Pairwise Comparisons

Fu (1994a) refers to paired-t, Bonferroni, all-pairwise
comparisons as the brute force approach to MCPs.  In t
approach, one simply examines all possible pairwi
confidence intervals for system designs.  That i

ntYY njiji /)()( 2/,1αµµ −⋅⋅ ±−∈−  for all i-j pairs.  Here,

there will be k(k-1)/2 confidence intervals constructed
Due to the Bonferroni inequality, each confidence interv
must be made at level (1-α)/[k(k-1)/2] in order to have a
confidence interval of at least (1-α) for all intervals
simultaneously.  Clearly, for any more than 10 alternative
the width of the individual confidence intervals become
quite large.  Unfortunately, unless there is a clear winn
among the systems (i.e., a system with the confiden
interval for the difference with all other pairs that is strictl
positive), one gains little inference from this procedure.

3.2 MCA

MCA has its origins in Tukey (1953) and is similar to th
brute-force method, except that instead of constructi
separate confidence intervals and using Bonferroni 
determine an overall confidence bound, a simultaneous 
of confidence intervals at an overall (1-α) level is formed.
Tukey’s simultaneous confidence intervals ar

nsrYY nkkjiji /)()( )1(,
αµµ −⋅⋅ ±−∈−  for all i ≠ j where s is

the pooled sample standard deviation and α
)1(, −nkkr  is the

upper α quantile of the studentized range distribution wit
k systems and k(n-1) degrees of freedom (see tables i
Hochberg and Tamhane 1987).

Like the previous method, MCA requires k(k-1)/2
confidence intervals be constructed.  In contrast to t
brute force method, MCA obtains an overall simultaneo
confidence level with the same confidence half-widths f
each pairwise comparison, while the brute-force meth
obtains a different confidence half-width for each pairwis
comparison and uses Bonferroni to establish a bound 
the overall confidence.  Yang and Nelson (1991) provide
revision for MCA which allows the use of common
random numbers (CRN) and control variates.

3.3 MCC

There are circumstances under which an experimen
wishes to compare a set of alternatives to a pre-defin
control.  MCC (Dunnett 1955) is the construction of (k-1)
495
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simultaneous confidence intervals in comparison to a fix
control.  This method is particularly useful when on
wishes to compare design alternatives to the current des
(Bratley et al. 1987).  Yang and Nelson (1991) provide
revision for MCC which allows the use of CRN an
control variates.  Bofinger and Lewis (1992) expand t
traditional MCC procedure by describing two-stage MC
procedures.  Damerdji and Nakayama (1996) describ
two-stage MCC procedure that allows different probabili
distributions among alternatives.

3.4 MCB

MCB procedures have their origin in Hsu (1984) and H
and Nelson (1988).  MCB’s intent is similar to that of R&
procedures:  determine the best system from a set
alternatives.  MCB attacks this problem by formin
simultaneous confidence intervals on the paramet

jiji µµ ≠− max  for i = 1, 2, …, k.  These (k-1) confidence

intervals bound the difference between the expec
performance of each system and the best of the ot
systems.  To apply MCB in discrete-event simulation, t
simulation runs must be independently seeded and 
simulation output must be normally distributed, o
averaged so that the estimators used are (approximat
normally distributed.

Yang and Nelson (1989, 1991) and Nelson and H
(1993) present modifications to the MCB procedure th
incorporate two variance reduction techniques (cont
variates and CRN).  Their results suggest that us
variance reduction can lead to correct selections w
higher probabilities.  Nelson’s (1993) robust MCB
procedure allows CRN under the assumption the varian
covariance matrix exhibits sphericity (see Section 4
Nakayama (1997b, 1999) presents a two-stage MC
procedure that also uses CRN for steady-state simulatio
and shows that it is asymptotically valid.  Goldsman a
Nelson (1990) present a MCB procedure for steady st
simulation experiments.  They also present results on h
the batch size can impact the probability of a corre
selection when using the simulation technique of bat
means.  Nakayama (1995) presents general results
applying MCB using batch means in steady-sta
simulations.  Yuan and Nelson (1993) discuss MC
procedures for steady-state simulations, where 
simulation outputs are assumed to follow an aut
regressive process with normally distributed residua
Damerdji et al. (1996) present a procedure for selecting 
best system for transient simulations with know
variances.  Nakayama (1996, 1997a) presents a sin
stage MCB procedure that is asymptotically valid fo
steady-state simulations, hence extending the domain
applicability of previous MCB procedures.  Kolonja et a
(1993) describes an application of MCB using CRN to
truck dispatching system simulation model.
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4 UNIFIED PROCEDURES

Recently, there has been an effort to unify the fields 
R&S and MCPs.  The first reference to such a movement
Gupta and Hsu (1984).  They propose a methodology 
simultaneously executing R&S and MCB.  Matejcik an
Nelson (1993, 1995) establish a fundamental connecti
between indifference zone procedures and MCB.  The id
of combining indifference zone approaches with MCB i
appealing to the simulation analyst.  Such an approach 
only selects the best system with pre-specified confiden
but it provides inferences about the relationships betwe
systems which may facilitate decision-making based o
secondary criteria that are not reflected in the outp
performance measure selected.

Nelson and Matejcik (1995) show that mos
indifference zone procedures can simultaneously provi
MCB confidence intervals with the width of the intervals
(whisker length) corresponding to the indifference zon
Therefore, both indifference zone selection and MC
inference can be derived from the same experiment with
pre-specified MCB whisker length, w = δ.  They describe
four R&S-MCB procedures which depend on havin
normally distributed data, but do not require known o
equal variance:

1. Rinott’s Procedure (Procedure R),
2. Dudewicz and Dalal’s Procedure (Procedure

DD),
3. Clark and Yang’s Procedure (Procedure CY),

and
4. Nelson and Matejcik’s Procedure (Procedure

NM).

Procedure R is an extension of Rinott’s (1978) two-
stage indifference zone R&S procedure as described 
Section 2.  It requires n0 (where n0 is the first-stage sample
size) i.i.d. samples from each of the k independently-
simulated systems.  The marginal sample variance for ea
system is then computed and used to determine the fi
sample size for each system, Ni (for i = 1, 2, …, k).  After
taking Ni – n0 additional i.i.d. observations from each of the
k systems, independent of the first-stage samples a
independent of the other second-stage samples, the sys
with the largest overall sample mean is selected as best.
addition, MCB confidence intervals on jiji µµ ≠− max  are

formed.  Likewise, Procedure DD (based on Dudewicz and
Dalal 1975) is performed in the same manner with the on
difference being in the calculation of the sample mean
While Procedures R and DD provide both R&S selection
and MCB inference, their requirement for independenc
among all observations precludes the use of CRN.  T
total sample size required to obtain the desired confiden
level is dependent on the sample variances of the syste
In particular, the larger the sample variance, the mo
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replications (or batch means) required.  For this reaso
simultaneous R&S-MCB procedures that exploit CRN
should require fewer total observations to obtain the sam
confidence level and whisker length (Nelson and Matejci
1995).

Procedure CY is based upon Clark and Yang’s (1986)
indifference zone R&S procedure.  As one of the few R&S
procedures that allows CRN, Clark and Yang (1986) us
the Bonferroni inequality to account for the dependenc
induced by CRN.  It is therefore a conservative procedu
that typically prescribes more total observations than a
actually necessary to make a correct selection (Nelson a
Matejcik 1995).  Like Procedure R, Procedure CY is
performed in two stages.  In the first stage, i.i.d. sample
from each of the k systems are taken using CRN across
systems.  The sample variances of the differences are the
used to compute the final sample size, N (note that N does
not vary across systems).  After taking the remaining N –
n0 i.i.d. observations, again using CRN across systems, t
system with the largest sample mean is selected as best 
the MCB confidence intervals are formed.

Nelson and Matejcik (1995) observe that Procedur
CY can be effective in reducing the total number o
samples required to make a correct selection in comparis
with Procedures R and DD.  However, they also note that
the benefit gained from using Procedure CY is diminished
when the number of systems to be compared, k, is large.
This is because the conservatism of the procedure from t
Bonferroni inequality increases as k increases and, at some
point, overwhelms the benefit induced by CRN.  To
overcome this problem, they present Procedure NM.

Procedure NM is motivated by Nelson’s (1993) robust
MCB procedure.  Since this procedure will be used t
illustrate the application of R&S and MCPs in Section 5, i
will be treated in greater detail than the previous
procedures.  Procedure NM assumes that the unknown
variance-covariance matrix, ΣΣΣΣ, exhibits a structure known
as sphericity.  Sphericity implies that the variances of all
pairwise differences across systems are equal, even thou
the marginal variances and covariances may be unequ
Sphericity generalizes compound symmetry (Nelson and
Matejcik 1995).  Several researchers have proposed th
compound symmetry accounts for the variance reductio
effects of CRN (see Tew and Wilson 1994, Nozari et a
1987, and Schruben and Margolin 1978 for more details
Procedure NM is valid when ΣΣΣΣ satisfies sphericity, however
Nelson and Matejcik (1995) show it to be extremely robus
to departures from sphericity.  The procedure is as follows

1. Specify w (w = δ), α, and n0.  Let
)1(

50.0),1)(1(,1 0

α−
−−−= nkkTg , where )1(

50.0),1)(1(,1 0

α−
−−− nkkT   is

the (1-α)-quantile of the maximum of a
multivariate t random variable with k-1
dimensions, (k-1)(n0-1) degrees of freedom,
and common correlation 0.50.
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2. Take i.i.d. samples 
0

,...,, 21 inii YYY  from each of the

k competing systems using CRN across systems.
3. Compute the sample variance of the difference

under the condition of sphericity as

)1)(1(

)(2 2
1 12

0

−−
+−∑ ∑ −

= ⋅⋅⋅= = ⋅

nk

YYYY
S j

k
i

n
j iij .

4. Compute the final required sample size (constant
for all k alternatives) as

N = max{no, (gS/w)2}.
5. Take N – n0 additional i.i.d. observations from

each system, using CRN across systems.
6. Compute the overall sample means for each

system as

∑= =⋅
N
j iji Y

N
Y 1

1
 for i = 1, 2, …, k.

7. Select the system with the largest ⋅iY  as the best
alternative.

8. Simultaneously, form the MCB confidence
intervals as

])max(,)max([max +
⋅

≠
⋅

−
⋅

≠
⋅

≠
+−−−−∈− wYYwYY j

ij
ij

ij
ij

ij
i µµ

 for i = 1, 2, …, k
where -x- = min{0, x} and x+ = max{0, x}.

Note that the value of )1(
50.0),1)(1(,1 0

α−
−−− nkkT  in Step 1 of

Procedure NM can be derived from Table 4 of Hochber
and Tamhane (1987) or Table B.3 of Bechhofer et 
(1995).  For values that fall outside of the tables, t
FORTRAN program of Dunnett (1989) can be used.

Nelson and Matejcik (1995) report results that sugg
that Procedure NM is superior to Procedures R, DD, and
CY in terms of the total observations required to obtain t
desired confidence level.  Procedure NM’s only potential
drawback is that the assumption of sphericity may not 
satisfied (either exactly or approximately) in man
situations (Nelson and Matejcik 1995).  To evaluate t
procedure’s robustness to departures from spheric
Nelson and Matejcik (1995) performed an empirical stud
They found that when the desired P{CS} = 0.95, the act
probability attained ranged from 0.88 to 1.0 with a mean
0.94.  Provided the assumption of the data’s normality
not significantly violated, this performance suggests th
the procedure is sufficiently robust for use in practic
They suggest that the analyst consider slightly inflating t
nominal coverage probability (1-α) to ensure adequate
coverage.  They also conclude that even when sligh
inflating the nominal coverage probability, Procedure NM
should still outperform Procedure CY in terms of the
required sample size.
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5 APPLICATION OF PROCEDURE NM

Combined R&S-MCB procedures are more attractive fo
use in simulation optimization than using either R&S or
MCB individually since combined procedures provide both
R&S selection and MCB inference with little or no
additional computational overhead.  Procedure NM (Nelson
and Matejcik 1995) is the most efficient of the existing
combined procedures.  For this reason, Swisher (199
selects it as the simulation optimization technique to appl
to the determination of the optimal clinic design for a two-
physician family practice clinic from among a group of
seventeen competing alternative designs. Clinic desig
optimality is defined in terms of a multiattribute
performance measure referred to as the clinic effectivene
(CE) measure.  This is a scalar measure derived fro
several clinic output performance measures encompassi
both clinic profit (revenues – expenses) and patient servic
levels (e.g., amount of patient waiting).  In general, clinic
profit is penalized for poor patient service.

Procedure NM allows the specification of an
indifference zone (which also specifies the MCB whiske
length, w).  A value of δ = w = 10 was used to select the
optimal clinic design from among the seventeen competin
alternatives.  Since a P{CS} = (1 - α) = 0.95 was desired, a
more conservative value of α = 0.03 was used, as
suggested by Nelson and Matejcik (1995).  Given n0 = 30,

w = δ = 10, and α = 0.03, 7910.2)97.0(
50.0,464,16 == Tg  (as

derived from Dunnett’s 1989 procedure).  The sampl
variance under the condition of sphericity, S2, is 882.80
and N = max{30, (gS/w)2} = 69.  Therefore, 39 (N – n0)
observations were generated for each of the sevente
clinic designs by simulating 417 clinic days (27 deleted
transient observations + 390 usable steady-sta
observations) using CRN across designs and forming 3
batches of size b = 10.  Using the formulas provided in
Section 4, the overall sample means for the CE measure
each design alternative was computed and the MC
intervals formed (see Table 1).

Procedure NM selects clinic design 4 as the best clinic
design.  From a R&S perspective, this means that wit
probability greater than or equal to 0.97, clinic design 4 ha
mean µ4 within δ = 10 of the design with the true largest
mean, µ[1].  Examination of the MCB intervals provides
inferences on the (assumed) superiority of design 4
Interestingly, four other designs (7, 8, 9, and 12) hav
MCB intervals that contain 0.  This means, from an MCB
perspective, there is no one clearly superior design
Designs 4, 7, 8, 9 and 12 are all clearly superior to th
remaining systems whose upper MCB bound is 0, howeve
there is no clear winner among them.  Note that had on
design possessed a lower MCB bound of 0, while the re
were upper-bounded by 0, then that design would hav
been selected as best by MCB.
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Table 1:  Overall Sample Means and MCB Results fo
Procedure NM

Design ⋅iY
Lower
MCB
Limit

⋅
≠

⋅ − j
ij

i YY max
Upper
MCB
Limit

1 388.17 -28.00 -18.00 0
2 392.41 -23.76 -13.76 0
3 394.18 -21.99 -11.99 0
4 406.17 -9.76 0.24 10.24
5 380.70 -35.47 -25.47 0
6 386.07 -30.10 -20.10 0
7 405.93 -10.24 -0.24 9.76
8 398.74 -17.43 -7.43 2.57
9 405.32 -10.85 -0.85 9.15
10 382.72 -33.45 -23.45 0
11 381.11 -35.06 -25.06 0
12 401.98 -14.19 -4.19 5.81
13 392.53 -23.65 -13.65 0
14 392.07 -24.10 -14.10 0
15 393.78 -22.39 -12.39 0
16 378.67 -37.50 -27.50 0
17 378.28 -37.90 -27.90 0

One of the benefits of using a combined R&S-MC
procedure is that the analyst gains inferences on sys
other than the best, which may lead to the selection o
inferior system (if it is not inferior by much) based o
some secondary criteria not reflected in the performa
measure of interest (Matejcik and Nelson 1993).  Althou
profit is a component of the performance measure u
(CE measure), no real inference on clinic profit can 
made from examining the CE measure.  Therefore
decision-maker would likely be interested in examini
clinic profit as a measure separate from the CE measure
the five clinic designs whose MCB interval covers ze
Table 2 provides the mean daily clinic profit (without an
patient service penalties) for each of the five best cli
designs.

Table 2:  Mean Daily Clinic Profit for the Five Best
Clinic Designs

Clinic Design Mean Daily Profit ($)
4 851.92
7 990.78
8 931.89
9 833.88
12 972.08

Note that clinic design 7 produces approximately $1
per day more clinic profit than the design selected as 
best (clinic design 4).  In addition, clinic design 7’s over
sample mean is less than 25 cents less than design
overall sample mean (see Table 1).  In short, the M
inference provided by Procedure NM would lead the
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clinical decision-maker to choose clinic design 7, despit
the fact that clinic design 4 was selected as the best 
Procedure NM’s R&S result.  If only a R&S approach had
been used to evaluate the clinic designs, the clinica
decision-maker would have selected an excellent design 
terms of CE.  However, that choice may cost the clinic
$140 per day in profit compared to an equally good (from
an MCB perspective) choice.  In this case, the value of th
application of a combined R&S-MCB procedure is
obvious.

6 CONCLUSIONS

Ranking and selection and multiple comparison procedure
provide excellent tools for selecting the best of k
competing alternatives in discrete-event simulation.  R&S
approaches allow the simulation analyst to scree
alternatives so that he/she may fully study a subset of si
m.  They also allow the analyst to choose the best of k
alternatives, given an indifference zone, at or above a use
specified probability.  MCPs provide inference about the
relationships among k alternatives.  The typical simulation
analyst would likely benefit most from applying the unified
R&S-MCB procedures proposed by Matejcik and Nelson
(1993, 1995) and Nelson and Matejcik (1995).  Thes
procedures allow the analyst to select the best system a
gain insight about how much better the best is in
comparison to the rest of the alternatives.  Unified
methodologies such as these should dominate the R&S a
MCP literature in the future.  In addition, further research
in the area of multivariate R&S procedures would be
beneficial for those situations in which the analyst canno
easily reduce the performance measures to a univaria
measure.  Unfortunately, it appears there is no curre
significant research being done in this area.
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