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SigurdurÓlafsson

Department of Industrial and Manufacturing Systems Engineering
Iowa State University

205 Engineering Annex
Ames, IA 50010, U.S.A.

ti
r
v
i
a

e

n
-
i
r

F

e

o

h
ty
g

n
e

t
s

-
en

by
d

ex-
d
m

t it
s
-

in
nce
ed
n

e
o

a
d-

s,

em

e
le
ABSTRACT

We develop a new algorithm for simulation-based op
mization where the number of alternatives is finite but ve
large. Our approach draws on recent work in adapti
random search and from ranking-and-selection. In part
ular, it combines the nested partitions method for glob
optimization and Rinott’s two-stage ranking-and-selectio
procedure. We prove asymptotic convergence of the n
algorithm under fairly mild conditions.

1 INTRODUCTION

Optimization over a large but finite feasible region is ofte
a very difficult task. This is true even in the determin
istic context, and for stochastic systems the difficulty
exacerbated by the added randomness. Oftentimes disc
event simulation is the only tool available for optimizing
such systems. This area has received considerable atten
and comprehensive reviews of simulation-based optimiz
tion may be found in Jacobson and Schruben (1989),
(1994), and Andrad́ottir (1998). Here we will only mention
directly related research. When the number of alternativ
is finite and relatively small thenranking-and-selectionand
multiple-comparisonmethods (Goldsman and Nelson 1998
are typically applied. These methods evaluate the perf
mance of each alternative and use statistical methods
guarantee that the objective, that is the selection of t
best alternative, is accomplished with a given probabili
Classical methods includes for example Rinott’s two-sta
procedure (Rinott 1978), and more recent work includes th
of Matejcik and Nelson (1995), Chick (1997), and Che
et al. (1998). When the number of alternatives becom
somewhat larger, however, then these methods become
computationally intensive and other random search me
ods, that only consider a fraction of all the alternative
must be applied.

In a recent paper, Shi and́Olafsson (1998a) introduced
such an optimization method, thenested partitions(NP)
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method, for global optimization when the objective func
tion is deterministic. In this context, the method has be
found to be quite efficient for combinatorial optimization
(Ólafsson and Shi 1998). Furthermore, as is discussed
Shi andÓlafsson (1997), this method can also be applie
to stochastic problems, where no analytical expression
ists for the objective function and it must be evaluate
using simulation. In this paper we suggest a new algorith
that builds on this earlier development in the sense tha
also falls within the broad NP method framework. Thi
new algorithm also builds on ideas from statistical sam
pling techniques that have proven useful in simulation
the past, namely ranking-and-selection methods, and he
combines statistical sampling techniques traditionally us
for comparing a few alternatives with a global optimizatio
framework aimed at large-scale optimization problems.

The paper is organized as follows. In Section 2 w
introduce the new algorithm and explain its relation t
previous work. In Section 3 we prove that the algorithm
converges asymptotically under fairly mild conditions to
global optimum. Finally, Section 4 contains some conclu
ing remarks.

2 ALGORITHM DEVELOPMENT

In mathematical notation, we want to solve the problem

min
θ∈2

f (θ), (1)

where2 is a finite feasible region, andf : 2 → R is a
performance function that is subject to noise. In other word
for any feasible pointθ ∈ 2, f (θ) cannot be evaluated
analytically. Oftenf (θ) is an expectation of some random
estimate of the performance of a complex stochastic syst
given a parameterθ , that is,J (θ) = E [L(θ)]. HereL(θ) is
a random variable which depends on the parameterθ ∈ 2.
We assume thatL(θ) is a discrete event simulation estimat
of the true performance, and refer to it as the samp
9
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performance. Also, to simplify the analysis, we assume th
there exists a unique solutionθopt to problem (1) above.

2.1 The NP Methodology

As we stated in the introduction, the development in th
paper builds on a recently proposed method for simulatio
based optimization: the NP method. Here we first introdu
the basic idea of the NP method, and then show how it m
be improved by using statistical selection methodologie
In the k-th iteration of the NP method there is always
regionσ(k) ⊆ 2 that is considered the most promising, an
as nothing is assumed to be known about location of go
solutions before the search is started,σ(0) = 2. The most
promising region is then partitioned intoM subregions, and
what remains of the feasible region,2\σ(k), is aggregated
into one region called the surrounding region. Therefore,
thek-th iterationM+1disjoint subsets that cover the feasibl
region are considered. Each of these regions is samp
using some random sampling scheme, and the samples u
to estimate the promising index for each region. This ind
is a set performance function that determines which regi
becomes the most promising region in the next iteratio
If one of the subregions is found to be best, this regio
becomes the most promising region. If the surroundi
region is found to be best, the method backtracks to a lar
region. The new most promising region is partitioned an
sampled in a similar fashion. This generates a seque
of set partitions, with each partition nested within the las
The partitioning is continued until eventually all the point
in the feasible region correspond to a singleton region. T
following definitions will be used throughout the analysis

Definition 1 A region constructed using a fixed par
titioning scheme is called avalid region given the fixed
partition. The collection of all valid regions is denoted b
6. Singleton regions are of special interest, and60 ⊂ 6

denotes the collection of all such valid regions.
Definition 2 The singleton regions in60, are called

regions ofmaximum depth. More generally, we define the
depth, d : 6 → N0, of any valid region iteratively with2
having depth zero, subregions of2 having depth one, and
so forth. Since they cannot be partitioned further, we ca
the singleton regions in60 regions of maximum depth.

Ultimately only the maximum depth regions are o
interest, that is, we want to find a region that contains on
one point. Therefore, in each iteration, the estimated b
region is the maximum depth region̂σopt (k) ∈ 60, that has
been most frequently considered the most promising regi
Consequently, the method must keep track of the num
of times,N k(σ ), a regionσ ∈ 60 has been visited by the
k-th iteration. Note that it suffices to keep track of this fo
regions that have been visited at least once.
to
he
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Definition 3 We denote the unique singleton regio
that corresponds to the optimal solution asσopt = {θopt },
and we let the estimate of this best region be

σ̂opt (k) = arg max
σ∈60

Nk(σ ), (2)

the most frequently visited singleton region by thek-th
iteration.

Definition 4 If a valid region σ ∈ 6 is formed
by partitioning a valid regionη ∈ 6, then σ is called a
subregionof regionη, and regionη is called asuperregion
of regionσ . We define thesuperregion functions : 6 → 6

as follows. Letσ ∈ 6 \ 2. Defines(σ ) = η ∈ 6, if and
only if σ ⊂ η and if σ ⊆ ξ ⊆ η thenξ = η or ξ = σ . For
completeness we defines(2) = 2.

The NP method shifts the focus from specific poin
in the feasible region2 to a space of subsets; namely th
space of all valid regions. Consequently, a set performa
function I : 6 → R is needed. This set function can the
be used to select the most promising region and is there
called the promising index of the region. In this paper w
let

I (η) = min
θ∈η

f (θ), ∀η ∈ 6, (3)

that is, the best solution in a region represents this reg
We refer the interested reader to Shi andÓlafsson (1998b) for
a comprehensive discussion and analysis of this algorit
and restrict our attention to the elements that are relev
to our present development.

It is clear that the NP method samples from the ent
feasible region in an adaptive fashion, and concentrates
sampling effort by systematically partitioning the feasib
region. Thus, in each iteration it selects a most promis
region, that is, the subregion that is considered the m
likely to contain the global optimum. This selection can
considered a success if the region selected contains the
global optimum, and it would clearly be of practical intere
if a minimum probability of success could be guaranteed
each iteration. In the pure NP algorithm described abo
there is no such assurance.

Also note that when applying the NP method to
stochastic problem there are two sources of randomn
that complicate the selection of the correct subregion. Fi
there is a sampling error due to a relatively small sam
being used to estimate the performance of an often la
set. Secondly, the performance of each sample point
estimated using simulation and is hence noisy. It is import
to observe that the former of these elements implies that
variation within a subregion differs greatly from one regio
to the next. As an extreme case consider a singleton re
that is being compared to the entire surrounding region. T
is, a region containing only one solution being compared
a region containing all of the other solutions. Clearly t
0
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first source of randomness has been completely eliminate
in the singleton region, whereas it probably accounts fo
almost all of the randomness in the surrounding region
This implies that to make better use of the sampling effor
the number of sample points from each region should b
variable and dependent on the variation within the region
The pure NP algorithm does not provide any guidelines o
restrictions on how this may be accomplished.

2.2 Two-Stage Sampling

The discussion at the end of the last subsection ident
fied two shortcomings of the pure NP method: the succes
probability in each iteration cannot be guaranteed, and the
may considerable waste involved in the allocation of sam
ple points. We address this by using statistical selectio
methods and two-stage sampling to compare the subregio
as if they were alternative systems, and hencecombine the
benefits of global random search and statistical selection. In
particular, we use Rinott’s two-stage ranking-and-selectio
procedure for selecting the best subregion (Rinott 1978
Since ranking-and-selection is applied in each iteration, th
new algorithm may be considered an iterative ranking-and
selection algorithm.

To state this approach rigorously, we letDij (k) be thei-
th set of points selected from the regionσj (k) using a uniform
random sampling procedure,i ≥ 1, j = 1, 2, ..., M + 1 in
the k-th iteration. We letN = |Dij (k)| denote the number
of sample points, which is assumed to be constant. We l
θ ∈ Dij (k) denote a point in this set and letL(θ) be a
simulation estimate of the performance of this point. The
in the k-th iteration,

Xij (k) = min
θ∈Dij (k)

L(θ),

is an estimate of the performance (3) of the regionσj , which
we can now also refer to as thei-th system performance
for the j -th system,i ≥ 1, j = 1, 2, ..., M + 1. The
two-stage ranking-and-selection procedure first obtainsn0
such system estimates, and then uses that information
determine the total numberNj of system estimates needed
from the thej -th system, that is, subregionσj (k). This
number is selected to be sufficiently large so that the corre
subregion is selected with probability at leastP ∗, subject
to an indifference zone ofε > 0.

More precisely, the procedure is as follows:

2.2.1 Algorithm NP/Rinott

Step 1. Given the current most promising regionσ(k),
partitionσ(k) into M subregionsσ1(k), ..., σM(k),
and aggregate the surrounding region2\σ(k) into
one regionσM+1(k).
48
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Step 2. Leti = 1.
Step 3. Use uniform sampling to obtain a setDij (k) of N

sample points from regionj = 1, 2, ..., M + 1.
Step 4. Use discrete event simulation of the system to obtain

a sample performanceL(θ) for every θ ∈ Dij (k)

and estimate the performance of the region as

Xij (k) = min
θ∈Dij (k)

L(θ), (4)

j = 1, 2, ..., M + 1.
Step 5. Ifi = n0 continue to Step 6. Otherwise leti = i+1

and go back to Step 3.
Step 6. Calculate the first-stage sample means and varianc

X̄
(1)
j (k) = 1

n0

n0∑
i=1

Xij (k), (5)

and

S2
j (k) =

∑n0
i=1

[
Xij (k) − X̄

(1)
j (k)

]2

n0 − 1
, (6)

for j = 1, 2, ..., M + 1.
Step 7. Compute the total sample size

Nj (k) = max

{
n0 + 1,

⌈
h2S2

j (k)

ε2

⌉}
, (7)

whereε is the indifference zone andh is a con-
stant that is determined byn0 and the minimum
probability P ∗ of correct selection (Rinott 1978).

Step 8. ObtainNj (k) − n0 more simulation estimates of
the system performance as in Step 2 - Step 5 above,
that is (Nj (k) − n0) · N more sample points.

Step 9. Let the over all sample mean be the promising
index for each region,

Î
(
σj (k)

) = X̄j (k) =
∑Nj (k)

i=1 Xij (k)

Nj (k)
, (8)

j = 1, 2, ..., M + 1.
Step 10. Select the index of the region with the best promis-

ing index.

ĵk ∈ arg min
j=1,...,M+1

Î (σj ). (9)

If more than one region is equally promising, the
tie can be broken arbitrarily. If this index corre-
sponds to a region that is a subregion ofσ(k), then
let this be the most promising region in the next
iteration. Otherwise, if the index corresponds to
1
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the surrounding region, backtrack to a larger re
gion containing the current most promising region
That is, let

σ(k + 1) =
{

σ
îk

(k), if îk < M + 1,

s (σ (k)) , otherwise.
(10)

Step 11. Update the counters{Nk(σ )}σ∈6 for the number
of times each region has been the most prom
ing region, and if necessary the maximum dep
region σ̂opt (k) that have been most frequently
the most prom-ising region. Ifσ = σ(k + 1),
then letNk+1(σ ) = Nk(σ ) + 1, and otherwise let
Nk+1(σ ) = Nk(σ ) for all σ 6= σ(k+1). If there ex-
ists σ ∈ 60 such thatNk+1(σ ) > Nk+1(σ̂opt (k)),
then let σ̂opt (k + 1) = σ , and otherwise let
σ̂opt (k + 1) = σ̂opt (k).

Step 12. If stopping rule is not satisfied letk = k + 1 and
go back to Step 1.

We note that forn0 = 1, with Steps 6-8 omitted, and
Î (σi(k)) = X1i replacing equation (8), this new iterative
ranking-and-selection algorithm reduces to the pure N
algorithm described in Shi and́Olafsson (1998b). On the
other hand, by selectingM = |2|, the algorithm reduces to
a pure Rinott’s two-stage ranking-and-selection procedu

The following parameters must be selected for the ne
algorithm: the number of sample points used for ea
system estimate (N ), the number of system estimates in
the first stage (n0 ≥ 2), the probability of correct selection
(P ∗ ≥ 0.5), and the indifference zone (ε > 0). There is
clearly a tradeoff betweenN andn0 in thatN ·n0 is the total
first stage sample effort, and if we fixN ·n0 then increasing
N decreasesn0 and vice versa. The choice ofP ∗ deserves
special attention. In the pure Rinott procedure, as well
in other ranking-and-selection procedures, this probabil
is usually selected to be rather large, sayP ∗ = 0.90 or
P ∗ = 0.99. Here, however, the ranking-and-selection
done iteratively so it is not feasible in practice to expan
too much computational effort in each iteration. In the ne
section we will see thatP ∗ ≥ 0.5 is needed to guarantee
convergence, but it should not be selected too large beca
then too much effort is spent in each iteration. Finall
the indifference zoneε depends on how the performanc
function is scaled and is therefore problem dependent.

3 CONVERGENCE ANALYSIS

It is straightforward to see that Algorithm NP/Rinott gene
ates a Markov chain and the stationary distribution of th
chain can be used for inference about the convergence
the algorithm. To state this precisely, we need the follow
ing technical assumption, that can be made without loss
generality.
48
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Assumption 1 Assume that∀η ∈ 6, ∃θ ∈ η, ξ ∈
2 \ η, such thatP [L(θ) < L(ξ)] < 1.

With this assumption the following proposition follows.
Theorem 1 If Assumption 1 holds then Algorithm

NP/Rinott generates an irreducible recurrent Markov chain
{σ(k)}∞k=0 on 6, such that its unique stationary distribution
π satisfies,

lim
k→∞ π

(
σ̂opt (k)

)
> π(η), ∀η ∈ 60\{σopt

}
, w.p.1. (11)

In words, the algorithm converges to a maximum of the
stationary distribution over all singleton regions.

Proof: This theorem is proven for the pure NP algorithm
in Shi andÓlafsson (1998b) in a slightly more general setting,
and since that proof also holds for Algorithm NP/Rinott we
will only sketch it here. It is clear that{σ(k)}∞k=0 is a
Markov chain, and it is irreducible by Assumption 1. Since
6 is finite, the Markov chain is then positive recurrent with
a unique stationary distributionπ . Furthermore, it is well
known that

lim
k→∞

Nk(η)

k
= π(η),

which implies that, in the limit, the most frequently vis-
ited region maximizes the stationary distribution. Since
σ̂opt (k) = arg maxσ∈60 Nk(σ ) the theorem follows.

To state the main convergence theorem we need th
usual assumption of ranking-and-selection methods, name
that the observations are normally distributed.

Assumption 2 Assume thatXij ∼ N (µj , ν2
j ), is

normally distributed with meanµj and varianceν2
j for all

j ∈ {1, 2, ..., M + 1}, and i ∈ {1, 2, ..., Nj (k)}, k ≥ 1.
We also need to be able to distinguish between the

optimum and other solutions.
Assumption 3 Assume that the indifference zoneε

satisfiesε ≤ minθ∈2\θopt f (θ) − f (θopt ).
We now have the following main convergence theorem

for this algorithm.
Theorem 2 If Assumption 1-3 hold andP ∗ ≥ 0.5,

then Algorithm NP/Rinott converges with probability one to
a global optimum, that is,

lim
k→∞ σ̂opt (k) = σopt , w.p.1. (12)

Proof: By Theorem 1 the algorithm converges to the
singleton region that has the largest stationary probability
so we only need to show thatπ(σopt ) ≥ π(η) for all η ∈ 60.
Hence, letη ∈ 60 be an arbitrary singleton region. Now
let η∗ be the smallest region that contains bothη andσopt ,
that is

η∗ = min{σ ∈ 6 : η ⊆ σ, σopt ⊆ σ }.
2
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Furthermore, letη1, η2, ..., ηd(η∗) be the sequence of regions
that satisfiesσopt = η1 ⊂ η2 ⊂ ... ⊂ ηd(η∗) = η∗, that is
this is the sequence of regions the algorithm must trave
to get from σopt to η∗ and vice versa. Furthermore, le
ηd(η∗)+1, ηd(η∗)+2,... ,η2d(η∗) be the same type of sequenc
with η2d(η∗) = η, that is, the sequence needed to get fromη∗
to η and vice versa. Thus, the sequenceη1, η2, ..., η2d(η∗)

represent the shortest path fromσopt to η and back. Now
for any i ∈ {1, 2, ..., 2d(η∗) − 1} it is clear that since the
Markov chain is clearly reversible (note the tree structur
then

P (ηi, ηi+1)πηi
= P (ηi+1, ηi)πηi+1,

and similarly

P (ηi+1, ηi+2)πηi+1 = P (ηi+2, ηi+1)πηi+2.

These equations can of course be verified by setting up
full balance equations. Thus we have

P (ηi, ηi+1)

P (ηi+1, ηi)
πηi

= πηi+1 = P (ηi+2, ηi+1)

P (ηi+1, ηi+2)
πηi+2,

or

πηi
= P (ηi+1, ηi) · P (ηi+2, ηi+1)

P (ηi, ηi+1) · P (ηi+1, ηi+2)
· πηi+2.

By induction we get

πη1 = P (η2, η1) · ... · P (η2d(η∗), η2d(η∗)−1)

P (η1, η2) · ... · P (η2d(η∗)−1, η2d(η∗))
·πη2d(η∗)

. (13)

We also know thatP (ηi+1, ηi) is the probability of correct
selection, that is, moving towards the true optimum, so b
Assumptions 2-3 and Proposition 1 in Rinott (1978) w
haveP (ηi+1, ηi) ≥ P ∗ ≥ 1

2. This implies that

P (ηi+1, ηi) ≥ P (ηi+1, ηi+2), ∀i = 1, 2, ..., 2d(η∗) − 2,

which together with equation (13) says that

πη1 ≥ P (η2d(η∗), η2d(η∗)−1)

P (η1, η2)
πη2d(η∗)

. (14)

On the other hand, it is clear that moving fromη2d(η∗) to
η2d(η∗)−1 is the correct selection so

P (η2d(η∗), η2d(η∗)−1) ≥ P ∗ ≥ 1

2
,

and vice versa moving fromη1 to η2 is incorrect selection
so P (η1, η2) ≤ 1

2. Thus equation (14) reduces to

πσopt = πη1 ≥ πη2d(η∗)
= πη,

which is precisely what is needed to prove the theorem.
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The last theorem shows that Algorithm NP/Rinott con-
verges asymptotically. Next we consider how fast it con-
verges. By Definition 3, for the algorithm to correctly
consider the optimumσopt as the best solution, this state
must be visited at least once. Hence it is of interest to look
at the expected time until the algorithm will visit this state
for the first time. Clearly we would like this to be as small
as possible, and the next theorem provides an upper boun
for this expected time.

Theorem 3 Let Assumption 1-3 hold and assume
that P ∗ > 0.5. Let T1 denote the first time Algorithm
NP/Rinott visits the optimal solution. Then

E [T1] ≤ d∗

2P ∗ − 1
. (15)

Proof: Recall that the Markov chain{σ(k)}∞k=1 has a
minimum success probability ofP ∗ given its current state
σ(k) ∈ 6, that is, with probability at at leastP ∗, σ(k + 1)

will be closer toσopt than σ(k) in terms of the number
of transitions required to move between the regions. Now
imagine a Markov chain that is identical to{σ(k)} except
that this success probability is even and equal toP ∗ for every
stateσ ∈ 6. Now note that since the success probability is
constant, the exact state is not of any consequence, but rath
the number of transitions it takes to move from the current
stateσ(k) to the optimum. The maximum such distance is
2d∗, and we can therefore, without losing any information,
reduce the state space toS = {0, 1, 2, ...., 2d∗}. With this
representation the entire feasible region2 corresponds to
stated∗, and we can let the global optimum correspond to
state zero. Given a statex ∈ S the probability of moving
to x − 1 is fixed and equal toP ∗, and the probability of
moving tox + 1 is equal to1− P ∗, regardless of the state.
Therefore, the new Markov chain is a simple random walk.
Furthermore, it is clear thatE [T1] ≤ E

[
T ′

1

]
, whereT ′

1 is
the first time the random walk visitsσopt if it starts in state
d∗, which corresponds to2, the starting state of Algorithm
NP/Rinott.

Hence, if we calculate the expected hitting time for the
random walk this automatically gives us an upper bound
for the original Markov chain. Furthermore, since we are
only interested in the time the global optimum is found
for the first time, we can assume 0 is an absorbing barrie
and look at the time of absorption. Note also that2d∗ is a
reflective barrier. Then it is known that the expected timeT

of absorption when starting in stateu is (Weesakul, 1961)

Eu[T ] = u

2P ∗ − 1
+ (1 − P ∗)2d∗+1

(P ∗)2d∗
(2P ∗ − 1)2(

1 −
(

P ∗

1 − P ∗

)u)
. (16)
3
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Thus, foru = d∗, that is, when the algorithm starts in stat
σ(0) = 2, we have

Ed∗ [T ] = d∗

2P ∗ − 1
+ (1 − P ∗)2d∗+1

(P ∗)2d∗
(2P ∗ − 1)2(

1 −
(

P ∗

1 − P ∗

)d∗)
. (17)

Now sinceP∗ > 0.5 then P ∗
1−P ∗ > 1 so

(
1 −

(
P ∗

1 − P ∗

)d∗)
< 0,

and hence

(1 − P ∗)2d∗+1

(P ∗)2d∗
(2P ∗ − 1)2

(
1 −

(
P ∗

1 − P ∗

)d∗)
< 0.

Therefore,

E[T1] ≤ Ed∗ [T ] ≤ d∗

2P ∗ − 1
,

which proves the theorem.
To obtain the simple bound in equation (16) we ignore

the second negative term in equation (17). It is therefo
appropriate to consider how loose this bound is, and
observe that this second term goes to zero as eitherd∗ → ∞
or P ∗ → 1, and indeed, unlessd∗ is small, say less than
ten, andP ∗ is close to one half, sayP ∗ < 0.55, the first
term in equation (16) is much larger than the second te
in absolute value.

Now lets consider if an optimal selection probabilit
P ∗(n0, M) and can be found. It is clear that asP ∗(n0, M)

increasesE[T1], that is, the expected time until the globa
optimum is encountered decreases. This occurs, howe
at a decreasing rate. On the other hand, asP ∗(n0, M)

increasesh(n0, M, P ∗) also increases and this occurs
an increasing rate. Therefore, an optimal probability
somewhere between the extreme values ofP ∗(n0, M) = 0.5
and P ∗(n0, M) = 1. However, since the second-stag
sample size depends on the sample variance from the
stage sampling and the indifference zone, both of which
clearly problem dependent, so does the optimal value
P ∗(n0, M). It is therefore not possible to give ana priori
prescription for the optimal probability.

Another quantity of interest when applying the Algo
rithm NP/Rinott is the probability of the first maximum
depth region visited being the one corresponding to t
global optimum. If this probability is fairly high then a rea
sonable stopping rule would be to stop whenever maxim
depth is reached. We can again use a random walk an
48
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Table 1: Expected first hitting time of the optimum.

Maximum Depth (d∗)

Success Prob. 2 5 10 20 30
55% 20 50 100 200 300
60% 10 25 50 100 150
65% 7 17 33 67 100
70% 5 13 25 50 75
75% 4 10 20 40 60
80% 3 8 17 33 50
85% 3 7 14 29 43
90% 3 6 13 25 38
95% 2 6 11 22 33

sis, this time for a simple random walk with two absorbing
barriers, to calculate this probability.

Theorem 4 Let Assumption 1-3 hold and assume
thatP ∗ > 0.5. Let σ̂ denote the first maximum depth region
visited. Then

P
[
σ̂ = σ ∗

opt

]
=
{

(P ∗)d∗ (1−P ∗)d∗−(P ∗)d∗

(1−P ∗)2d∗−(P ∗)2d∗ P ∗ 6= 1
2,

1
2 P ∗ = 1

2.

(18)
Proof: Since the success probability is constant we

can again consider the random walk with state spaceS =
{0, 1, ..., 2d∗} defined in the proof of Theorem 3 above.
Here the only question is thus if state 0 or2d∗ will be
visited first; that is, the probability that the first maximum
depth visited contains the global optimum is equal to the
probability that the random walk visits state 0 before it visits
state2d∗. This probability is thus equal to the absorption
probability at zero for a simple random walk with two
absorbing barriers, which can for example be found on p
32 in Cox and Miller (1965).

For insights into this theorem consider Table 2 which
shows the results of equation (18) ford ∈ {2, 5, 10, 20,

30} and P ∗ ranging from 0.50 to 0.95. From this table
we see that unless the problem is small, sayd∗ < 10,
then the probability of the first maximum depth region
visited corresponding to the optimum is very high even for
success probability as low as 55%. For problems as sma
as d∗ = 5 it is sufficient to have 75% success probability
for it to be virtually certain that the first maximum depth
region will correspond to the optimum. Thus, stopping
when the algorithm reaches maximum depth is a reasonab
strategy for the Algorithm NP/Rinott, and if this stopping
rule is applied then equation (18) can be used to calculat
the probability of this being a correct termination.
4
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Iterative Ranking-and-Sele

Table 2: Probability of first maximum depth region bein
the optimum.

Maximum Depth (d∗)

Success Prob. 2 5 10 20 30
55% 0.60 0.73 0.88 0.98 1.00
60% 0.69 0.88 0.98 1.00 1.00
65% 0.78 0.96 1.00 1.00 1.00
70% 0.84 0.99 1.00 1.00 1.00
75% 0.90 1.00 1.00 1.00 1.00
80% 0.94 1.00 1.00 1.00 1.00
85% 0.97 1.00 1.00 1.00 1.00
90% 0.99 1.00 1.00 1.00 1.00
95% 1.00 1.00 1.00 1.00 1.00

4 SUMMARY

We have introduced a new algorithm for optimizing system
where the number of alternatives is very large and the per
mance of each alternative must be evaluated using sim
tion. The approach combines an adaptive sampling met
called the nested partitions method with traditional rankin
and-selection procedures. We have proved the asymp
convergence of the algorithm but numerical testing of t
algorithm is needed and is currently underway.

Future research directions include further refining
the algorithm, analyzing how fast it converges, and der
ing efficient stopping rules. Also of interest would be
incorporate other statistical selection procedures into
method. This could include the optimal computing budgi
allocation (OCBA) procedure (Chen et al. 1998) or a co
bined subset selection and Rinott’s procedure (Goldsm
and Nelson 1998).
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Shi, L. and S.Ólafsson. 1998b. “Nested Partitions Metho
for Stochastic Optimization,” Working Paper Series
98-116, Department of Industrial and Manufacturin
Systems Engineering, Iowa State University.

AUTHOR BIOGRAPHY
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