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converge pointwise tof,, asn — oo. In the kind of
applications we have in mindfy, is typically a steady-

Recently sample-path methods have been successfully usedstate performance measure or an expected value and we

in solving challenging simulation optimization and stochas-
tic equilibrium problems. In this paper we deal with a
variant of these methods to solve stochastic optimization
problems with stochastic constraints. Using optimality con-
ditions, we convert the problem to a stochastic variational
inequality. We outline a set of sufficient conditions for the
almost-sure convergence of the method. We also illustrate
an application by using the method to solve a network design
problem. We find optimal arc capacities for a stochastic
network (in which the demand and supply at each node is
random) that minimize the sum of the capacity allocation
cost and a measure of the expected shortfall in capacity.

1 INTRODUCTION

use simulation to observe thg's. In systems that evolve
over time, we simulate the operation of the system for,
say,n time units and then compute an appropriate perfor-
mance measure. In static systems we repeatedly observe
instances of the system and compute an average. In both
cases, to observg, at different parameter settings we use
the method of common random numbers. Furthermore, in
many cases derivatives or directional derivatives of the
can be obtained using well-established methods of gradient
estimation such as infinitesimal perturbation analysis (IPA);
see Ho and Cao (1991) and Glasserman (1991). The key
point is the following fact: once we fix and a sample
point (using common random numberg), becomes a de-
terministic function. The sample-path methods then solve
the resulting deterministic problem (usinfg with the fixed

This paper shows how to use the sample-path technique to sample path selected), and take the solution as an estimate
solve stochastic constrained optimization problems, which of the true solution. Clearly, the availability of very pow-
can be seen as special cases of solving stochastic variationalerful deterministic solvers (both for optimization and for
inequalities. This capability extends the range of application equilibrium problems) makes this approach very attractive.
of sample-path methods, since in some important cases not We distinguish between two types of problems. The first
only are the functions to be optimized stochastic in nature, involves optimization; in this case th§ are extended-real-

but the constraints imposed on the problem could also be valued functions: f,, : R — R U {£o0} for 1 < n < oo,
stochastic. In this section we review the existing forms of and we are interested in solving

the sample-path method and illustrate a case for which it
may not be clear how to apply the sample-path method in
its usual forms. In the remainder of the paper, we provide

a variant of the method and develop the necessary theory to Tpis setup also covers optimization problems with deter-
deal with that case. We also report an application in network ministic constraints since we can always get(x) = +o0o
design, for which we compare the computational perfor- o  that do not satisfy the constraints.

mance of sample-path optimization with that of stochastic The second problem type is a variational inequality; in

approximation. this case thef, are vector-valued functionsy, : R —
Roughly speaking, sample-path methods are concerned Rt for 1 < 5 < 0o, and our aim is to find a pointo € C,

with solving a problem of optimization or equilibrium, in- it any exists, satisfying

volving a limit function fo, which we cannot observe.

However, we can observe functiorfs that almost surely

1)

n}infoo(x)-

for eachx € C, (2)

(x — x0, foo(x0)) > 0,
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where (y, z) denotes the inner product ¢f andz, andC
is a polyhedral convex subset Bf. An equivalent way of
expressing (2) is via thgeneralized equation
0 € foo(xo) + Nc(xo0) 3
where N¢(x) is the normal cone o€ at x, defined to be
the set
{y* | for eachc € C, (y*,c—x) <0} 4)

provided thatx € C, and to be empty otherwise.

The problem (2) models a very large number of equi-
librium phenomena in economics, physics, and operations

research; for many examples, see Harker and Pang (1990)
One important area where 2

and Ferris and Pang (1997).
variational inequalities are of use is nonlinear program-
ming, because the first order necessary conditions for local
optimality of a given point can be stated as a variational
inequality. For example, in the particular special case of
an unconstrained optimization problem, the associated vari-
ational inequality becomes a nonlinear equation and the
method reduces to finding a zero of the gradient. fgt
be this gradient and” = R*. It is easy to see that solv-
ing the first order necessary optimality conditions for this
problem expressed in the form (2) is equivalent to find-
ing xo € R¥ such that f,(xg) = 0. Another important
special case of variational inequalities arises when we ex-
press the first-order necessary optimality conditions for a
nonlinear-programming problem with continuously differ-
entiable objective and constraint functions; in this paper we
will deal with such a problem.

We are interested in solving the nonlinear optimization
problem with a stochastic objective function and stochastic
constraints. Consider

min - Fao(x)
St goo(x) <0, he(x)=0 5)
xecC.

In this formulation, C is a polyhedral convex setF,,

is a real-valued function, ang., and k., are possibly
vector-valued functionsC is used to model deterministic
constraints. In addition to the usual objective function
Fs (Or fo in (1)) that we cannot observe, we also have
constraintg, and/ori, that cannot be observed but have
to be approximated/estimated using simulation. In Section
3, we bring (5) into the form (2) and show how to extend
the theory developed for (2) to cover (5).

Let us demonstrate this setup with a simple example.
Suppose that we are trying to find the optimal parameters of
a control policy that minimizes the long-run expected cost
of an inventory systemFy, (for example, the cost function
may consist of inventory holding and backorder costs). In
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addition to this, we would also like to maintain an acceptable
service level, so we impose a constraint that says that the
long-run fill-rate (fraction of orders filled without backlog-
ging) g0, should not fall below a preset service level, say
a. By simulating this inventory system and using gradient
estimation techniques, we can estimate these performance
measures as well as their gradients. Using these we can
further compute the optimal parameters of the inventory
policy. In Section 3 we provide conditions that guarantee
the existence and closeness of the estimate solutions to the
exact solution. See alsoikan and Karaesmen (1998)
which addresses a similar problem in production and inven-
tory control. In Section 4, we deal with another example
that is related to the design of networks.

SAMPLE-PATH METHODS

Sample-path methods appeared in Plambeek

al. (1993, 1996) and were analyzed in Robinson
(1996). That form, called sample-path optimization,
concerned the solution of simulation optimization problems
with deterministic constraints. The main condition imposed
on f, is their epiconvergencdo the limit function f.
Roughly speaking, epiconvergence is the set convergence
of the epigraphs off, to the epigraph offo,. See Kall
(1986) for a treatment of various types of convergence
and Rockafellar and Wets (1998) for a treatment of
epiconvergence from the perspective of optimization. The
proposals of Plambedit al. (1993, 1996) used infinitesimal
perturbation analysis (IPA) for gradient estimation. A
closely related technique centered around likelihood-ratio
methods appeared in Rubinstein and Shapiro (1993).

In Gurkanet al. (1996, 1999) we extended the basic
idea of using sample-path information to solve stochastic
equilibrium problems. There we presented a framework to
model such equilibrium problems as stochastic variational in-
equalities and provided conditions under which equilibrium
points of approximating problems (computed via simulation
and deterministic variational inequality solvers) converge al-
most surely to the solution of the limiting problem which
we cannot observe. iBkan et al. (1999) also contains a
numerical application of the derived theory for finding the
equilibrium prices of natural gas as well as the equilibrium
guantities to produce in the European natural gas market.
Both forms of the sample-path method are explained in
Gurkanet al. (1998), which also summarizes a number of
applications.

Since we will consider solving (5) as a special case
of solving (2), in the remainder of this section we briefly
summarize the main convergence result for the sample-path
method to solve stochastic variational inequalities.

To guarantee the closeness of the solutignof (2)
with f, in place of f, to the true solutionxg, we need
to impose certain functional convergence on the sequence
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{fx}. The specific property we require is calledntinuous 3 STOCHASTIC CONSTRAINED OPTIMIZATION

convergenceand is denoted by£>; it is equivalent to ) . ) i )
uniform convergence to a continuous limit on compact sets: In this section we investigate the convergence properties of

see e.g. Kall (1986). The motivating fact is the following: the method in the special case of constrained optimization
consider a sequence of functioris and of pointsx, with with “probabilistic” constraints.

the propertv thak. solves (2) with 7. replacin and We work with an open s&® and a polyhedral convex
Property " ) Jn TepIacing foo setC in R¥ and functionsF : ® — R andH : ® — R™.

c o
Xy — xg asn — oo. If f, —> fo then the limit point The problem we consider is

xo solves (2). Therefore we might reasonably use solutions

x, as estimates of a solution of (2). However, although min  F(x)
useful, continuous convergence by itself guarantees neither st. xe®NC (6)
the existence of solutions, nor their convergence. H(x) =0
To guarantee such existence and convergence we need
to impose a certain nonsingularity condition caltezherent The representation (6) is more general than it might seem.

orientation Here we do not go into any detail about this Suppose we consider the problem of minimizigigy) over
concept, but refer the reader taiGanet al. (1996, 1999) the set{y € ¥ | g(y) < 0, h(y) = 0} whereY is a
where we give an extensive description with further refer- polyhedral convex set z;ngl andh are functions from an
ences. In the simple case of nonlinear equations, i.e. when open subset oR! into R? and R’ respectively. We can
C = R%, this condition reduces to the usual nonsingularity - convert this to the form (6) by introducing slack variables

requirement on the Hessianfeo. In its general form, the ¢ R¢, rewriting the feasible set and the constraint functions
coherent orientation condition is a way of extending the g

idea of nonsingularity to the case of a nontrivial €&t
In Girkan et al. (1996, 1999) we provide sufficient ( g(y) +s ) (v.s) €Y x RY, @

conditions for the existence of solutions of approximating h(y)

variational inequalities and their convergence to the exact

H _ _ _ q —
solution of the limit problem. Briefly, these conditions are and takingk =1 +g, x = (y,5), C =Y xRy, F(x) =
Q(y), and
1. With probability one,f, < Foo- H(x) = gy)+s
2. The limit variational inequality (2) has a so- N h(y) '

lution xg.

3. [~ has a strong Erchet derivativel fo, (xo) at
x0, and the normal magf.. (xo)x associated
with (2) is coherently oriented, whergE =
K (x0, — foo(x0)) is the critical cone taC at
(x0, — foo (x0)):

Therefore the form (6) is quite general, covering any com-
bination of inequalities and equations with a polyhedral
convex constraining set. Hence we will concentrate on (6)
in the rest of this section.

Let

‘ L(x,u) = F(x)+ (u, H(x)), (8)
K =Tc(x0) N {y € R* | (y, = foo (x0)) = O},
and assume that the poinp is a local solution of (6).
and T¢(xp), the tangent cone t@ at xo, is Then under a constraint qualification, e.g., transversality or
the polar of N¢ (x). non-degeneracy, as well as sufficient differentiability of the
problem functions, there existg in R™ such that the pair
Condition (3) is rather technical and we will not elaborate (xq, ug) is a solution of the generalized equation:
on it here; we refer the reader toutkan et al. (1999).
There, we also provide a bound on the distance between the 0edL(x,u)+ Nc(x) x {0}". 9)
approximate solutions and the limit solution in terms of the
uniform norm of f,, and fo, on a compact set containing Now we consider the situation where we cannot observe
the exact solution. the functionsF and H but sequences of functiony,},
Building on this framework, we can further extend the {,}, and{H,} approximating{F, d H, and H respectively.
sample-path method to solve stochastic optimization prob- In the rest of this section we will describe the conditions
lems with stochastic constraints. The next section contains under which the solution of (9) is related to the solution of
a brief summary of the conditions derived to handle this

case. Pu(x) +ulry(x) Nc(x)
Oe ( H, (x) ) + ( [oym ) . (10)
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Again, we need a generalized nonsingularity condition.
This time it is more convenient to express this condition
in terms of a property calledtrong regularity originally
introduced by Robinson (1980). Assume thgtis a so-
lution of (3) and f, is Fréchet differentiable atg. The
generalized equation (3) is strongly regularxatif there
are neighborhood® of xo and W of the origin inR* such
that the generalized equation

Y € foo(xo) + dfoo(x0)(x —x0) + Nc(x)  (11)
defines a single-valued, Lipschitzian magy) from W to
U, i.e., for eachy € W , x(y) is the unique solution it/
of (11). Now we are in position to state Theorem 1, the
main convergence result.

Theorem 1 Let® be an open subset & and let
C be a polyhedral convex set Rf. Letxg be a point ofo,
up be a point ofR™, and suppos& and H are functions
from © to R and R™ respectively. Letp, |n=1,2,...}
and{r, | n =1, 2, ...} be random functions from® to R¥,
and{H, |n=12,...} be a random function fron® to
R™, such that for allx € ® and all finite n the random
variablesp, (x), r,(x), and H, (x) are defined on a common
probability space(2, F, P). Let L(x, u) be defined as in
(8), fulx,u) = (pp(x) +ulr,(x), Hy(x)), and assume the
following:

a. With probability one, eacp, forn =1,2, ...

is continuous andgp, C, dr.
b. With probability one, each, forn =1, 2, ...

is continuous and, i> dH.
c. With probability one, eacH,, forn =1, 2, ...

is continuous andd, i> H.
d. (xo,up) is a solution of (9).
d L has a strong Fechet derivative? £ (xo, u)
at (xo, ug) and the generalized equatidh €
dL(x,u)+ Nc(x) x {0} is strongly regular at
(x0, up) with associated Lipschitz modulus

Then, there exist compact subsélg ¢ C N ® con-
taining xo and Up C R™ containing ug, neighborhoods
X1 C ® of xp and U1 ¢ R™ of ug, a positive constant
A, and a setA c Q of measure zero, with the following
properties: forn = 1,2, ... let

€n Il fa(w, x, u) —dL(x, ),

sup
(x,u)eCoxUg

and

Xn(w) :=={(x,u) e (CNXy1) x Uy
0€ fulx,u) + Nc(x) x {0}
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For eachw ¢ A there is then a finite integeN,, such
that for eachn > N, the setX,, (w) is a nonempty, compact
subset ofB((xo, uo), A&).

Again, condition (e) is highly technical and we refer the
reader toOzge (1997) for a detailed discussion. In words,
Theorem 1 says that under certain niceness conditions, for
sufficiently large n (i.e., if we go out long enough on the
sample-path), the solution set of (10) is nonempty and
compact; furthermore, the distance of every such solution
of (10) from the exact solutiolixg, o) of (9) is bounded
by a constant multiple of the uniform norm of, — dC
on a compact set. The proof of Theorem 1 is given in
Ozge (1997) and in @&kan et al. (1999), along with
a rigorous discussion of the relationship between coherent
orientation and strong regularity, and some references where
several equivalent forms of these generalized nonsingularity
conditions are discussed.

For simplicity of exposition, Theorem 1 only dealt with
exact solutions of the approximating problems. However,
it is easy to verify that a similar result dealing with small
perturbations of the approximating problems is valid as well.

Note that when the se€ = R, then one condi-
tion that guarantees strong regularity @b, ug) is the
strong second-order sufficient conditieogether with the
linear independence of the gradients of the constraints; see
Theorem 4.1 in Robinson (1980). Precisely, the strong
second-order sufficient condition in this case says the fol-
lowing: for each nonzery with dH (xg)y = 0 one has
yd?L(xo, ug, vo)y > 0. Robinson (1980, Theorem 3.1)
shows that for general’ a positive definiteness condition
suffices for strong regularity.

A very relevant work is Shapiro (1993) which pro-
vides similar convergence results for stochastic program-
ming problems. Shapiro does not use strong regularity;
instead he assumes the convergence of the approximate
solutions.

4  APPLICATION: NETWORK DESIGN

As already mentioned, a computational illustration of the
variational inequality formulation of the previous section
appears in @rkan et al. (1999). In this section we illustrate
the application of the sample-path method to a problem that
arises when designing networks, e.g., traffic or communica-
tion networks, transportation or distribution systems. This
problem does not satisfy the conditions we imposed in the
previous section, because some of the functions involved
are nonsmooth. It is thus closer in structure to some of the
problems investigated in Plambeck et al. (1996). We shall
see in what follows that the sample-path approach worked
well in spite of the lack of smoothness.

The problem we consider is that of allocating available
capacity among the arcs of a network composed of a given
(finite) number of supply and demand nodes and a set of
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arcs connecting these nodes. The demands and supplies at
individual nodes are random. There is a cdst.associated
with assigning unit capacity to arc We would like to
allocate the available capacity to the arcs so as to minimize
the sum of the capacity allocation cost and a measure of
the expected shortfall in capacity.

min - E[f(u1, ..., u)]+ Y5 diu;
P) st Y u<c
u; > 0, i=1... .k

whereC is the total available arc capacity and

f(uy,...,up)= min cx
S.t. Ax:b
O<xi<uw;, i=1...k

where A is the node-arc incidence matrix, is the cost
vector for sending flowt through the network, and is the

random demand/supply vector. When we cannot satisfy the Figure 1: Network Problem
demand due to insufficient arc capaciy, the cost of the
network, increases because we have to use artificial arcs Table 1: Network Data

with unlimited arc capacity but large arc costs. Therefore,
f is one measure of the shortfall, the incapability to satisfy | 5, | U[80,120] || s | U[12,18] || b9 | U[10,30]
demand that is due to insufficient arc capacity. Forasimilar | p, | U[-25,-5] || bg | U[-45,-15] || b1o | U[-80,-20]
problem (but with no random element) that arises in network [ 55 | U[10,30] || 57 | U[-30,-10] || 411 | U[-50,-10]
synthesis, see Gomory and Hu (1964). ba | U[0,20] bs U[0,0] b1, | U[-30,-10]
By trying to put a problem in a network format, one
gains insight into the problem as well. For example, the
arc capacities that we are trying to find may represent
actual bounds on the flow on an arc, e.g., the number of
trucks to assign on a route in a distribution system, or they
may represent the ability of the destination node to handle
the arriving flow, e.g., the number and/or the condition
of rail tracks leading to a busy harbor. Such examples
are numerous, and networks are powerful tools that can
be used to model a wide variety of situations. Ahuja,
Magnanti, and Orlin (1993) is an excellent treatment of

network flows, extensively covering existing theory while  ineq the required number of function evaluatiokis(this

pointing out possible real-world applications. was 50 in our case). Then we allowed the SA algorithm

The network we considered is given in Figure 15 ithas 4 ryn for k iterations and generated a sequence of points
12 nodes and 33 arcs. The numbers on the arcs denote theaccording to the following rule:

cost of sending unit flow from the origin to the destination of

the corresponding arc. Demands and supplies of individual L S

nodes (denoted by;) are uniformly distributed random W =THeW" —=7¢")

variables with the data given in Table 1. A negative (positive)

b; indicates that nodg is a demand (supply) point. We whereg” is an estimate of the (sub)gradient or the directional

chosed to be a vector with each component equal to 5. derivative (whichever is available) af, ag is the predeter-
We would like to compare the numerical performance of mined step size constant, afith(-) is the projection onto

the sample-path method with the performance of stochastic the feasible se® determined by the bound constraints. In

approximation (SA). In esssence, SA is a gradient-descent both methods we used a simulation run of length 10,000.

method and hence it tends to inherit some of the drawbacks To determine the “Optimal” solution we solved the problem

of these methods. In addition, its empirical performance using the Sample-Path method and a long simulation run of

is highly dependent on tha priori choice of the initial length 100,000 (the number of iterations required was 41 in

step sizeag. To be able to compare the sample-path so-
lution with the solution of SA, we considered a problem
with only simple bounds om. It is well known that in

the absence of bounds, SA may suffer from unboundedness
problems whereas in the presence of other linear inequality
constraints, SA experiences difficulties in enforcing feasi-
bility. Therefore we chose & large enough so that the
capacity constraint of problem (P) was inactive. We first
solved the problem with the sample-path method and deter-
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this case). The results are reported in Table 2. The “Error” which leads to a large cost as shown by the associated
column is the Euclidean distance between the corresponding objective function value and the average badness; but at
point and the “Optimal” solution. To make an additional the same time it leaves great leeway and hence the cost
test of quality of these solutions, we randomly generated is not largely affected by the fluctuations in demand and

20,000 instances of the supply/demand veétgusing the supply. In that sense the measures “Objective function” and
same network topology) and computed the average shortfall “Variance of badness” are conflicting.
(measured by the cost of the network which incorporates We also considered problem (P) whén= 350 and

the cost of using artificial arcs due to insufficient arc capac- the capacity constraint was active. In this case, we did
ity and the cost of assigning the required capacity) and its not apply the SA method due to the difficulties the method
variance; these are reported under “Average badness” andexperiences in enforcing feasibility. The results are given
“Variance of badness” respectively. All the solutions are in Table 3. The number of function evaluations required is
obtained starting from a vector of ones. denoted by:feval, andn denotes the different simulation
Note that although the SA solution usiag= 30is the lengths used to computg and its subgradient at any given
one most distant from the “Optimal” solution, its variance . “Error” is the Euclidean distance of the corresponding
is much lower. This could be explained as follows. The solution to the solution given in the last column.
particular SA solution largely overestimates the true solution Note that in problem (P)f is a convex but nonsmooth
function ofu. In principle, we could have used a cost func-
Table 2: Solutions generated by SA and the Sample-Path tion different fromzle d;u; in the objective function, in

methods (P). However, since we used a nonsmooth convex optimizer,
Final points the Bundle-Trust method of Schramm and Zowe (1990), we
Sample-path SA solution “Optimal”
solution ag=20 | ag =30 | solution
u1 28.1 25.0 78.1 284 Table 3: Sample-Path solutions for the constrained problem
s R | BB 8 [0 33000 0] 55500
ug 11.8 25.5 15.8 12.3 uy 67.3 67.0 66.6 66.5
us 0.0 37 0.0 0.0 us 27.1 27.4 28.3 28.2
ug 19.1 14.7 27.6 19.5 us 13.0 12.9 12.0 12.2
uz 7.0 9.3 78.1 6.7 ug 9.8 9.6 10.0 10.2
ug 0.0 0.0 74.1 0.0 us 5.7 5.1 5.2 5.1
ug 455 39.3 0.0 45.7 ug 495 495 49.1 48.8
u10 19.5 32.1 68.3 18.7 uz 0.0 0.0 0.0 0.0
u1g 0.0 3.4 0.0 0.0 ug 0.0 0.0 0.0 0.0
U1 0.0 0.8 0.0 0.0 ug 37.2 37.9 37.7 37.8
u13 11.0 2.0 0.3 11.3 u10 12.9 12.9 13.8 13.7
u14 37.9 19.8 16.4 37.4 u1l 0.0 0.0 0.0 0.0
uis 43 3.1 15.0 3.8 u12 0.0 0.0 0.0 0.0
u1g 22.3 33.2 22.7 22.9 u13 16.4 16.4 15.7 155
u17 6.2 7.9 30.8 5.7 uig 2.7 2.6 2.8 3.2
u1g 0.0 0.0 0.0 0.0 uis 7.0 6.8 6.9 6.6
u1g 17.2 16.5 233 17.4 Ui 2.9 3.0 3.0 3.0
u90 0.0 3.0 0.0 0.0 u17 229 22.6 23.1 23.2
us 7.8 11.6 8.5 7.0 uig 0.0 0.0 0.0 0.0
U9 0.0 0.0 0.0 0.0 u1g 10.1 10.4 10.5 10.5
U3 22.7 11.3 9.8 21.6 u20 0.0 0.0 0.0 0.0
U4 7.5 1.3 0.0 7.5 u1 7.1 6.9 6.6 6.4
uss 17.5 12.3 10.6 17.7 u2 0.0 0.0 0.0 0.0
usg 0.0 5.0 495 0.0 uz3 0.0 0.0 0.0 0.0
us7 42.0 45.1 78.1 422 u4 2.6 2.6 2.8 3.2
usg 6.4 7.7 45.0 6.8 us 0.1 0.0 0.0 0.0
u2g 0.0 0.0 0.0 0.0 uze 0.0 0.0 0.0 0.0
u3g 19.4 22.0 20.9 19.4 u7 26.1 26.4 26.5 26.2
uz1 0.0 0.0 0.0 0.0 uzg 5.6 6.0 5.9 5.8
uzp 0.0 1.3 0.0 0.0 U9 12.7 12.9 12.3 12.1
u33 0.1 7.4 2.3 0.8 u30 3.2 31 35 3.7
Objective u31 0.0 0.0 0.0 0.0
function 7673 7901 | 9390 7682 32 33 | 30 32 3.4
“Error” 232 4163 | 135.20 - 133 46 | 48 4.7 47
Average nfeval 51 56 50 50
badness 3003 3123 4585 3003 Objective
Variance function | 8283 | 8273 8276 8284
of badness| 1742E2 4509E2 | 589E1 1909E2 “Error” 2.70 2.50 0.93 -
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only considered convex cost functions. Similarly, we could
easily have added linear equality or inequality constraints
to problem (P).

In both problems (i.e. capacity constraint active or in-
active), to compute the function valyeand its subgradient
g at any given vector of arc capacities, we had to solve
a minimum cost network flow (MCNF) problem. For this
we used an earlier version (copy number: 361026, version
3.61-12/1979) of the code RNET developed at the Depart-
ment of Computer Science of Rutgers University by M.D.
Grigoriadis and T. Hsu. RNET is a network specialization of
the revised simplex method for bounded variables, primarily
designed for solving MCNF but it also has the capability of

solving other problems such as assignment, transshipment,

maximum flow, and shortest path problems, see Grigoriadis
and Hsu (1979) for a discussion of the algorithm. We thank
M.D. Grigoriadis for providing us a copy of this code for
use at the University of Wisconsin-Madison. As output,
RNET reports the values of both the primal variables and
the node potentials. Using this information we computed
theith component of the subgradient by the following rule,
see Ahuja, Magnanti, and Orlin (1993):

gi(w) = —max0, 7 (0;) — n(D;) — ¢}

where O; and D; are the origin and the destination of the
ith arc,c; is the cost of sending flow on theh arc, and
7 (j) is the potential of nodg.

As mentioned earlier, we used the Bundle-Trust method
of Schramm and Zowe (1990). We thank Dr. Helga
Schramm for providing us her code. The code finds an
e-subgradient whose norm is at mesand this controls the
number of function evaluations required by the method. In
all the problems we used= 1.

Asillustrated in Table 2, the sample-path method outper-
forms stochastic approximation, even without considering
the effort required to find a suitable value f@f. Since in
the second problem, SA was not applicable (without some
ad hoctechniques to enforce feasibility) we considered dif-
ferent simulation lengths. Table 3 shows that even with
a simulation run of length 10,000 the sample-path method
produces reasonable results.

5 CONCLUSIONS

In this paper we have shown how to use a variant of

sample-path method to solve optimization problems with

stochastic objective function and stochastic constraints. We
presented a set of sufficient conditions for the convergence
of a new form of the method. We also gave a computational
example of sample-path optimization applied to a medium-

sized network design problem with random supply and

demand nodes.
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The sufficient conditions outlined here extend the range
of application of sample-path methods. We hope that in
turn this may help in providing solutions for problems that
have been difficult to handle with current techniques.
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