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ABSTRACT

Recently sample-path methods have been successfully
in solving challenging simulation optimization and stocha
tic equilibrium problems. In this paper we deal with
variant of these methods to solve stochastic optimizat
problems with stochastic constraints. Using optimality co
ditions, we convert the problem to a stochastic variatio
inequality. We outline a set of sufficient conditions for th
almost-sure convergence of the method. We also illustr
an application by using the method to solve a network des
problem. We find optimal arc capacities for a stochas
network (in which the demand and supply at each node
random) that minimize the sum of the capacity allocati
cost and a measure of the expected shortfall in capacit

1 INTRODUCTION

This paper shows how to use the sample-path techniqu
solve stochastic constrained optimization problems, wh
can be seen as special cases of solving stochastic variat
inequalities. This capability extends the range of applicat
of sample-path methods, since in some important cases
only are the functions to be optimized stochastic in natu
but the constraints imposed on the problem could also
stochastic. In this section we review the existing forms
the sample-path method and illustrate a case for whic
may not be clear how to apply the sample-path method
its usual forms. In the remainder of the paper, we prov
a variant of the method and develop the necessary theor
deal with that case. We also report an application in netw
design, for which we compare the computational perf
mance of sample-path optimization with that of stochas
approximation.

Roughly speaking, sample-path methods are concer
with solving a problem of optimization or equilibrium, in
volving a limit function f∞ which we cannot observe
However, we can observe functionsfn that almost surely
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converge pointwise tof∞ as n → ∞. In the kind of
applications we have in mind,f∞ is typically a steady-
state performance measure or an expected value and
use simulation to observe thefn’s. In systems that evolve
over time, we simulate the operation of the system fo
say,n time units and then compute an appropriate perfo
mance measure. In static systems we repeatedly obse
instances of the system and compute an average. In bo
cases, to observefn at different parameter settings we use
the method of common random numbers. Furthermore,
many cases derivatives or directional derivatives of thefn

can be obtained using well-established methods of gradie
estimation such as infinitesimal perturbation analysis (IPA
see Ho and Cao (1991) and Glasserman (1991). The k
point is the following fact: once we fixn and a sample
point (using common random numbers),fn becomes a de-
terministic function. The sample-path methods then solv
the resulting deterministic problem (usingfn with the fixed
sample path selected), and take the solution as an estim
of the true solution. Clearly, the availability of very pow-
erful deterministic solvers (both for optimization and for
equilibrium problems) makes this approach very attractive

We distinguish between two types of problems. The firs
involves optimization; in this case thefn are extended-real-
valued functions:fn : Rk → R ∪ {±∞} for 1 ≤ n ≤ ∞,
and we are interested in solving

min
x

f∞(x). (1)

This setup also covers optimization problems with dete
ministic constraints since we can always setf∞(x) = +∞
for x that do not satisfy the constraints.

The second problem type is a variational inequality; in
this case thefn are vector-valued functions:fn : Rk →
Rk for 1 ≤ n ≤ ∞, and our aim is to find a pointx0 ∈ C,
if any exists, satisfying

for eachx ∈ C, 〈x − x0, f∞(x0)〉 ≥ 0, (2)
1
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where〈y, z〉 denotes the inner product ofy and z, andC

is a polyhedral convex subset ofRk. An equivalent way of
expressing (2) is via thegeneralized equation

0 ∈ f∞(x0) + NC(x0) (3)

whereNC(x) is the normal cone ofC at x, defined to be
the set

{y∗ | for eachc ∈ C, 〈y∗, c − x〉 ≤ 0} (4)

provided thatx ∈ C, and to be empty otherwise.
The problem (2) models a very large number of eq

librium phenomena in economics, physics, and operati
research; for many examples, see Harker and Pang (1
and Ferris and Pang (1997). One important area wh
variational inequalities are of use is nonlinear progra
ming, because the first order necessary conditions for lo
optimality of a given point can be stated as a variation
inequality. For example, in the particular special case
an unconstrained optimization problem, the associated v
ational inequality becomes a nonlinear equation and
method reduces to finding a zero of the gradient. Letf∞
be this gradient andC = Rk. It is easy to see that solv
ing the first order necessary optimality conditions for th
problem expressed in the form (2) is equivalent to fin
ing x0 ∈ Rk such thatf∞(x0) = 0. Another important
special case of variational inequalities arises when we
press the first-order necessary optimality conditions fo
nonlinear-programming problem with continuously diffe
entiable objective and constraint functions; in this paper
will deal with such a problem.

We are interested in solving the nonlinear optimizati
problem with a stochastic objective function and stochas
constraints. Consider

min F∞(x)

s.t. g∞(x) ≤ 0, h∞(x) = 0
x ∈ C.

(5)

In this formulation, C is a polyhedral convex set,F∞
is a real-valued function, andg∞ and h∞ are possibly
vector-valued functions.C is used to model deterministic
constraints. In addition to the usual objective functio
F∞ (or f∞ in (1)) that we cannot observe, we also ha
constraintsg∞ and/orh∞, that cannot be observed but hav
to be approximated/estimated using simulation. In Sect
3, we bring (5) into the form (2) and show how to exten
the theory developed for (2) to cover (5).

Let us demonstrate this setup with a simple examp
Suppose that we are trying to find the optimal parameter
a control policy that minimizes the long-run expected co
of an inventory system,F∞ (for example, the cost function
may consist of inventory holding and backorder costs).
472
)

l

-

-

f

addition to this, we would also like to maintain an acceptab
service level, so we impose a constraint that says that t
long-run fill-rate (fraction of orders filled without backlog-
ging) g∞, should not fall below a preset service level, sa
α. By simulating this inventory system and using gradien
estimation techniques, we can estimate these performan
measures as well as their gradients. Using these we c
further compute the optimal parameters of the invento
policy. In Section 3 we provide conditions that guarante
the existence and closeness of the estimate solutions to
exact solution. See also Gürkan and Karaesmen (1998)
which addresses a similar problem in production and inve
tory control. In Section 4, we deal with another exampl
that is related to the design of networks.

2 SAMPLE-PATH METHODS

Sample-path methods appeared in Plambecket
al. (1993, 1996) and were analyzed in Robinso
(1996). That form, called sample-path optimization
concerned the solution of simulation optimization problem
with deterministic constraints. The main condition impose
on fn is their epiconvergenceto the limit function f∞.
Roughly speaking, epiconvergence is the set convergen
of the epigraphs offn to the epigraph off∞. See Kall
(1986) for a treatment of various types of convergenc
and Rockafellar and Wets (1998) for a treatment o
epiconvergence from the perspective of optimization. Th
proposals of Plambecket al.(1993, 1996) used infinitesimal
perturbation analysis (IPA) for gradient estimation. A
closely related technique centered around likelihood-rat
methods appeared in Rubinstein and Shapiro (1993).

In Gürkan et al. (1996, 1999) we extended the basic
idea of using sample-path information to solve stochast
equilibrium problems. There we presented a framework
model such equilibrium problems as stochastic variational i
equalities and provided conditions under which equilibrium
points of approximating problems (computed via simulatio
and deterministic variational inequality solvers) converge a
most surely to the solution of the limiting problem which
we cannot observe. G̈urkan et al. (1999) also contains a
numerical application of the derived theory for finding the
equilibrium prices of natural gas as well as the equilibrium
quantities to produce in the European natural gas mark
Both forms of the sample-path method are explained
Gürkanet al. (1998), which also summarizes a number o
applications.

Since we will consider solving (5) as a special cas
of solving (2), in the remainder of this section we briefly
summarize the main convergence result for the sample-p
method to solve stochastic variational inequalities.

To guarantee the closeness of the solutionxn of (2)
with fn in place off∞ to the true solutionx0, we need
to impose certain functional convergence on the sequen
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{fn}. The specific property we require is calledcontinuous

convergenceand is denoted by
C−→; it is equivalent to

uniform convergence to a continuous limit on compact se
see e.g. Kall (1986). The motivating fact is the followin
consider a sequence of functionsfn and of pointsxn with
the property thatxn solves (2) withfn replacingf∞ and

xn → x0 as n → ∞. If fn
C−→ f∞ then the limit point

x0 solves (2). Therefore we might reasonably use soluti
xn as estimates of a solution of (2). However, althou
useful, continuous convergence by itself guarantees nei
the existence of solutionsxn nor their convergence.

To guarantee such existence and convergence we
to impose a certain nonsingularity condition calledcoherent
orientation. Here we do not go into any detail about th
concept, but refer the reader to Gürkanet al. (1996, 1999)
where we give an extensive description with further ref
ences. In the simple case of nonlinear equations, i.e. w
C = Rk, this condition reduces to the usual nonsingular
requirement on the Hessian∇f∞. In its general form, the
coherent orientation condition is a way of extending t
idea of nonsingularity to the case of a nontrivial setC.

In Gürkan et al. (1996, 1999) we provide sufficie
conditions for the existence of solutions of approximati
variational inequalities and their convergence to the ex
solution of the limit problem. Briefly, these conditions a

1. With probability one,fn
C−→ f∞.

2. The limit variational inequality (2) has a so-
lution x0.

3. f∞ has a strong Fréchet derivativedf∞(x0) at
x0, and the normal mapdf∞(x0)K associated
with (2) is coherently oriented, whereK =
K(x0, −f∞(x0)) is the critical cone toC at
(x0, −f∞(x0)):

K = TC(x0) ∩ {y ∈ Rk | 〈y, −f∞(x0)〉 = 0},

and TC(x0), the tangent cone toC at x0, is
the polar ofNC(x0).

Condition (3) is rather technical and we will not elabora
on it here; we refer the reader to Gürkan et al. (1999).
There, we also provide a bound on the distance between
approximate solutions and the limit solution in terms of t
uniform norm offn and f∞ on a compact set containin
the exact solution.

Building on this framework, we can further extend th
sample-path method to solve stochastic optimization pr
lems with stochastic constraints. The next section conta
a brief summary of the conditions derived to handle t
case.
4
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3 STOCHASTIC CONSTRAINED OPTIMIZATION

In this section we investigate the convergence properties o
the method in the special case of constrained optimization
with “probabilistic” constraints.

We work with an open set2 and a polyhedral convex
setC in Rk and functionsF : 2 → R andH : 2 → Rm.
The problem we consider is

min F(x)

s.t. x ∈ 2 ∩ C

H(x) = 0
(6)

The representation (6) is more general than it might seem
Suppose we consider the problem of minimizingQ(y) over
the set {y ∈ Y | g(y) ≤ 0, h(y) = 0} where Y is a
polyhedral convex set andg and h are functions from an
open subset ofRl into Rq and Rr respectively. We can
convert this to the form (6) by introducing slack variables
s ∈ Rq , rewriting the feasible set and the constraint functions
as (

g(y) + s

h(y)

)
, (y, s) ∈ Y × Rq

+, (7)

and takingk = l + q, x = (y, s), C = Y × Rq
+, F(x) =

Q(y), and

H(x) =
(

g(y) + s

h(y)

)
.

Therefore the form (6) is quite general, covering any com-
bination of inequalities and equations with a polyhedral
convex constraining set. Hence we will concentrate on (6)
in the rest of this section.

Let

L(x, u) = F(x) + 〈u, H(x)〉, (8)

and assume that the pointx0 is a local solution of (6).
Then under a constraint qualification, e.g., transversality or
non-degeneracy, as well as sufficient differentiability of the
problem functions, there existsu0 in Rm such that the pair
(x0, u0) is a solution of the generalized equation:

0 ∈ dL(x, u) + NC(x) × {0}m. (9)

Now we consider the situation where we cannot observe
the functionsF and H but sequences of functions{pn},
{rn}, and{Hn} approximatingdF , dH , andH respectively.
In the rest of this section we will describe the conditions
under which the solution of (9) is related to the solution of

0 ∈
(

pn(x) + uT rn(x)

Hn(x)

)
+

(
NC(x)

{0}m

)
. (10)
73
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Again, we need a generalized nonsingularity conditio
This time it is more convenient to express this conditi
in terms of a property calledstrong regularityoriginally
introduced by Robinson (1980). Assume thatx0 is a so-
lution of (3) andf∞ is Fŕechet differentiable atx0. The
generalized equation (3) is strongly regular atx0 if there
are neighborhoodsU of x0 andW of the origin inRk such
that the generalized equation

y ∈ f∞(x0) + df∞(x0)(x − x0) + NC(x) (11)

defines a single-valued, Lipschitzian mapx(y) from W to
U , i.e., for eachy ∈ W , x(y) is the unique solution inU
of (11). Now we are in position to state Theorem 1, t
main convergence result.

Theorem 1 Let 2 be an open subset ofRk and let
C be a polyhedral convex set inRk. Letx0 be a point of2,
u0 be a point ofRm, and supposeF and H are functions
from 2 to R and Rm respectively. Let{pn | n = 1, 2, . . . }
and {rn | n = 1, 2, . . . } be random functions from2 to Rk,
and {Hn | n = 1, 2, . . . } be a random function from2 to
Rm, such that for allx ∈ 2 and all finite n the random
variablespn(x), rn(x), andHn(x) are defined on a common
probability space(�, F, P ). Let L(x, u) be defined as in
(8), fn(x, u) = (pn(x) + uT rn(x), Hn(x)), and assume the
following:

a. With probability one, eachpn for n = 1, 2, . . .

is continuous andpn
C−→ dF .

b. With probability one, eachrn for n = 1, 2, . . .

is continuous andrn
C−→ dH .

c. With probability one, eachHn for n = 1, 2, . . .

is continuous andHn
C−→ H .

d. (x0, u0) is a solution of (9).
e. dL has a strong Fŕechet derivatived2L(x0, u0)

at (x0, u0) and the generalized equation0 ∈
dL(x, u)+NC(x)×{0}m is strongly regular at
(x0, u0) with associated Lipschitz modulusµ.

Then, there exist compact subsetsC0 ⊂ C ∩ 2 con-
taining x0 and U0 ⊂ Rm containing u0, neighborhoods
X1 ⊂ 2 of x0 and U1 ⊂ Rm of u0, a positive constant
λ, and a set1 ⊂ � of measure zero, with the following
properties: forn = 1, 2, . . . let

ξn = sup
(x,u)∈C0×U0

‖fn(ω, x, u) − dL(x, u)‖,

and

Xn(ω) := {(x, u) ∈ (C ∩ X1) × U1 |
0 ∈ fn(x, u) + NC(x) × {0}m}.
of

47
For eachω /∈ 1 there is then a finite integerNω such
that for eachn ≥ Nω the setXn(ω) is a nonempty, compact
subset ofB((x0, u0), λξn).

Again, condition (e) is highly technical and we refer the
reader toÖzge (1997) for a detailed discussion. In words
Theorem 1 says that under certain niceness conditions, f
sufficiently large n (i.e., if we go out long enough on the
sample-path), the solution set of (10) is nonempty an
compact; furthermore, the distance of every such solutio
of (10) from the exact solution(x0, u0) of (9) is bounded
by a constant multiple of the uniform norm offn − dL
on a compact set. The proof of Theorem 1 is given in
Özge (1997) and in G̈urkan et al. (1999), along with
a rigorous discussion of the relationship between cohere
orientation and strong regularity, and some references whe
several equivalent forms of these generalized nonsingulari
conditions are discussed.

For simplicity of exposition, Theorem 1 only dealt with
exact solutions of the approximating problems. Howeve
it is easy to verify that a similar result dealing with small
perturbations of the approximating problems is valid as wel

Note that when the setC = Rk, then one condi-
tion that guarantees strong regularity at(x0, u0) is the
strong second-order sufficient conditiontogether with the
linear independence of the gradients of the constraints; s
Theorem 4.1 in Robinson (1980). Precisely, the stron
second-order sufficient condition in this case says the fo
lowing: for each nonzeroy with dH(x0)y = 0 one has
yd2L(x0, u0, v0)y > 0. Robinson (1980, Theorem 3.1)
shows that for generalC a positive definiteness condition
suffices for strong regularity.

A very relevant work is Shapiro (1993) which pro-
vides similar convergence results for stochastic program
ming problems. Shapiro does not use strong regularit
instead he assumes the convergence of the approxim
solutions.

4 APPLICATION: NETWORK DESIGN

As already mentioned, a computational illustration of the
variational inequality formulation of the previous section
appears in G̈urkan et al. (1999). In this section we illustrate
the application of the sample-path method to a problem th
arises when designing networks, e.g., traffic or communica
tion networks, transportation or distribution systems. Thi
problem does not satisfy the conditions we imposed in th
previous section, because some of the functions involve
are nonsmooth. It is thus closer in structure to some of th
problems investigated in Plambeck et al. (1996). We sha
see in what follows that the sample-path approach worke
well in spite of the lack of smoothness.

The problem we consider is that of allocating available
capacity among the arcs of a network composed of a give
(finite) number of supply and demand nodes and a set
4
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arcs connecting these nodes. The demands and suppli
individual nodes are random. There is a cost,di , associated
with assigning unit capacity to arci. We would like to
allocate the available capacity to the arcs so as to minim
the sum of the capacity allocation cost and a measure
the expected shortfall in capacity.

min E[f (u1, . . . , uk)] + ∑k
i=1 diui

(P) s.t.
∑k

i=1 ui ≤ C

ui ≥ 0, i = 1, . . . , k

whereC is the total available arc capacity and

f (u1, . . . , uk)= min cx

s.t. Ax = b

0 ≤ xi ≤ ui, i = 1, . . . , k

where A is the node-arc incidence matrix,c is the cost
vector for sending flowx through the network, andb is the
random demand/supply vector. When we cannot satisfy
demand due to insufficient arc capacity,f , the cost of the
network, increases because we have to use artificial
with unlimited arc capacity but large arc costs. Therefo
f is one measure of the shortfall, the incapability to satis
demand that is due to insufficient arc capacity. For a sim
problem (but with no random element) that arises in netwo
synthesis, see Gomory and Hu (1964).

By trying to put a problem in a network format, on
gains insight into the problem as well. For example, t
arc capacities that we are trying to find may repres
actual bounds on the flow on an arc, e.g., the number
trucks to assign on a route in a distribution system, or th
may represent the ability of the destination node to han
the arriving flow, e.g., the number and/or the conditio
of rail tracks leading to a busy harbor. Such examp
are numerous, and networks are powerful tools that c
be used to model a wide variety of situations. Ahu
Magnanti, and Orlin (1993) is an excellent treatment
network flows, extensively covering existing theory whi
pointing out possible real-world applications.

The network we considered is given in Figure 1; it h
12 nodes and 33 arcs. The numbers on the arcs denote
cost of sending unit flow from the origin to the destination
the corresponding arc. Demands and supplies of individ
nodes (denoted bybj ) are uniformly distributed random
variables with the data given in Table 1. A negative (positiv
bj indicates that nodej is a demand (supply) point. We
chosed to be a vector with each component equal to 5

We would like to compare the numerical performance
the sample-path method with the performance of stocha
approximation (SA). In esssence, SA is a gradient-desc
method and hence it tends to inherit some of the drawba
of these methods. In addition, its empirical performan
is highly dependent on thea priori choice of the initial
4
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Figure 1:   Network Problem

Table 1:  Network Data

b1 U[80,120] b5 U[12,18] b9 U[10,30]
b2 U[-25,-5] b6 U[-45,-15] b10 U[-80,-20]
b3 U[10,30] b7 U[-30,-10] b11 U[-50,-10]
b4 U[0,20] b8 U[0,0] b12 U[-30,-10]

step sizea0. To be able to compare the sample-path so
lution with the solution of SA, we considered a problem
with only simple bounds onu. It is well known that in
the absence of bounds, SA may suffer from unboundedne
problems whereas in the presence of other linear inequali
constraints, SA experiences difficulties in enforcing feas
bility. Therefore we chose aC large enough so that the
capacity constraint of problem (P) was inactive. We firs
solved the problem with the sample-path method and dete
mined the required number of function evaluations,K (this
was 50 in our case). Then we allowed the SA algorithm
to run for K iterations and generated a sequence of poin
according to the following rule:

uk+1 = 52(uk − a0

k
gk)

wheregk is an estimate of the (sub)gradient or the directiona
derivative (whichever is available) atuk, a0 is the predeter-
mined step size constant, and52(·) is the projection onto
the feasible set2 determined by the bound constraints. In
both methods we used a simulation run of length 10,000
To determine the “Optimal” solution we solved the problem
using the Sample-Path method and a long simulation run
length 100,000 (the number of iterations required was 41
75
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this case). The results are reported in Table 2. The “Err
column is the Euclidean distance between the correspond
point and the “Optimal” solution. To make an addition
test of quality of these solutions, we randomly genera
20,000 instances of the supply/demand vectorb (using the
same network topology) and computed the average shor
(measured by the cost of the network which incorpora
the cost of using artificial arcs due to insufficient arc capa
ity and the cost of assigning the required capacity) and
variance; these are reported under “Average badness”
“Variance of badness” respectively. All the solutions a
obtained starting from a vector of ones.

Note that although the SA solution usinga0 = 30 is the
one most distant from the “Optimal” solution, its varianc
is much lower. This could be explained as follows. Th
particular SA solution largely overestimates the true solut

Table 2:  Solutions generated by SA and the Sample-P
methods

Final points
Sample-path SA solution “Optimal”

solution a0 = 20 a0 = 30 solution
u1 28.1 25.0 78.1 28.4
u2 45.0 53.5 60.1 44.5
u3 36.1 16.4 18.7 36.3
u4 11.8 25.5 15.8 12.3
u5 0.0 3.7 0.0 0.0
u6 19.1 14.7 27.6 19.5
u7 7.0 9.3 78.1 6.7
u8 0.0 0.0 74.1 0.0
u9 45.5 39.3 0.0 45.7
u10 19.5 32.1 68.3 18.7
u11 0.0 3.4 0.0 0.0
u12 0.0 0.8 0.0 0.0
u13 11.0 2.0 0.3 11.3
u14 37.9 19.8 16.4 37.4
u15 4.3 3.1 15.0 3.8
u16 22.3 33.2 22.7 22.9
u17 6.2 7.9 30.8 5.7
u18 0.0 0.0 0.0 0.0
u19 17.2 16.5 23.3 17.4
u20 0.0 3.0 0.0 0.0
u21 7.8 11.6 8.5 7.0
u22 0.0 0.0 0.0 0.0
u23 22.7 11.3 9.8 21.6
u24 7.5 1.3 0.0 7.5
u25 17.5 12.3 10.6 17.7
u26 0.0 5.0 49.5 0.0
u27 42.0 45.1 78.1 42.2
u28 6.4 7.7 45.0 6.8
u29 0.0 0.0 0.0 0.0
u30 19.4 22.0 20.9 19.4
u31 0.0 0.0 0.0 0.0
u32 0.0 1.3 0.0 0.0
u33 0.1 7.4 2.3 0.8

Objective
function 7673 7901 9390 7682
“Error” 2.32 41.63 135.20 –
Average
badness 3003 3123 4585 3003
Variance

of badness 1742E2 4509E2 589E1 1909E2
47
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which leads to a large cost as shown by the associa
objective function value and the average badness; but
the same time it leaves great leeway and hence the c
is not largely affected by the fluctuations in demand an
supply. In that sense the measures “Objective function” a
“Variance of badness” are conflicting.

We also considered problem (P) whenC = 350 and
the capacity constraint was active. In this case, we d
not apply the SA method due to the difficulties the metho
experiences in enforcing feasibility. The results are give
in Table 3. The number of function evaluations required
denoted bynf eval, andn denotes the different simulation
lengths used to computef and its subgradient at any given
u. “Error” is the Euclidean distance of the correspondin
solution to the solution given in the last column.

Note that in problem (P),f is a convex but nonsmooth
function ofu. In principle, we could have used a cost func
tion different from

∑k
i=1 diui in the objective function, in

(P). However, since we used a nonsmooth convex optimiz
the Bundle-Trust method of Schramm and Zowe (1990), w

Table 3:   Sample-Path solutions for the constrained proble

n 10,000 30,000 100,000 500,000

u1 67.3 67.0 66.6 66.5
u2 27.1 27.4 28.3 28.2
u3 13.0 12.9 12.0 12.2
u4 9.8 9.6 10.0 10.2
u5 5.7 5.1 5.2 5.1
u6 49.5 49.5 49.1 48.8
u7 0.0 0.0 0.0 0.0
u8 0.0 0.0 0.0 0.0
u9 37.2 37.9 37.7 37.8
u10 12.9 12.9 13.8 13.7
u11 0.0 0.0 0.0 0.0
u12 0.0 0.0 0.0 0.0
u13 16.4 16.4 15.7 15.5
u14 2.7 2.6 2.8 3.2
u15 7.0 6.8 6.9 6.6
u16 2.9 3.0 3.0 3.0
u17 22.9 22.6 23.1 23.2
u18 0.0 0.0 0.0 0.0
u19 10.1 10.4 10.5 10.5
u20 0.0 0.0 0.0 0.0
u21 7.1 6.9 6.6 6.4
u22 0.0 0.0 0.0 0.0
u23 0.0 0.0 0.0 0.0
u24 2.6 2.6 2.8 3.2
u25 0.1 0.0 0.0 0.0
u26 0.0 0.0 0.0 0.0
u27 26.1 26.4 26.5 26.2
u28 5.6 6.0 5.9 5.8
u29 12.7 12.9 12.3 12.1
u30 3.2 3.1 3.5 3.7
u31 0.0 0.0 0.0 0.0
u32 3.3 3.0 3.2 3.4
u33 4.6 4.8 4.7 4.7

nf eval 51 56 50 50
Objective
function 8283 8273 8276 8284
“Error” 2.70 2.50 0.93 –
6
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Solving Stochastic Optimization

only considered convex cost functions. Similarly, we cou
easily have added linear equality or inequality constrain
to problem (P).

In both problems (i.e. capacity constraint active or in
active), to compute the function valuef and its subgradient
g at any given vectoru of arc capacities, we had to solve
a minimum cost network flow (MCNF) problem. For this
we used an earlier version (copy number: 361026, vers
3.61-12/1979) of the code RNET developed at the Depa
ment of Computer Science of Rutgers University by M.D
Grigoriadis and T. Hsu. RNET is a network specialization
the revised simplex method for bounded variables, primar
designed for solving MCNF but it also has the capability o
solving other problems such as assignment, transshipm
maximum flow, and shortest path problems, see Grigoria
and Hsu (1979) for a discussion of the algorithm. We tha
M.D. Grigoriadis for providing us a copy of this code fo
use at the University of Wisconsin-Madison. As outpu
RNET reports the values of both the primal variables a
the node potentials. Using this information we compute
the ith component of the subgradient by the following rule
see Ahuja, Magnanti, and Orlin (1993):

gi(u) = − max{0, π(Oi) − π(Di) − ci}

whereOi andDi are the origin and the destination of th
ith arc, ci is the cost of sending flow on theith arc, and
π(j) is the potential of nodej .

As mentioned earlier, we used the Bundle-Trust meth
of Schramm and Zowe (1990). We thank Dr. Helg
Schramm for providing us her code. The code finds
ε-subgradient whose norm is at mostε and this controls the
number of function evaluations required by the method.
all the problems we usedε = 1.

As illustrated in Table 2, the sample-path method outpe
forms stochastic approximation, even without consideri
the effort required to find a suitable value fora0. Since in
the second problem, SA was not applicable (without som
ad hoctechniques to enforce feasibility) we considered di
ferent simulation lengths. Table 3 shows that even w
a simulation run of length 10,000 the sample-path meth
produces reasonable results.

5 CONCLUSIONS

In this paper we have shown how to use a variant
sample-path method to solve optimization problems wi
stochastic objective function and stochastic constraints.
presented a set of sufficient conditions for the convergen
of a new form of the method. We also gave a computation
example of sample-path optimization applied to a medium
sized network design problem with random supply an
demand nodes.
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The sufficient conditions outlined here extend the rang
of application of sample-path methods. We hope that i
turn this may help in providing solutions for problems tha
have been difficult to handle with current techniques.
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