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ABSTRACT

This paper follows-on papers presented at the two prev
WSC conferences on sensitivity of output measures to i
distribution selection in queueing modeling.  Here, a r
situation is studied, where data on input distributions 
utilized and distributions selected by two fitting packag
Arena Input Analyzer and ExpertFit.  Empirical distributio
made from histograms of the raw data itself , as well as
first two choices from Arena and ExpertFit are compared
this small bank queueing network model, showing tha
output measure such as mean wait in queue is quite sen
to input distribution choice.

1 INTRODUCTION

This is the third paper on sensitivity of output performan
measures (e.g., mean wait in queue) to the particular sh
of input distributions (interarrival times and service times
queueing modeling.  Queueing theory shows, under ce
conditions (M/G/1 and heavy-traffic approximations), th
only the first two moments of interarrival and service tim
effect the mean queue wait.  The question under study i
first two papers was, “how much sensitivity to high
moments is there when these particular conditions are
met.  In the first paper, Gross and Juttijudata, 1997, a G
queue was simulated for traffic intensities (') of .5 to .95,
and different families of distributions with the same first t
moments (i.e., matching coefficients of variation [CV]) we
studied.  Mean queue waits, Wq, and the 95th percentiles of
waiting time in queue, Wq(.95), were compared.  Even
cases of relatively high ', sizable differences were note
both in Wq and Wq(.95).  In the second paper, Gross
Masi, 1998, a small queuing network (a call center) w
studied to see if the sensitivity diminished in a network.  T
study showed it did not; the sensitivities in both Wq a
Wq(.95) were about the same as in the single node, G
case.  Also, both studies showed that the tail meas
Wq(.95), was no more sensitive than the mean measure
452
us
ut
l

re
,

he
r
n

tive

e
pes

in
t
s
he

ot
/1

r

nd
s
e
d
/1

re,
q,

and that in some cases, percentage differences were 
high (e.g., for a ' of .8 and a CV of 2 for interarrival times
and a CV of 0.5  for service times, differences betwe
Gamma and lognormal and Pearson type 5 distributions w
almost 30% and 70% respectively). 

This study centers on a real situation and compares 
for various empirical and fitted distributions using real da
Here, in addition to differences in higher moments, mean 
variances are not identical either, and we compare empir
fits to those from two fitting packages: Arena Input Analyz
and Expertfit.

2 THE MODEL

A student team for a final project in a Discrete Eve
Simulation course taught for George Washington Univers
at the Aberdeen Proving Grounds investigated an on-p
bank and collected interarrival data and service-time d
over the noon rush hour. One hundred seventy ei
observations of interarrival times, one hundred twenty fo
regular teller service times and fifty five express teller serv
times were collected.

This model, built in Arena, consisted of four regula
tellers and one express teller for deposits only.  If an expr
customer came in and found the express teller busy, an
one of the regular tellers were available, the express custo
would go to the regular teller for service; otherwise t
express customer would join the express queue.  Mean w
in the regular and express queues were observed fo
replications of 50,000 customers (simulating a steady-s
during the busy lunch hour period).  Traffic intensity wa
approximately .85 for the regular queue and .75 for 
express queue, so that even though the '’s were relatively
high, heavy-traffic conditions were not really met.

3 THE INPUT DISTRIBUTIONS USED

Both empirical distributions made from the actual data a
theoretical distributions fitted to the data by the Arena Inp
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Analyzer and ExpertFit were used in the simulation stud
Mean queue waits (WqReg and WqExpr) were outputte
a variety of distribution combinations comparing empiric
Arena fits and ExpertFit fits to observe how large the per
differences in these output performance measures mig
Confidence intervals were obtained using Arena’s Ou
Analyzer, and the confidence bounds were almost alw
within 2 to 3 % of the mean values, and never more than

3.1 Empirical Distributions

Since Arena has a limit of 127 characters on any input st
empirical distributions were based on histograms of
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actual data and those that best matched the first four d
moments (mean, variance, skewness and kurtosis) w
utilized. Several histogram approximations to the data w
developed and the first four moments resulting from t
histograms were compared to those of the actual data.  Fig
1 shows the absolute percent differences of the histog
moments from the data. 

It appears fairly clear that for Regular Service, E2 is t
closest match to the data and for Express Service, E3 app
best.  But for interarrival times, it is not clear.  E4 match
the mean exactly, while E1 matches the variance exac
One might be tempted to select E2 as the best ove
compromise, but one might think that the greatest sensitiv
Figure 1:  Moment Comparisons of Empirical Fits to Data

Absolute Percent Differences of Moments 
for Empirical Fits from Data
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of output performance measures such as Wq is to the 
(first moment) and sensitivity lessons as the order of
moments increase.  To illustrate that this might be so, we
look at some calculations for Ek /M/1 using the QTS softwar
associated with Gross and Harris, 1998.  Focusing o
express server only, the data give a mean service tim
1.471, which we use for the exponential service mean. 
empirical E4 interarrival time histogram hit the data mea
.486 exactly, while E2 had a mean of .493, about a 1
increase. Since 25% of the arrivals go to the express s
the mean arrival rates become .25/.486 = .514 and .25
= .507 respectively, yielding a traffic intensity of abo
(0.51)(1.471) ³ .75.  Using the E2/M/1 model, the QTS
software gives a Wq of 3.182 for the first case and 3 fo
second, an almost 6% difference.  Increasing the m
interarrival time by 5% (from .486 to .5103) yields a Wq
2.61, an almost 18% difference.  Interestingly, keeping
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mean interarrival time at .486 and using an E3/M/1 model,
which reduces the variance from 1.89 to 1.26, (a 33
change) yields a Wq of 2.744, only a 14% difference.  Th
shows how much more sensitive Wq is to the first mome
over the second.

3.2 Arena and ExpertFit Distributions

All 178 interarrival time observations, as well as the 12
regular service time observations and the 55 express ser
time observations were run through both Arena’s Inp
Analyzer and ExpertFit.  Table 1 shows the first thre
choices and their relative scores.  Arena’s fits are ba
essentially on mean squared error between the data histog
and the candidate theoretical distribution (low number be
ExpertFit uses a secret formula and comes out with a sc
from 0 to 100 (high number best). Arena has essentia



Sensitivity of Output Performance Measures to Input Distribution Shape
Table 1:  Arena and ExpertFit First Three Choices

Fit Package Interarrival Times Regular Service Times Express Service Times
Distribtn Score Distribtn Score Distribtn Score

Arena-1st Weibull 0.00146 Lognormal 0.0100 Lognormal 0.0010
Arena-2nd Beta 0.00183 Gamma 0.0195 Gamma 0.0254
Arena-3rd Lognormal 0.00523 Weibull 0.0212 Erlang 0.0282

XFit-1st Gamma(E) 97.06 Log-logistic 100.00 Pearson-5 97.83
XFit-2nd Gamma 89.71 Pearson-6 95.00 Log-logistic 96.74
XFit-3rd Weibull(E) 86.76 Lognormal 88.75 Pearson-6 89.13

XFit-Beta* Beta 97.22

* When given an upper bound value the same as determined in the Arena 2nd Choice, Beta
scored 1st
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eleven theoretical distributions it considers for fitting th
data.  These include unbounded distributions such as gam
and Weibull, as well as bounded distributions such as b
and uniform.  Arena chooses the best from these, accord
to its least mean square error.  Parameters are gene
estimated from the data by maximum likelihood.  ExpertF
has many more candidate distributions to choose amo
however, unless the user specifies an upper bound valu
the variate, ExpertFit will not consider bounded distributio
in its automatic (guided) fitting mode.  ExpertFit also us
maximum likelihood in estimation of distribution parameter

From Table 1, we see that Arena and ExpertFit genera
picked different distribution families for their first three
choices.  None of the first choices match.  The (E) after so
of the Expertfit distributions indicate that a locatio
parameter was added.  Expertfit considers a two-param
family with a location parameter added as a separate ch
from the same family without adding the extra locatio
parameter.  Arena will add a location parameter if it give
better fit, but does not consider the same family without 
location parameter as a competitor. Figure 2, shows, 
service times, the top choices for Arena and Expert
compared to the data histograms.

4 RUN RESULTS

The first set of runs involved only the empirical distribution
to see how sensitive Wq was to the particular empiric
distribution chosen for interarrivals.  Since E2 appeared 
best match for regular service and E3 for express service,
models  compared  were EiE2E3, i=1,2,3,4, where Ei is 
interarrival distribution, E2 is the regular service distributio
and E3 is the express service distribution.  Figure 3, sho
the Arena results for the four cases.
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Figure 3 shows the Wq for regular service and expre
service for each of the four empirical models, as well as 9
confidence bounds and  the minimum and  maximum  W
values  over the 25  replications.  Note the tightness of 
confidence bounds; all are less than ± 5% from the mean.
models, except E4E2E3 were within each others confide
bounds.  E4E2E3 shows significant differences (e.g.
percent difference for express service Wq between E2/E2
and E4/E2/E3 of about 8% and a percent difference 
regular service Wq of 12%).  This is consistent with o
earlier analysis using the Ek/M/1 theoretical model from the
QTS software, showing a percent difference in express 
of about 6%, for this slight change in mean interarrival tim
(.486 vs. .493). 

The second set of runs compares Arena and Exper
two top choices (models designated as A1A1A1, A2A2A
X1X1X1 and X2X2X2 respectively) to E4E2E3 which wa
chosen because of its better match to the data mean.  Fi
4 shows percentage differences in Wq and percent
differences in the moments of the Arena and Expert Fit fi
and second choice models from the empirical model.  We
the empirical  model as  the base from which to compute 
percent differences.  We do not mean to imply that this is 
correct model - we will beg the “age-old” question o
whether it is better to use an empirical distribution or a fitt
distribution.  However, one had to be chosen from which
compute percentage differences and the empirical model 
chosen rather than to pick either Arena or ExpertFit.

We note from Figure 4 that the percentage differences
the means (we also show percentage differences in 
approximate '’s for regular and express service sinc
differences in mean interarrival times and mean service tim
could tend to cancel if interarrival means wer
underestimated and service time means were overestima
are quite small (< 3 %), but we have seen before that sm
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Figure 3:  Arena Runs for EiE2E3
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differences in means can result in much larger difference
Wq.  Because of so many things to compare (two Wq valu
four means, four variances, four skewness measures
four kurtosis measures), it is not easy to see what really
the major influence on the Wq differences.  The smal
percent difference for WqExpr from E4E2E3 is A1A1A
(not even shown on the chart since it is so close to zero)
A1A1A1 has the third largest difference in its ', indicating
that closeness in some of the other moments have an e
The previous studies referenced in the introduction, wh
distributions with the same first two moments we
compared, already showed that other factors contribute
Wq.  We see this again here in that the smallest per
differences in Wq are not necessarily associated with 
smallest differences in the first two moments and vice ve
Further, A1A1A1 has the smallest percent difference in b
Wq-Reg and Wq-Expr, but had the third largest difference
both ' values and the second largest difference 
interarrival-time variance, although it had the smalle
differences in  both regular  and express service variance
skewness.  A2A2A2 had the largest percent difference
Wq-Reg, but was second closest in difference for '-Reg.
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5 CONCLUSIONS

We can definitely conclude that output performanc
measures such as mean wait in queue are quite sensitiv
the particular input distribution family chosen.  Eve
matching the first two moments was shown not to b
sufficient (directly in the previous studies and indirectl
here) and that higher moments as reflected by the particu
distribution shape, interact in complex ways and significan
influence the output measures.

This suggests that great attention be given to inp
modeling, for “garbage in gives garbage out” was never tru
than in simulation modeling.  Sizable effort should b
devoted to obtain very large, accurate samples (much lar
than those obtained for this study - ideally at least 5
observations) of input distributions, several fitting packag
utilized, and significant sensitivity analyses done with th
input distributions chosen from the fitting packages, as w
as using the empirical distributions themselves.
6
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Figure 4:  Comparisons Among Arena, ExpertFit and Empirical Models
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