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ABSTRACT

We consider to apply the perturbation analysis (PA) t
a single-server queue with multiple server vacations.
major difficulty in the implementation of PA estimator for
such queueing systems is that the introduced perturbatio
are propagated and accumulated continuously without a
resetting. This fact may lead to the divergence of P
estimates even if the limiting distribution exists. We show
that it is possible to construct a sequence of points o
the observed sample path such that the perturbations
accumulated only between the two adjacent points. T
key idea lies in constructing a perturbed path which is n
on the same sample as the observed nominal path bu
identical in probability law.

1 INTRODUCTION

Perturbation analysis (PA) was proposed as an effect
technique for sensitivity estimation of stochastic discre
event systems and has been developed increasingly
about the last two decades (see e.g. Ho and Cao 19
Glasserman 1991, Fu and Hu 1997 and references there
In particular, the discovery of commuting condition in the
infinitesimal perturbation analysis (IPA) and the genera
ization of smoothed perturbation analysis (SPA) have ma
the theory of PA richer and expanded the applicable cla
of systems (Glasserman 1991, Fu and Hu 1997). In th
paper, we apply the PA to a single-server queue with mul
ple server vacations, where the server often takes vacatio
and stops for random durations. Such queueing syste
with vacations often arise as models of many compute
communication and production systems, and an extens
survey is presented in (Doshi 1986).

A major difficulty in applying the PA to queueing
systems with multiple vacations is that, since the serv
does not take any idle period but is always either in servi
or in vacation, the effects of introduced perturbations a
generally propagated and accumulated continuously witho
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resetting. This contrasts with the systems without vacatio
where the perturbations are accumulated only during ea
busy period. This difficulty may lead to the divergence o
the PA estimates along with the length of observed samp
path even if the limiting distribution exists. Indeed, it
is said that, when estimating the derivative of a long-ru
average performance by PA, the system must experien
the states infinitely often, where only one event is possib
to occur or, even if more than one events are possible,
of them but one are exponentially distributed (Sections 8
and 8.3 in Glasserman 1991). In other words, these syste
states play a role of absorbing the effect of accumulate
perturbations. According to this statement, Miyoshi an
Hasegawa (1994) assumed that the vacation lengths
exponentially distributed in a similar model. Now, we
tackle the case of non-exponential event-lifetimes and sho
that it is possible to construct a sequence of points o
the observed sample path such that the perturbations
accumulated only between the two adjacent points. Th
key idea lies in constructing a perturbed path which i
not on the same sample as the observed nominal path
is identical in probability law, and to develop a similar
argument used to show the coupling of renewal process
in (Asmussen 1987) and (Lindvall 1992). We also conside
an alternative problem that the implementation of the SP
estimators generally requires the additional subpaths (F
and Hu 1997). To this problem, we show that, for som
cases, the required subpaths can be constructed from
observed sample path.

The paper is organized as follows: The model con
sidered in the paper is described and some notations a
introduced in the next section. The derivative estimato
is provided through the SPA technique in Section 3. I
Section 4, two problems in the implementation of the SP
estimator are considered: First in 4.1, we treat the proble
that the perturbations are accumulated continuously and w
show that it is possible to construct a sequence of poin
such that the perturbations are accumulated only betwe
the two adjacent points. We consider the other proble
5
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in 4.2, where we show that, for some cases, the requir
subpaths can be constructed from the observed path throu
the sample path analysis.

2 MODEL DESCRIPTION

The model considered in the paper consists of a sing
server and an unlimited waiting buffer, where the serve
takes vacations according to some vacation policy (describ
below). LetN = {1, 2, . . . } and {Tn}n∈N be the sequence
of arrival epochs of customers, satisfying0 = T1 < T2 <

· · · . We assume that distribution functionF for customer
service times is parameterized by a real numberθ in an
open interval2 and we note the service time of thenth
customer byσn(θ) for n = 1, 2, . . . . In applying the PA, the
underlying probability space is required to be independe
of the parameterθ . To have such a probability space, we
define the inverse function ofF(·, θ) on [0, 1] by

F −1(u, θ) = sup
{
x ≥ 0 : F(x, θ) ≤ u

}
.

Thus, introducing a sequence{Ud
n }n∈N of uniformly dis-

tributed random variables on[0, 1], σn(θ) is obtained by
F −1(Ud

n , θ). We introduce another sequence{Ur
n}n∈N of

uniformly distributed random variables on[0, 1] for the
server to make a decision whether serving a customer
taking a vacation after each service completion, which allow
us to deal with Bernoulli-type vacation policies. We de
fine the canonical version of probability space(�A, FA, PA)

such that a sample of�A is a realization of marked point pro-
cess{(Tn, Ud

n , Ur
n)}n∈N. In order to represent the vacation

lengths, we use a random sequence{Vn}n∈Z+ of nonnegative
real numbers, where eachVn is independent of others and
has a common distribution functionG for n 6= 0. In other
words, the process{Sn}n∈N given bySn = ∑n−1

i=0 Vi forms a
delayed renewal process with inter-renewal distributionG.
We assume thatG(0) = 0 and that{Vn}n∈Z+ is independent
of {(Tn, Ud

n , Ur
n)}n∈N. Define also the canonical probabil-

ity space(�V , FV , PV ) such that a realization of{Vn}n∈Z+
is a sample of�V . We work on the product probability
space(�, F, P) = (�A × �V , FA ⊗ FV , PA × PV ).

A state of the system is described by a couple(x, y) ∈
S = Z+ × Z+ \ {(0, y) : y ≥ 1}, where Z+ = Z+ ∪
{+∞}. The first element of(x, y) represents the number of
customers in the system (including one in service if any
and a positive value ofy is the possible number of customers
(including one in service) served until the server goes o
to the next vacation, whereasy = 0 means that the server is
in vacation. The value ofy plays a role of the counter and
reduces by one at each service completion. The exclusi
of {(0, y) : y ≥ 1} represents that the server is in vacatio
whenever the system is empty. We assume without a lo
of generality that the initial state at time0− is (0, 0) and
4
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the remaining vacation time isV0. Symbolsa, d and v

are used to represent the events, the occurrences of whic
may change the system state, corresponding to an arriv
and a departure of a customer, and a vacation terminatio
of the server, respectively. For each(x, y) ∈ S, the set of
possible events in state(x, y) is given by

E(x, y) =
{

{a, d} if y > 0;

{a, v} if y = 0.

We consider a mixed type vacation policy as follows: There
are constantsα, β ∈ Z+ (α < β) and, when the server
returns from a vacation and finds more thanα customers
waiting in the queue, the value ofy is set up atβ. If
the server finds less than or equal toα customers in the
queue, it takes another vacation immediately and repea
this manner (multiple vacations). In addition, there is a
constantp ∈ [0, 1] and, after each service completion, the
server takes a vacation with probabilityp even if the system
state is(x, y) with x > 0 andy > 0. Since the occurrence
of any event can change the system state, we regard ea
event as a mapping taking values onS. Noting that only
the departure eventd determines the next state randomly,
we havea, v: S → S andd: S × [0, 1] → S such as

a(x, y) = (x + 1, y),

v(x, 0) =
{

(x, β) if x > α;

(x, 0) if x ≤ α,

d((x, y), u) =




(x − 1, y − 1)

if x ≥ 2 andu > p;

(x − 1, 0)

if x = 1, or x ≥ 2 andu ≤ p.

(1)

We can see that, whenα = 0 and β = +∞, we have
the ordinary Bernoulli vacation policy, and further when
p = 0 is added, we obtain the exhaustive policy. On the
other hand, whenα = 0 and eitherβ = 1 or p = 1, we
have the pure limited policy. We assume that customers ar
served in the first-come, first-served (FCFS) order and tha
each service is continued without interruption once it starts
Note that once given a vacation policy, a sample path of the
system is uniquely determined by(ωA, ωV ) ∈ � for each
θ ∈ 2.

The performance measure of our interest is the averag
mean sojourn time over the firstm customers given by

Jm(θ) = E[Lm(θ)] = 1

m

m∑
n=1

E[Wn(θ)],
36
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whereWn(θ) denotes the sojourn time of thenth customer.
In the following sections, we intend to give the PA estimato
for dJm(θ)/dθ provided that it exists.

3 APPLICATION OF PERTURBATION ANALYSIS

In applying the PA, we compare the two sample paths, on
of which is determined by(ωA, ωV , θ) and the other is by
(ωA, ωV , θ + ∆θ), and consider the limit;

lim
∆θ→0

E
[
Lm(θ + ∆θ) − Lm(θ)

]
∆θ

= 1

m

m∑
n=1

lim
∆θ→0

E

[
Wn(θ + ∆θ) − Wn(θ)

∆θ

]
. (2)

We refer to the sample path withθ as the nominal path
and that withθ + ∆θ as the perturbed path. Generally, the
nominal path is obtained directly by a simulation experimen
(or observing the driving system) whereas the perturbe
path is constructed from the nominal path by a though
experiment.

The argument in this section essentially follows from (Fu
and Hu 1997) and we will proceed without some details
First, we impose the following assumption on the servic
time distribution, which is conventional in the PA applica-
tion (see Glasserman 1991):

Assumption 1

1. For anyu ∈ [0, 1], F −1(u, ·) is differentiable.
2. For eachθ ∈ 2, F(·, θ) is absolutely contin-

uous with density∂xF (·, θ) which is strictly
positive on an open intervalI (θ) and zero
elsewhere. F is continuously differentiable
on

⋃
θ∈2 I (θ) × {θ}.

We know from (Suri 1987) and also (Glasserman 1991) tha
under Assumption 1, the derivatives{dσn(θ)/dθ}n∈N can
be calculated in a real experiment without the knowledg
of {Ud

n }n∈N by

dσn(θ)

dθ
= −∂θ F (σn(θ), θ)

∂xF (σn(θ), θ)
, (3)

where∂θ F (x, θ) = ∂F (x, θ)/∂θ . In this paper, we add the
following assumption for simplicity:

Assumption 2 For each u ∈ [0, 1], F −1(u, ·) is
nondecreasing on2.

Due to the perturbation in service times, the occurrenc
of an arrival event may change the order with a service com
pletion or a vacation termination. It is well known that,
if such an order change in the event occurrences does n
influence the system state, that is, satisfies the commuti
condition, then the IPA gives the unbiased derivative est
437
,

mates for many performance measures (Glasserman 1991
In our model, however, the system state can be changed b
such an order change of event occurrences. For example
when only one customer is in the system and the system
state is(1, y) with y ≥ 2, the possible events to occur
are an arrival and the departure of customer in service
Suppose that the departure occurs first and then the nex
customer arrives in the nominal path and that, due to the
perturbations, these departure and arrival change their or
der in the perturbed path. In this case, we can see tha
just after the occurrences of these two events, the serve
is in a vacation in the nominal path, whereas the server is
serving the arriving customer (with probability1 − p) in
the perturbed path. As another example, when the serve
is in a vacation andα customers are waiting in the queue,
the possible events are an arrival and the vacation termina
tion. Suppose that the vacation termination occurs first and
then a customer arrives in the nominal path and the orde
changes in the perturbed path. Just after the occurrences
these two events, the server is in vacation in the nomina
path, whereas in service in the perturbed path. Thus, th
queueing system with multiple vacations does not satisfy
the commuting condition and generally the IPA gives biased
estimators.

We apply the SPA technique according to (Fu and
Hu 1997). We only consider the right-hand derivative, that
is, ∆θ > 0 in (2). Under Assumption 2, each service
time in the perturbed path is larger than or equal to the
corresponding one in the nominal path, and an arrival even
can change the order with the past departures or vacatio
terminations. LetBn(∆θ) ∈ FA ⊗FV be the set of samples
in which a sample path does not experience the order chang
of event occurrences between thekth arrival and other events
(departure or vacation termination) fork = 1, . . . , n − 1,
but does between thenth arrival and other events. Let
also NA(t) be the number of points of{Tn} observed in
[0, t], and letDn(θ) denote the departure epoch of thenth
customer. Then, the numerator of the right-hand side of (2)
is rewritten as

E
[
∆θ Wn(θ)

] = E
[
∆θ Wn(θ) 1Bc

NA(Dn)(∆θ)

]

+ E

[NA(Dn)∑
k=1

∆θ Wn(θ) 1Bk(∆θ)

]
, (4)

where ∆θ Wn(θ) = Wn(θ + ∆θ) − Wn(θ), Bn(∆θ) =⋃n
k=1 Bk(∆θ), andBc is the complement ofB (∈ FA⊗FV ).

In (4) and hereafter, we suppress the dependence onθ of
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Dn(θ) for the simplicity of notation. For the first term of
the right-hand side, we have the following:

Lemma 1 Under Assumption 1 and some additiona
assumptions,

lim
∆θ→0

E

[
∆θ Wn(θ)

∆θ
1Bc

NA(Dn)(∆θ)

]
= E

[
dWn(θ)

dθ

]
,

(5)

where

dWn(θ)

dθ
=

n∑
i=1

dσi(θ)

dθ
, (6)

and eachdσi(θ)/dθ is calculated from (3).
Proof: See (p. 84 of Fu and Hu 1997).
Next, consider the second term of (4) and further impo

the following assumption:
Assumption 3 The vacation length distributionG

is absolutely continuous with the continuous density∂G.
Let

(
ek(θ), lk(θ)

)
be the pair on{d, v} × N specifying

the type and index of the event (other than arrival) whic
occurred just beforeTk. For example,

(
ek(θ), lk(θ)

) = (d, l)

means that the event (other than arrival) just beforeTk is
the departure of thelth customer. Letζk(θ) be the time
length toTk from the time at which

(
ek(θ), lk(θ)

)
became

active, and let alsoηk(θ) denote the lifetime of the event
which became active at the occurrence of

(
ek(θ), lk(θ)

)
.

Then, we have the following:
Lemma 2 Under Assumptions 1–3 and other add

tional assumptions,

lim
∆θ→0

E

[NA(Dn)∑
k=1

∆θ Wn(θ)

∆θ
1Bk(∆θ)

]

= −E

[NA(Dn)∑
k=2

{
∆Wn

(
θ; σlk = ζk(θ)

)

× ∂xF
(
ζk(θ), θ

)
F

(
ζk(θ), θ

) − F
(
(ζk(θ) − ηk(θ))+, θ

)
×

(
dζk(θ)

dθ
− dσlk (θ)

dθ

∣∣∣
ζk(θ)

)
1{ek(θ)=d}

+ ∆Wn

(
θ; Vlk = ζk(θ)

)
× ∂G

(
ζk(θ)

)
G

(
ζk(θ)

) − G
(
(ζk(θ) − ηk(θ))+

)
× dζk(θ)

dθ
1{ek(θ)=v}

}]
, (7)
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where dσi(θ)/dθ
∣∣
ζ

represents the value ofdσi(θ)/dθ at
σi(θ) = ζ , and

dζk(θ)

dθ
= −

∑
i≥1

dσi(θ)

dθ
1(0,Tk)(Di(θ)). (8)

Furthermore, forZ = σlk or Vlk ,

∆Wn

(
θ; Z = ζ

) = Wn

(
θ; Z = ζ+) − Wn

(
θ; Z = ζ−)

represents the difference of twoWn(θ)’s on the nominal
paths with the additional condition ofZ = ζ+ andZ = ζ−,
respectively.

Proof: See (pp. 85–92 of Fu and Hu 1997).
From Lemmas 1 and 2, we have the following:
Theorem 1 Under the same assumptions as tho

in Lemmas 1 and 2, the unbiased SPA estimator of (2)
given by the sum of the quantities inside the expectatio
of right-hand side of (5) and (7).

4 IMPLEMENTATION OF THE ESTIMATOR

4.1 Perturbation Propagations

In the implementation of the SPA estimator in the previo
section, a major difficulty is that the effects of perturba
tions are accumulated continuously without any resettin
that is, under Assumption 2, the absolute values of t
derivatives dWn(θ)/dθ in (6) and dζk(θ)/dθ in (8) in-
crease along with the value ofn unlessdσi(θ)/dθ = 0
for every i ∈ N. This contrasts with the case of queuein
systems without vacations where the perturbations are
cumulated only during each busy period. Here, we tack
this problem and show that it is possible to construct
point sequence on the observed sample path such that
service time derivatives are accumulated only between
two adjacent points. We use the following lemma pr
sented in (Asmussen 1987: Lemma 2.4, Chap. VI) and a
in (Lindvall 1992; Lemma 5.1, Chap. III):

Lemma 3 Consider a zero-delayed renewal pro
cess{Sn}n∈N and suppose that the inter-renewal distribu
tion functionG has a continuous density. Then, there ex
constantsC ∈ [0, ∞) and b ∈ (0, ∞) such that the dis-
tributions of forward recurrence times{B(t)} with t ≥ C

have a common uniform component on(0, b), that is, there
exists a constantc ∈ (0, 1) such that, for allt ≥ C,

P
(
B(t) ∈ (u, v]) ≥ c

v − u

b
, 0 < u < v < b. (9)

Note that the assumption in the above lemma holds u
der Assumption 3. In (Asmussen 1987) and (Lindvall 1992
the above lemma is used to show the coupling of renew
processes, while we use this to construct an alternative s
8
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ple path of the renewal process which corresponds to
sum of vacation lengths on the perturbed path. The c
structed path is identical in probability law to the observe
one, but is able to absorb the accumulated perturbation

Let {S̃n(θ)}n∈N be the sequence of epochs at whic
the vacations are terminated. This sequence is constru
from a given(ωA, ωV ) ∈ �A × �V for eachθ ∈ 2.

Theorem 2 Under Assumption 3, we can construc
a point process{Rn(θ)}n∈N, which is a subsequence o
{S̃n(θ)}n∈N, such that,

∑
i≥1

dσi(θ)

dθ
1(0,t](Di)

d=
∑
i≥1

dσi(θ)

dθ
1(R−(t,θ),t](Di),

(10)

where
d= means equality in probability distribution and

R−(t, θ) = max(Rn(θ) ≤ t).
Proof: For given ωA = {(Tn, Ud

n , Ur
n)}n∈N ∈ �A

and ωV = {Sn}n∈N ∈ �V , we construct below a sam
ple ωV (∆θ) = {Sn(∆θ)}n∈N ∈ �V which is identical in
probability law to ωV and satisfiesωV (∆θ) → ωV as
∆θ → 0 (in the sense of conventional metric onR

∞, e.g.
d(x, y) = ∑∞

i=1 2−i |xi −yi |/(1+|xi −yi |)), and moreover
satisfies that, forn in a subset ofN,

S̃n(θ, ωA, ωV ) = S̃n(θ + ∆θ, ωA, ωV (∆θ)).

(11)

First, let S1(∆θ) = S1. For n ≥ 2, Sn(∆θ) is placed
recursively as follows: Lett0 = 0 and fork = 1, 2, . . . , we
choose atk appropriately satisfying

SNV (tk)+1 − tk < b and tk − SNV (tk−1)+1 ≥ C,

(12)

whereb and C are the same as in Lemma 3, andNV (t)

denotes the number of points of{Sn}n∈N in (0, t]. For
all n such thatSn ∈ (SNV (tk−1)+1, tk), we setSn(∆θ) =
Sn−1(∆θ) + Vn−1. Now, we can regard that the position o
SNV (tk)+1 is determined attk by the overshot distribution
of B(t). Furthermore, under the condition of (12), we ca
consider from Lemma 3 as if there exist random variablesξk,
Xk and Yk such thatP(ξk = 1) = 1 − P(ξk = 0) = c, Xk

is uniformly distributed on(0, b) and B(tk) = ξk Xk +
(1− ξk) Yk has the overshot distribution attk − SNV (tk−1)+1
(≥ C), wherec is in (9), and thatξk, Xk andYk are taken
independently of{(ξi, Xi, Yi)}i≤k−1. SinceXk is uniformly
distributed on(0, b), B(tk, ∆θ) = ξk Xk(∆θ) + (1− ξk) Yk

with

Xk(∆θ)

= Xk −
∑
i≥1

∆σi(θ) 1(S̃NV (tk−1)+1,S̃NV (tk )+1)(Di(θ)),
43
e
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is identical in probability law toB(tk) for a sufficiently
small |∆θ |. Using this, we putSNV (tk)+1(∆θ) by

SNV (tk)+1(∆θ)

= SNV (tk)(∆θ) + (
tk − SNV (tk)

) + B(tk, ∆θ).

The renewal processωV (∆θ) = {Sn(∆θ)}n∈N obtained
through the above procedure is identical in probability la
to {Sn}n∈N, and ifξk = 1, we have (11) withn = NV (tk)+1.
Hence, we have (10) for{Rn(θ)} = {S̃NV (tk)+1(θ) : ξk = 1}.
Note that{Rn(θ)} is the infinite sequence if{S̃n(θ)} is so.

In the practical implementation of the above resettin
points{Rn(θ)}n∈N, a problem is the computation ofC and
c in Lemma 3 (see the proof of Lemma 2.4 in Chap. V
of Asmussen 1987), while the value ofb can be chosen
relatively easily. However, if we can bear the long resettin
intervals, we can take a sufficiently smallC by choosing a
small value ofc. Hence, we can use a simple procedure su
that the accumulated perturbation is reset with probabilityc

when an arriving customer finds the system in vacation.

4.2 Coupling of Nominal and Perturbed Paths

Another problem in the implementation of the SPA estim
tor arises in the calculations of∆Wn(θ; σlk = ζk(θ)) and
∆Wn(θ; Vlk = ζk(θ)) in (7), which generally need additiona
sample subpaths, that is, the nominal paths with addition
conditions ofσlk = ζk± or Vlk = ζk± (Fu and Hu 1997).
We refer to these paths with the modifications as thekth
degenerated nominal and perturbed paths, respectively.

Here we show that, for the case ofα = 0 andβ = +∞
(pure Bernoulli policy), these degenerated paths can
constructed from the observed sample path (cf. Miyos
and Hasegawa, 1994). First, note that if the pair of tw
adjacent occurrences of a departure and an arrival (res
vacation termination and an arrival) satisfies the commuti
condition (in the local sense), that is, if the system sta
remains the same after the event order change, then
term ∆Wn(θ; σlk = ζk) (resp.∆Wn(θ; Vlk = ζk)) equals to
zero and the corresponding summand in (7) vanishes.
call the pair of event occurrences critical if it violates th
commuting condition. Checking the event mappings in (1
we know that the critical event pairs are found only in th
following situations:




a ◦ d((1, y), u) = a(0, 0) = (1, 0);
d ◦ a((1, y), u) = d((2, y), u) =

{
(1, y − 1), u > p;
(1, 0), u ≤ p,
9
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for y ≥ 2, and

{
a ◦ v(0, 0) = a(0, 0) = (1, 0);
r ◦ a(0, 0) = v(1, 0) = (1, +∞).

Since a vacation is postponed due to the event order cha
in the perturbed path and the arrival sequence is identi
in both the degenerated paths, we can construct thekth
perturbed path to keep the condition that the total sum
the vacation lengths at any epocht ≥ Tk in thekth nominal
path is not smaller than that in the perturbed path. In oth
words, the number of customers served byt ≥ Tk in the
kth perturbed path is greater than or equal to that in thekth
nominal path.

The construction of thekth perturbed path proceeds
as follows: The above condition clearly holds until th
time at which the first customer is served afterTk in the
kth degenerated nominal path. If there is a vacation af
a service in the nominal path, then we put the vacati
with the same length after the corresponding service
the perturbed path. If there is no vacation after a serv
in the nominal path but the server is to take a vacati
after the corresponding service in the perturbed path (d
to being empty), then we insert there a vacation leng
which is observed in thekth nominal path just afterTk

but postponed in the perturbed path due to the event or
change. Then, the total sum of the vacation lengths becom
identical in both the degenerated paths and we can get
coupling of these paths.

5 EXAMPLES AND SIMULATION EXPERIMENTS

This section contains the results of simulation experimen
for some examples. The estimates from the proposed met
are compared with those from some different method
If the decomposition formula holds (see Doshi 1986 an
Miyazawa 1994), we can obtain the unbiased IPA estima
from the corresponding system without vacations. Furth
more, if the vacation lengths are exponentially distribute
we have two different unbiased SPA estimates based
memoryless property: One is calculated from the altern
tive model, where there is no vacation even though t
system becomes empty but, when a customer arrives to
empty system, the server takes a set-up time with the
ponential distribution before his service. The other is fro
the original model where the perturbation accumulation
reset when a customer arrives to the empty system d
to the memoryless property. These PA estimates are a
compared with the symmetric finite difference estimate
In addition, the analytical results are used for comparis
if available, where all analytical values are computed fro
the differential of formulas in (Takagi 1991). In the table
below, the exact analytical values and the estimates
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referred to as “Exact,” “Decomposed,” “Set-up,” “Memory-
less,” and “Finite Difference,” respectively. The estimates
through the proposed method are referred to as “Proposed

The length of each sample path is in total1, 000, 000
customers served. The table entries other than analytic
values are given with 95% confidence intervals, taken from
30 independent replications. Parameterθ , which is the
mean service time, is fixed at1.0. The arrival rate, the
mean vacation length and Bernoulli scheduling probability
are also fixed atλ = 0.5, E[V1] = 0.6 and p = 1/3,
respectively.

Example 1 (M/M/1 with exponential vacation
length distribution): The case ofM/M/1 with exponential
vacation length distribution was simulated. The propose
estimates are calculated with the values ofb = E[V1]/2
andc = 1/(4 e) in (9). The experimental results are given
in Table 1 with the analytical values. In this case, the
decomposition formula holds, and we can use the memo
ryless property of vacation lengths. Hence, the propose
method seems to show the worst performance. Howeve
note that the on-line calculation of estimates from the origi
nal model with vacations is possible only in “Memoryless”
and “Proposed.”

Table 1: Estimates forM/M/1 with Exponential Vacation
Length Distribution

E[W(θ)] dE[W(θ)]/dθ

Exact 3.250 — 5.8125 —
Decomposed (IPA) — 5.815± 0.015
Set-up (SPA) 3.251± 0.003 5.822± 0.015
Memoryless (SPA) 3.251± 0.002 5.827± 0.011
Proposed (SPA) 3.251± 0.002 5.593± 0.283
Finite Difference — 5.742± 0.174

Example 2 (E2/E2/1 with uniform vacation
length ditribution): The case ofGI/GI/1 with uniform
vacation length distribution was simulated, where the in
terarrival and service times are both of the second Erlan
distributions. The proposed estimates are calculated wi
the values ofb = E[V1] and c = 0.06 in (9). The exact
analysis is not available and the estimation results are give
in Table 2. In this case, the decomposition formula hold
again, but the memoryless property of vacation lengths
not available. Thus, the on-line calculation of unbiased
estimates is possible only in the proposed method.

6 CONCLUDING REMARKS

In this work, we have considered the implementation o
PA estimator for queueing systems with multiple vacations
where a difficulty lies in that the perturbations are propa
gated continuously without resetting. We have proposed th
construction of point sequence on the observed sample pa
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Table 2: Estimates forE2/E2/1 with Uniform Vacation
Length Distribution

E[W(θ)] dE[W(θ)]/dθ

Decomposed (IPA) — 3.256± 0.005
Proposed (SPA) 2.097± 0.001 3.247± 0.119
Finite Difference — 3.296± 0.076

such that the perturbations are accumulated only betw
the two adjacent points. The proposed method is fai
general, but as in the experimental results, further impro
ments may be needed as well as the exact calculation
the values ofC andc in Lemma 3.
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