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ABSTRACT resetting. This contrasts with the systems without vacations

where the perturbations are accumulated only during each
We consider to apply the perturbation analysis (PA) to busy period. This difficulty may lead to the divergence of
a single-server queue with multiple server vacations. A the PA estimates along with the length of observed sample
major difficulty in the implementation of PA estimator for  path even if the limiting distribution exists. Indeed, it
such queueing systems is that the introduced perturbationsis said that, when estimating the derivative of a long-run
are propagated and accumulated continuously without any average performance by PA, the system must experience
resetting. This fact may lead to the divergence of PA the states infinitely often, where only one event is possible
estimates even if the limiting distribution exists. We show to occur or, even if more than one events are possible, all
that it is possible to construct a sequence of points on of them but one are exponentially distributed (Sections 8.2
the observed sample path such that the perturbations areand 8.3 in Glasserman 1991). In other words, these system
accumulated only between the two adjacent points. The states play a role of absorbing the effect of accumulated
key idea lies in constructing a perturbed path which is not perturbations. According to this statement, Miyoshi and
on the same sample as the observed nominal path but isHasegawa (1994) assumed that the vacation lengths are

identical in probability law. exponentially distributed in a similar model. Now, we
tackle the case of non-exponential event-lifetimes and show
1 INTRODUCTION that it is possible to construct a sequence of points on

the observed sample path such that the perturbations are

Perturbation analysis (PA) was proposed as an effective accumulated only between the two adjacent points. The
technique for sensitivity estimation of stochastic discrete key idea lies in constructing a perturbed path which is
event systems and has been developed increasingly fornot on the same sample as the observed nominal path but
about the last two decades (see e.g. Ho and Cao 1991,is identical in probability law, and to develop a similar
Glasserman 1991, Fu and Hu 1997 and references therein).argument used to show the coupling of renewal processes
In particular, the discovery of commuting condition in the in (Asmussen 1987) and (Lindvall 1992). We also consider
infinitesimal perturbation analysis (IPA) and the general- an alternative problem that the implementation of the SPA
ization of smoothed perturbation analysis (SPA) have made estimators generally requires the additional subpaths (Fu
the theory of PA richer and expanded the applicable class and Hu 1997). To this problem, we show that, for some
of systems (Glasserman 1991, Fu and Hu 1997). In this cases, the required subpaths can be constructed from the
paper, we apply the PA to a single-server queue with multi- observed sample path.
ple server vacations, where the server often takes vacations The paper is organized as follows: The model con-
and stops for random durations. Such queueing systemssidered in the paper is described and some notations are
with vacations often arise as models of many computer, introduced in the next section. The derivative estimator
communication and production systems, and an extensive is provided through the SPA technique in Section 3. In
survey is presented in (Doshi 1986). Section 4, two problems in the implementation of the SPA

A major difficulty in applying the PA to queueing  estimator are considered: Firstin 4.1, we treat the problem
systems with multiple vacations is that, since the server that the perturbations are accumulated continuously and we
does not take any idle period but is always either in service show that it is possible to construct a sequence of points
or in vacation, the effects of introduced perturbations are such that the perturbations are accumulated only between
generally propagated and accumulated continuously without the two adjacent points. We consider the other problem
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in 4.2, where we show that, for some cases, the required

Miyoshi

the remaining vacation time i8y. Symbolsa, d and v

subpaths can be constructed from the observed path throughare used to represent the events, the occurrences of which

the sample path analysis.
2 MODEL DESCRIPTION

The model considered in the paper consists of a single
server and an unlimited waiting buffer, where the server

takes vacations according to some vacation policy (described

below). LetN = {1,2,...} and{7T,},cn be the sequence
of arrival epochs of customers, satisfyifg= T1 < T» <

---. We assume that distribution functian for customer
service times is parameterized by a real numbén an
open interval® and we note the service time of thh
customer by, (6) forn =1, 2, .... In applying the PA, the
underlying probability space is required to be independent
of the parameteé. To have such a probability space, we
define the inverse function af' (-, ) on [0, 1] by

F7'(u,0) =supfx > 0: F(x,0) <u}.

Thus, introducing a sequen({@j}neN of uniformly dis-
tributed random variables of®, 1], 0,(6) is obtained by
F‘l(U,il,G). We introduce another sequenf®)},y of
uniformly distributed random variables d®, 1] for the
server to make a decision whether serving a customer or
taking a vacation after each service completion, which allows
us to deal with Bernoulli-type vacation policies. We de-
fine the canonical version of probability spa€es, F4, Pa)
such that a sample 614 is arealization of marked point pro-
cess{(T,, U,‘f, U )}qen- In order to represent the vacation
lengths, we use arandom sequefitg, 7z, of nonnegative
real numbers, where eadh, is independent of others and
has a common distribution functiofi for n # 0. In other
words, the processS, },en given by S, = 27;01 V; forms a
delayed renewal process with inter-renewal distributiain
We assume that (0) = 0 and tha{V, },,cz, is independent
of {(T, U,‘l’, U }uen- Define also the canonical probabil-
ity space(Q2y, Fy, Py) such that a realization dW,},,c7.
is a sample ofQy. We work on the product probability
space(2, F,P) = (24 x Qvy, Fa ® Fy, Pa x Py).

A state of the system is described by a couplgy) €
S =27y xZi\{©,y) :y>1}, whereZ, = Z, U
{+00}. The first element ofx, y) represents the number of
customers in the system (including one in service if any),
and a positive value of is the possible number of customers
(including one in service) served until the server goes out
to the next vacation, whereas= 0 means that the server is
in vacation. The value of plays a role of the counter and
reduces by one at each service completion. The exclusion
of {(0, y) : y > 1} represents that the server is in vacation
whenever the system is empty. We assume without a loss
of generality that the initial state at tinte- is (0, 0) and
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may change the system state, corresponding to an arrival
and a departure of a customer, and a vacation termination
of the server, respectively. For eath y) € S, the set of
possible events in stata, y) is given by

{a,d}

{a, v}

ECx,y) = Ty>0

if y=0.

We consider a mixed type vacation policy as follows: There
are constants;, 8 € Z, (¢ < B) and, when the server
returns from a vacation and finds more tharcustomers
waiting in the queue, the value of is set up atg. If

the server finds less than or equaldocustomers in the
queue, it takes another vacation immediately and repeats
this manner (multiple vacations). In addition, there is a
constantp € [0, 1] and, after each service completion, the
server takes a vacation with probabiljpyeven if the system
state is(x, y) with x > 0 andy > 0. Since the occurrence

of any event can change the system state, we regard each
event as a mapping taking values 8h Noting that only

the departure event determines the next state randomly,
we havea, v: S — S andd: S x [0, 1] — S such as

a(x,y)=x+1y),

2(x.0) = (x,B) !fx>oz;
x,0 if x <«a,
x-1Ly-1
. ) 1)
A(Cx. ). 10) if x>2andu > p;
X,y),u) =
Y (x—1,0
if x=1,0orx>2andu < p.

We can see that, whea = 0 and 8 = 400, we have
the ordinary Bernoulli vacation policy, and further when
p = 0 is added, we obtain the exhaustive policy. On the
other hand, whemr = 0 and either8 = 1 or p = 1, we
have the pure limited policy. We assume that customers are
served in the first-come, first-served (FCFS) order and that
each service is continued without interruption once it starts.
Note that once given a vacation policy, a sample path of the
system is uniquely determined iy 4, wy) € Q for each
0 € 0.

The performance measure of our interest is the average
mean sojourn time over the firgt customers given by

1 m
In®) =ElLn©@)] = — 3 E[Wa(0)],
n=1
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whereW, (9) denotes the sojourn time of tlth customer.
In the following sections, we intend to give the PA estimator
for dJ,,(0)/d6 provided that it exists.

3 APPLICATION OF PERTURBATION ANALYSIS
In applying the PA, we compare the two sample paths, one
of which is determined byw,, wy, ) and the other is by

(wa, wy, 0 + A0), and consider the limit;

E[Lin (0 + A0) — L,y (0)]

lim
A0 AfQ
m
. W, (0 + A0) — W, (0
_1 lim E[ n(0 + AB) n ( )] @
mn=1A6—>O A0

We refer to the sample path with as the nominal path
and that withd + A6 as the perturbed path. Generally, the
nominal path is obtained directly by a simulation experiment
(or observing the driving system) whereas the perturbed
path is constructed from the nominal path by a thought
experiment.

The argument in this section essentially follows from (Fu
and Hu 1997) and we will proceed without some details.
First, we impose the following assumption on the service
time distribution, which is conventional in the PA applica-
tion (see Glasserman 1991):

Assumption 1

1.
2.

For anyu € [0, 1], F~(u, -) is differentiable.
For eacth € ©, F(-,0) is absolutely contin-
uous with densityo, F (-, 8) which is strictly
positive on an open interval (§) and zero
elsewhere. F is continuously differentiable

on Upee 1) x {6}.

We know from (Suri 1987) and also (Glasserman 1991) that,
under Assumption 1, the derivativgdo, (9)/d6},cn can

be calculated in a real experiment without the knowledge
of (U} e by

do,(0) 99 F(0,4(9),0)
do - _axF(Un(g)ve)’

®3)

wheredg F(x,0) = 0F(x, 0)/d6. In this paper, we add the
following assumption for simplicity:

Assumption 2 For eachu < [0,1], F~Y(u,) is
nondecreasing o1®.

Due to the perturbation in service times, the occurrence
of an arrival event may change the order with a service com-
pletion or a vacation termination. It is well known that,
if such an order change in the event occurrences does not
influence the system state, that is, satisfies the commuting
condition, then the IPA gives the unbiased derivative esti-
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mates for many performance measures (Glasserman 1991).
In our model, however, the system state can be changed by
such an order change of event occurrences. For example,
when only one customer is in the system and the system
state is(1, y) with y > 2, the possible events to occur
are an arrival and the departure of customer in service.
Suppose that the departure occurs first and then the next
customer arrives in the nominal path and that, due to the
perturbations, these departure and arrival change their or-
der in the perturbed path. In this case, we can see that,
just after the occurrences of these two events, the server
is in a vacation in the nominal path, whereas the server is
serving the arriving customer (with probability— p) in
the perturbed path. As another example, when the server
is in a vacation and customers are waiting in the queue,
the possible events are an arrival and the vacation termina-
tion. Suppose that the vacation termination occurs first and
then a customer arrives in the nominal path and the order
changes in the perturbed path. Just after the occurrences of
these two events, the server is in vacation in the nominal
path, whereas in service in the perturbed path. Thus, the
gueueing system with multiple vacations does not satisfy
the commuting condition and generally the IPA gives biased
estimators.

We apply the SPA technique according to (Fu and
Hu 1997). We only consider the right-hand derivative, that
is, A6 > 0 in (2). Under Assumption 2, each service
time in the perturbed path is larger than or equal to the
corresponding one in the nominal path, and an arrival event
can change the order with the past departures or vacation
terminations. LeB3,(A0) € F4 ® Fy be the set of samples
in which a sample path does not experience the order change
of event occurrences between #ik arrival and other events
(departure or vacation termination) fér=1,... ,n — 1,
but does between theth arrival and other events. Let
also N4 (¢t) be the number of points of7,} observed in
[0, ¢], and letD,(0) denote the departure epoch of tinth
customer. Then, the numerator of the right-hand side of (2)
is rewritten as

E[40 W, (0)] = ]

+

where AgW,,(8) = W,(6 + Af) — W, (0), B,(A0) =
Ui—1 Bk (A0), andB is the complement df (¢ Fa ® Fv).
In (4) and hereafter, we suppress the dependencg @i

Ap W, (0) L

NA(Dn)(A(’)]

NA(DM)

Z AWy (0) 18,(40)
k=1

], @)
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D, (9) for the simplicity of notation. For the first term of
the right-hand side, we have the following:

Lemma 1l  Under Assumption 1 and some additional
assumptions,
AgW, (0 dw, 6
lim E 9”()ﬁ, _ n()’
A6—0 Af B 4 (Dn) (40) do )
where

n

dW, (0) _

do; (0)
deo ’

deo ©

i=1

and eachdo; (6)/d6 is calculated from (3).

Proof: See (p. 84 of Fu and Hu 1997).

Next, consider the second term of (4) and furtherimpose
the following assumption:

Assumption 3 The vacation length distributio
is absolutely continuous with the continuous den8ity.

Let (ek(e), lk(e)) be the pair on{d, v} x N specifying
the type and index of the event (other than arrival) which
occurred just befor&. Forexample(ex(6), ix(6)) = (d, 1)
means that the event (other than arrival) just beffras
the departure of théth customer. Let;(0) be the time
length to7; from the time at which(ex(6), Ik (9)) became
active, and let als@(9) denote the lifetime of the event
which became active at the occurrence (ef(9), lk(9)).
Then, we have the following:

Lemma 2  Under Assumptions 1-3 and other addi-
tional assumptions,

lim E
A0—0

-

Nf%") 49 W (0)
Af

1&@@)}
k=1
NA (Dn)

2

{AWn (0: 01, = &1(9))
k=2

0 F (5 (6), 0)
X
F(5k(0),0) — F((&(0) — m(0)+, 0)

(O oy ©)

+ AW, (0; Vi, = & (0))
3G (2 (9))
X
G(&(9)) — G((&(©) — m(0)F)

% (6) 1{ek(9)—v}”a

X

4 ()
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where d"i(g)/d9|z represents the value ao;(6)/d9 at
0i(0) =¢, and

g (@)
do

do; (6
-3 D 101, (D10

i1

8)

Furthermore, forZ = oy, or vy,

AWZ(0;Z =¢) = Wy (0; Z = 5+) — Wy (0; Z = ¢ )
represents the difference of twi&,(6)’'s on the nominal
paths with the additional condition &f = ¢+ andZ = ¢ —,
respectively.

Proof: See (pp. 85-92 of Fu and Hu 1997).

From Lemmas 1 and 2, we have the following:

Theorem 1 Under the same assumptions as those
in Lemmas 1 and 2, the unbiased SPA estimator of (2) is
given by the sum of the quantities inside the expectations
of right-hand side of (5) and (7).

4 |IMPLEMENTATION OF THE ESTIMATOR

4.1 Perturbation Propagations

In the implementation of the SPA estimator in the previous
section, a major difficulty is that the effects of perturba-
tions are accumulated continuously without any resetting,
that is, under Assumption 2, the absolute values of the
derivatives dW,,(9)/d9 in (6) and d¢(6)/d9 in (8) in-
crease along with the value af unlessdo;(0)/d6 = 0

for everyi € N. This contrasts with the case of queueing
systems without vacations where the perturbations are ac-
cumulated only during each busy period. Here, we tackle
this problem and show that it is possible to construct a
point sequence on the observed sample path such that the
service time derivatives are accumulated only between the
two adjacent points. We use the following lemma pre-
sented in (Asmussen 1987: Lemma 2.4, Chap. VI) and also
in (Lindvall 1992; Lemma 5.1, Chap. III):

Lemma 3 Consider a zero-delayed renewal pro-
cess{S, },en and suppose that the inter-renewal distribu-
tion functionG has a continuous density. Then, there exist
constantsC € [0, o0) and b € (0, oo) such that the dis-
tributions of forward recurrence timegB(¢)} with r > C
have a common uniform component@nb), that is, there
exists a constant € (0, 1) such that, for allr > C,

P(B() € (. v]) = ¢ ——. 9)

O<u<v<b.

Note that the assumption in the above lemma holds un-
der Assumption 3. In (Asmussen 1987) and (Lindvall 1992),
the above lemma is used to show the coupling of renewal
processes, while we use this to construct an alternative sam-



On the Implementation of a Smoothed Perturbation Analysis Estimator

ple path of the renewal process which corresponds to the is identical in probability law toB(#) for a sufficiently

sum of vacation lengths on the perturbed path. The con-

structed path is identical in probability law to the observed

one, but is able to absorb the accumulated perturbations.
Let {S,(0)},en be the sequence of epochs at which

the vacations are terminated. This sequence is constructed

from a given(wa, wy) € Q4 x Qy for eachd € 6.

Theorem 2 Under Assumption 3, we can construct
a point process{R,(0)},en, Which is a subsequence of
{S,(0)},en, such that,

do; (9)
do

i>1

do; ()
— 1(r_.0).11(Di),

Lo,n(Di) 4 7 10
10

i>1

where £ means equality in probability distribution and
R_(1,0) = max(R,(0) < 1).

Proof: For given wa = {(T,, U4, UN}en € Q4
and wy = {S;},en € Qy, We construct below a sam-
ple wy (A0) = {S,(A0)},en € Qy which is identical in
probability law to wy and satisfieswy (A0) — wy as
A6 — 0 (in the sense of conventional metric &, e.qg.
d(x,y) = Y721 27 [x; —yil /(1+|x; — y;])), and moreover
satisfies that, for in a subset ofN,

$2(0, wa, wy) = $,(0 + A, wa, wy (AD)).
(11)

First, let S1(A0) = S1. Forn > 2, S,,(A0) is placed
recursively as follows: Lefp = 0and fork = 1,2, ..., we
choose a; appropriately satisfying

Snyaoy+1 —te < b and t — Sy, _p+1 = C,
(12)

whereb and C are the same as in Lemma 3, aNg (v)
denotes the number of points ¢§,},cny in (O, ¢]. For
all n such thatS, € (Sny@_1)+1, %), We setS,(A0) =
Sy,—1(A0) + V,_1. Now, we can regard that the position of
Snv+1 is determined at; by the overshot distribution
of B(t). Furthermore, under the condition of (12), we can
consider from Lemma 3 as if there exist random variables
X and Y, such thatP(é, = 1) = 1—- P& =0) = ¢, Xi

is uniformly distributed on(0, ») and B(t;) = & Xi +
(1— &) Yi has the overshot distribution at— Sy, ¢, —1)+1

(= C), wherec is in (9), and that,, X, andY; are taken
independently of(&;, X;, Yi)}i<k—1. SinceX is uniformly
distributed on(0, b), B(tx, A9) = & X1 (AQ) + (1 — &) Vi
with

Xi(A0)

= Xk — Z Aoi(9) 1(§Nv(zk,l>+1,§zvv(zk)+1)(Di @),

i>1
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small |A6|. Using this, we putSy, ,)+1(A0) by

SNv(fk)+1(A0)
= Sny () (A0) + (tx — Sny ) + Blte, A0).

The renewal processy(A0) = {S,(A0)},cn Obtained
through the above procedure is identical in probability law
t0 {Su}nen, and iféx = 1, we have (11) with = Ny (1) +1.
Hence, we have (10) fd®R,, (0)} = {Sny )+1(6) : & = 1}.
Note that{R,(0)} is the infinite sequence S, (0)} is so.

In the practical implementation of the above resetting
points{R, (0)},en, @ problem is the computation ¢f and
¢ in Lemma 3 (see the proof of Lemma 2.4 in Chap. VI
of Asmussen 1987), while the value sfcan be chosen
relatively easily. However, if we can bear the long resetting
intervals, we can take a sufficiently sméllby choosing a
small value ot. Hence, we can use a simple procedure such
that the accumulated perturbation is reset with probabhility
when an arriving customer finds the system in vacation.

4.2 Coupling of Nominal and Perturbed Paths

Another problem in the implementation of the SPA estima-
tor arises in the calculations af W, (0; oy, = ¢x(6)) and
AW, (0; Vi, = & (0)) in (7), which generally need additional
sample subpaths, that is, the nominal paths with additional
conditions ofoy, = &+ or V;, = &+ (Fu and Hu 1997).
We refer to these paths with the modifications as #tie
degenerated nominal and perturbed paths, respectively.

Here we show that, for the casewt= 0 andg = +o0
(pure Bernoulli policy), these degenerated paths can be
constructed from the observed sample path (cf. Miyoshi
and Hasegawa, 1994). First, note that if the pair of two
adjacent occurrences of a departure and an arrival (resp. a
vacation termination and an arrival) satisfies the commuting
condition (in the local sense), that is, if the system state
remains the same after the event order change, then the
term AW, (0; oy, = &) (resp.AW,(8; Vi, = &)) equals to
zero and the corresponding summand in (7) vanishes. We
call the pair of event occurrences critical if it violates the
commuting condition. Checking the event mappings in (1),
we know that the critical event pairs are found only in the
following situations:

aod((1,y),u) =a(0,0) = (1,0);

doa((1,y),u) =d((2,y),u) = (1,0,

u=p,



Takagi and Miyoshi

for y > 2, and referred to as “Exact,” “Decomposed,” “Set-up,” “Memory-
less,” and “Finite Difference,” respectively. The estimates
aov(0,0) =a(0,0) = (1, 0); through the proposed method are referred to as “Proposed.”
roa(0,0) = v(L,0) = (1, +00). The length of each sample path is in to1aD00, 000

customers served. The table entries other than analytical
values are given with 95% confidence intervals, taken from
30 independent replications. Paramefigrwhich is the
mean service time, is fixed dt0. The arrival rate, the
mean vacation length and Bernoulli scheduling probability
are also fixed ath = 0.5, E[V1] = 0.6 and p = 1/3,
respectively.

Example 1 M/M /1 with exponential vacation
length distribution): The case oM /M /1 with exponential
vacation length distribution was simulated. The proposed
estimates are calculated with the valuesbot E[V1]/2
andc =1/(4e in (9). The experimental results are given
in Table 1 with the analytical values. In this case, the
decomposition formula holds, and we can use the memo-
ryless property of vacation lengths. Hence, the proposed
method seems to show the worst performance. However,
note that the on-line calculation of estimates from the origi-
nal model with vacations is possible only in “Memoryless”
and “Proposed.”

Since a vacation is postponed due to the event order change
in the perturbed path and the arrival sequence is identical
in both the degenerated paths, we can constructkthe
perturbed path to keep the condition that the total sum of
the vacation lengths at any epoch T in the kth nominal

path is not smaller than that in the perturbed path. In other
words, the number of customers servedrby T in the

kth perturbed path is greater than or equal to that inkthe
nominal path.

The construction of théth perturbed path proceeds
as follows: The above condition clearly holds until the
time at which the first customer is served aff@rin the
kth degenerated nominal path. If there is a vacation after
a service in the nominal path, then we put the vacation
with the same length after the corresponding service in
the perturbed path. If there is no vacation after a service
in the nominal path but the server is to take a vacation
after the corresponding service in the perturbed path (due
to being empty), then we insert there a vacation length Table 1: Estimates fodM /M /1 with Exponential Vacation
which is observed in thé&th nominal path just aftef} Length Distribution
but postponed in the perturbed path due to the event order

change. Then, the total sum of the vacation lengths becomes E[W ()] dE[W (0)]/do
identical in both the degenerated paths and we can get the gy 4t 3250 — 58125 —
coupling of these paths. Decomposed (IPA) — 5.81% 0.015
Set-up (SPA) 3.25% 0.003 5.822+ 0.015
5 EXAMPLES AND SIMULATION EXPERIMENTS Memoryless (SPA)  3.25% 0.002 5.827+ 0.011
. . . . . ) Proposed (SPA) 3.25%+ 0.002 5.593+ 0.283
This section contains the results of simulation experiments £inite Difference _ 5742 0.174

for some examples. The estimates from the proposed method
are compared with those from some different methods:
If the decomposition formula holds (see Doshi 1986 and Example 2 (E2/E2/1 with uniform vacation
Miyazawa 1994), we can obtain the unbiased IPA estimates length ditribution): The case ofG//G1/1 with uniform
from the corresponding system without vacations. Further- Vacation length distribution was simulated, where the in-
more, if the vacation lengths are exponentially distributed, terarrival and service times are both of the second Erlang
we have two different unbiased SPA estimates based on distributions. The proposed estimates are calculated with
memoryless property: One is calculated from the alterna- the values ofb = E[Vi] andc = 0.06 in (9). The exact
tive model, where there is no vacation even though the analysis is not available and the estimation results are given
system becomes empty but, when a customer arrives to thein Table 2. In this case, the decomposition formula holds
empty system, the server takes a set-up time with the ex- again, but the memoryless property of vacation lengths is
ponential distribution before his service. The other is from ot available. Thus, the on-line calculation of unbiased
the original model where the perturbation accumulation is €stimates is possible only in the proposed method.

reset when a customer arrives to the empty system due

to the memoryless property. These PA estimates are also6 CONCLUDING REMARKS

compared with the symmetric finite difference estimates.

In addition, the analytical results are used for comparison In this work, we have considered the implementation of
if available, where all analytical values are computed from PA estimator for queueing systems with multiple vacations,
the differential of formulas in (Takagi 1991). In the tables Where a difficulty lies in that the perturbations are propa-

below, the exact analytical values and the estimates are gated continuously without resetting. We have proposed the
construction of point sequence on the observed sample path
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Table 2: Estimates foEy/E2/1 with Uniform Vacation
Length Distribution

E[W(9)] dE[W (0)]/d6
Decomposed (IPA) — 3.256 0.005
Proposed (SPA) 2.09% 0.001 3.247+ 0.119
Finite Difference — 3.296+ 0.076

such that the perturbations are accumulated only between
the two adjacent points. The proposed method is fairly

general, but as in the experimental results, further improve-
ments may be needed as well as the exact calculation of
the values ofC andc¢ in Lemma 3.
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