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ABSTRACT

Consider the problem of estimating the small probab
ity that the maximum of a random walk exceeds a lar
threshold, when the process has a negative drift and
underlying random variables may have heavy tailed dis
butions. We consider one class of such problems that
applications in estimating the ruin probability associat
with insurance claim processes with subexponentially d
tributed claim sizes, and in estimating the probability
large delays in single serverM/G/1 queues with subex-
ponentially distributed service times. Significant work h
been done on analogous problems for the light tailed c
(when the moment generating function exists in a neighb
hood around zero, so that the tail decreases at an expone
rate or faster) involving importance sampling methods th
use exponential twisting. However, for the subexponen
case, moment generating functions do not exist in the pe
nent regions making exponential twisting infeasible. In th
paper we introduce importance sampling techniques wh
the new probability measure is obtained by twisting t
hazard rate of the original distribution. For subexponen
distributions this amounts to twisting at a subexponen
rate. We also introduce the technique of “delaying” t
change of measure and show that the combination of
two techniques produces asymptotically optimal estima
of the small probabilities mentioned above for a large cla
of subexponential distributions.

1 INTRODUCTION

Consider a random walkHn = ∑n
i=0 ξi , where eachξi can

be expressed as a difference of the random variables (rvBi

andAi . The sequence of rv(Bi : i ≥ 0) is i.i.d. and has a
heavy tailed distribution, i.e., a distribution whose tail deca
at a subexponential rate. The sequence of rv(Ai : i ≥ 0)

is also i.i.d., having an exponential distribution with rateλ,
and is independent of(Bi : i ≥ 0). Assume thatE(ξi) < 0.
In this paper we develop techniques for efficient estimat
of the small probabilityP (maxn Hn > u) asu → ∞.

One application of such probabilities arises in the i
surance industry (see, e.g., Embrechts, Kluppelberg
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Mikosch (1997)). For many insurance companies it
reasonable to assume that the premium accumulates d
ministically at a rater. The claim sizes(Bi : i ≥ 0) are
i.i.d. and subexponentially distributed and their inter-arriv
times (Ai : i ≥ 0) are exponentially distributed. Letu de-
note the initial reserve of such a company. Then its wea
at time t equals

U(t) = u + rt −
N(t)∑
i=1

Bi,

whereN(t) = sup(n : ∑n
j=1 Aj ≤ t), is the Poisson count-

ing process. An important parameter for selecting the p
mium rate, determining the appropriate level of initial reser
and for managing the risk of the portfolio is the probabilit
of eventual ruin, i.e.,P (U(t) < 0 for somet). Noting that
ruin can occur only at instants of claim arrivals, we ca
re-express the ruin probability asP (Hn > u for somen) =
P (maxn Hn > u), whereξi = Bi − rAi .

Another application arises in estimating steady sta
probability of large delays in aM/G/1 queue observing
first-come-first-serve rule (see, e.g., Section VI.9 of Fel
(1966)). If Wn denotes the waiting time of customern,
Bn denotes its service time andAn denotes the inter-arrival
time between customern andn + 1, then it is well known
thatWn+1 = (Wn +Bn −An)+ = (Wn + ξn)+. Progressing
recursively,

Wn+1 = max(ξn + · · · + ξ1, ξn + · · · + ξ2, . . . , ξn).

This implies that Wn+1 has the same distribution as
maxi≤n Hn. Thus, the steady state probability of waitin
time exceedingu equalsP (maxn Hn > u). Such probabil-
ities are useful in performance analysis of certain comm
nications networks (see, e.g., Heidelberger (1995)).

The probabilityP (maxn Hn > u), typically, cannot be
determined analytically. Simulation has proved an effecti
tool for accurate estimation of such probabilities. How
ever, as is well known, naive simulation takes a prohibiti
amount of computational effort to estimate small probabi
ties. Importance sampling (IS) has been successfully use
0
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efficiently estimate small probabilities when the underlyin
distributions are light tailed, i.e., when the tail cumulativ
distribution function (cdf) decreases at an exponential
faster rate and hence the moment generating function
finite in a neighborhood of zero. We refer the reader
Glynn and Iglehart (1989) and Heidelberger (1995) for a
introduction to the use of importance sampling and a surv
respectively. It involves simulating the system under a ne
probability P ∗ and appropriately modifying the resulting
output to get an un-biased estimate of the small probab
ity. The key problem is to select aP ∗ which significantly
reduces the variance of the resulting estimator.

We refer the reader to Siegmund (1976), As
mussen(1985), Lehtonen and Nyrhinen (1992) for IS tec
niques for the efficient estimation ofP (maxn Hn > u) when
the (Bi : i ≥ 0) have light tailed distributions. These tech
niques involve using appropriate “exponentially twisted
distributions for eachAi andBi (A new distributionFθ is
said to be obtained by exponentially twisting distributio
F by an amountθ if dFθ (x) = eθxdF (x)/M(θ), where
M(·) denotes the moment generating function of distributio
F ). In particular,Bi needs to be positively twisted (i.e.
θ > 0). However, when(Bi : i ≥ 0) has a tail that decays
at a subexponential rate, then such a exponential twist
is no longer feasible and alternative techniques need to
developed.

Initial research suggests that the efficient simulatio
for estimating the probability of a random walk exceedin
a large threshold, when the underlying variables are no
negative and subexponentially distributed, is feasible.
particular, in Asmussen and Binswanger (1997) the proble
of estimatingP (maxn Hn > u) is tackled by using the
Pollaczeck-Khinchine formula to represent this probabili
as P (

∑N
i=1 Xi > u), where(Xi : i ≥ 1) is a sequence of

non-negative i.i.d. random variables corresponding to t
ladder heights of the random walk(Hn : n ≥ 0) and N is
a geometrically distributed random variable with paramet
ρ = λE(Ai). It is easy to check thatE(ξi) < 0 is equivalent
to the conditionρ < 1. It is well known thatXi has
an integrated tail distribution with cdf 1

E(Bi)

∫ x

0 F B(y)dy,

where F B(·) denotes the tail cdf ofBi . Typically, Xi

is subexponentially distributed ifBi is (see Embrechts,
Kluppelberg and Mikosch (1997)). These papers also foc
on the easier problem of efficiently estimatingP (

∑n
i=1 Xi >

u), where n is fixed, to gain insight towards developing
efficient simulation techniques forP (

∑N
i=1 Xi > u). Let

Sn = ∑n
i=1 Xi .

Asmussen and Binswanger (1997) propose a conditio
ing approach for estimatingP (Sn > u) andP (SN > u) and
show that it is "asymptotically optimal" (i.e., asu → ∞)
when the tail distribution ofXi decreases at a polynomia
rate (i.e.,Xi has a Pareto like, regularly varying distribu
tion; see, Feller (1966) for a discussion on regularly varyin
42
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distributions). Asymptotic optimality (a.o.) is the standa
criteria used in the literature to judge the efficiency of ra
event simulation and it is reviewed in Section 2. Howev
when the tail distribution ofXi decreases at a subexpone
tial, but a higher rate, as when it has a Weibull distributio
with shape parameter less than 1, this approach is not asy
totically optimal (also abbreviated as “a.o.” in the rest
the paper). Asmussen, Binswanger and Hojgaard (19
propose an importance sampling approach which works
such distributions for estimatingP (Sn > u). The basic idea
in that approach is to use a distribution that has a tail tha
(in an informal sense) an order of magnitude heavier th
that of Xi . However, forP (SN > u), it suffers from the
drawback that the IS estimator has infinite variance wh
ρ is sufficiently close to 1.

In this paper we also focus on the problem of developi
efficient simulation techniques using IS, to estimateP (Sn >

u) and P (SN > u), albeit our hazard rate approach
different from the approach in Asmussen, Binswanger a
Hojgaard (1998). Our major contributions are:

1. We arrive at the IS distribution to efficiently es-
timateP (Sn > u), by twisting the hazard rate
of the original distribution. This hazard rate
twisted distribution is determined as follows:
Suppose that the original probability density
function (pdf) of the random variableXi exists
and is represented asλ(x)e− ∫ x

0 λ(y)dy where
λ(x) is its hazard rate, i.e., its the ratio of the
pdf and the tail distribution function. Then
after twisting the hazard rate by an amount
0 ≤ θ < 1 the resulting twisted pdf equals
λ(x)(1− θ)e− ∫ x

0 (1−θ)λ(y)dy . For example, for
a Pareto distribution with pdf

f (x) = α − 1

xα
, x ≥ 1 (α > 1)

= 0 otherwise,

the hazard rate twisting amounts to polynomial
twisting leading to the twisted pdf

fθ (x) = (α − 1)(1 − θ)

x1+(α−1)(1−θ)
, x ≥ 1,

= 0 otherwise.

Through appropriate selection ofθ as a func-
tion of u, with the property thatθ increases to
1 asu → ∞, we show that for(Xi : i ≥ 0)

subexponentially distributed and under mild
regularity conditions,P (Sn > u) can be esti-
mated a.o.

2. The above approach, suffers from a drawback
similar to that suffered by the IS approach
1
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suggested in Asmussen, Binswanger and Ho-
jgaard (1998); it performs poorly for large
values ofρ. To remedy this, we introduce the
concept ofdelayed hazard rate twistingto a.o.
estimateP (SN > u) for all values ofρ < 1.
Again, if f (·) denotes the pdf of the original
distribution, then underdelayed hazard rate
twisting, the new pdf

fθ,x∗(x) = f (x) x < x∗,

= F(x∗)

F θ (x∗)
fθ (x) x ≥ x∗,(1)

whereF θ (·) denotes the tail cdf correspond-
ing to fθ (·) and (θ, x∗) are appropriately se-
lected increasing functions ofu. Thus, the
tails become heavier from the twisting, but
the probability that the random variable takes
small values remains unchanged.

3. We generalize the concept of delayed haz-
ard rate twisting toweighted delayed hazard
rate twisting. Here, the IS distribution has
slightly less probability of taking small values
compared to the original distribution. The dif-
ference is used to make the tails even heavier
as compared to the tails under delayed haz-
ard rate twisting. We show experimentally
that this gives much larger variance reduction
compared to delayed hazard rate twisting.

Section 2 defines subexponential distributons and d
scribes importance sampling and related work in more deta
Sections 3 elaborates on each of the items listed above. E
perimental results are presented in Section 4.

2 PRELIMINARIES AND RELATED WORK

2.1 Subexponential Distributions

Let (Xi : i ≤ n) be i.i.d. rv’s with cdf F(·) and taking
values on(0, ∞). Let F(x) = 1− F(x) denote the tail cdf
andF ∗n(·) denote the n-fold convolution ofF(·). For any
two functionsg1(u) andg2(u) (that take non-zero values for
all sufficiently largeu), we use the notationg1(u) ∼ g2(u)

to denote thatlimu→∞ g1(u)/g2(u) = 1. Finally, let X(i),
1 ≤ i ≤ n denote theith order statistics of(X1, . . . Xn)

with X(n) being the maximum.
A cdf F(·) is said to be subexponentially distributed if

F ∗n(u)

nF (u)
∼ P (Sn > u)

nP (X1 > u)
∼ 1 (2)
y

42
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for all n. In fact, it suffices to show that(2) holds forn = 2.
Thus subexponentiality implies thatP (Sn > u) ∼ nF(u).
It can also be shown that for case whereN is a geometric
random variable with parameter1 − ρ (i.e. P (N = i) =
(1 − ρ)ρi for i = 0, 1, 2 . . .),

P (SN > u) ∼ ρ

1 − ρ
F(u)

(see, e.g., Embrechts, Kluppelberg and Mikosch (1997)
These asymptotic results are used in proving a.o. in th
estimation of these quantities. Also note thatP (X(n) >

u) ∼ nP (X1 > u), indicating that on the set{Sn > u}, we
haveSn ≈ X(n).

To develop our hazard rate twisting framework, we
assume thatX is a continuous random variable with a pdf
given byf (x). As mentioned in the Introduction,λ(x) =
f (x)/F (x) denotes the hazard rate. Let3(x) = ∫ x

0 λ(y)dy

denote the hazard function. Then,f (x) = λ(x)e−3(x) and
F(x) = e−3(x). In Pitman(1980), it is shown that amongst
the distributions whose hazard rateλ(x) eventually decreases
to 0, a necessary and sufficient condition for a distributio
to belong to the sub-exponential class is that:

lim
u→∞

∫ u

0
λ(x)exλ(u)−3(x)dx = 1. (3)

This is useful in checking membership to the subexponenti
class. For a detailed exposition on subexponential distrib
tions the reader is referred to Embrechts, Kluppelberg an
Mikosch (1997).

Let S(·) be a slowly varying function, i.e.,
limx→∞ S(tx)/S(x) = 1 for all t > 0. In our analysis,
we need additional mild regularity conditions on the distri-
bution of the rvXi ; the complete set of assumptions tha
we make on the distribution ofXi are as follows:

Assumption 1 The hazard rate is eventually de-
creasing and eventually everywhere differentiable. Fur
thermore, it has the form,

λ(x) = S(x)/xβ,

for 0 < β ≤ 1.
Assumption 2 For β = 1, there exists ap > 0

such that

3(x) ≥ [log(x)]p

for all x large enough.
It can be checked that the commonly used familie

of subexponential distributions: Pareto, Weibull with de
creasing failure rate (i.e.,F(x) = e−λxα

, for α < 1) and
log-normal distributions, satisfy these assumptions. Also
Assumption (1) is sufficient for (3) to hold and hence it
guarantees subexponentiality. The limitations imposed b
2
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these assumptions are minor from practical viewpoint an
are discussed in Juneja, Shahabuddin and Chandra (199

As mentioned in Section 1, we are interested in es
timating µn(u) ≡ P (Sn > u) = E(1{Sn>u}) for n fixed,
and µN (u) ≡ P (SN > u) = E(1{SN >u}) where1{·} is an
indicator random variable. The basic ideas in this pape
can be easily extended to the case whereN has a general
distribution that is bounded by a geometrically decreasin
function.

Typically, probabilities such asµn(u) and µN (u) are
efficiently estimated by developing an alternate represent
tion of these probabilities asEP ∗(Z), whereZ is a random
variable whose expectation under the probability measu
P ∗ ( that may be same asP ) equals the value of the desired
probability but whose variance is much smaller than th
variance of the naive estimator, i.e., the random variab
1{Sn>u} under probabilityP (for estimatingµn(u)). Then,
many independent samples ofZ underP ∗ are generated,
and the average of the samples provides a point estimator
the desired probability. The variance is also estimated fro
the given sample and the normal approximation provide
by the central limit theorem is used to construct confidenc
intervals.

We are interested in cases whenu is large, i.e., when
the probabilities are very small. A standard criteria to judg
whether any rare event probability estimator is efficient o
not for large values ofu, is a.o.. LetσP ∗ 2(Z) denote the
variance of rvZ, when generated using the probabilityP ∗.

Definition 1 The estimator corresponding toZ is
said to be a.o., iff

lim inf
u→∞

log(σP ∗(Z))

log(EP ∗(Z))
≥ 1. (4)

One can easily show that the naive simulation estimato
is not a.o. as in that case, the ratio in (4) tends to 1/2.

2.2 Importance Sampling and Related Work

Let G(·) denote a distribution function with pdfg(·) such
that g(x) > 0 if f (x) > 0. Let P ∗ denote the resultant
probability measure on(X1, . . . Xn) when eachXi has
the distributionG(·). The probabilityµn(u) may be re-
expressed as follows:

µn(u) = EP (1{Sn>u})
= EP ∗(1{Sn>u}L(X1, . . . , Xn))

where L(X1, . . . Xn) ≡ ∏n
i=1 f (Xi)/g(Xi) is called

the likelihood ratio. Hence, in this case,Z =
1{Sn>u}L(X1, . . . , Xn), generated usingP ∗, is the new esti-
mator forµn(u). Similarly, the estimator for the probability
µN (u) is Z = 1{SN >u}L(X1, . . . , XN ), whereN is gener-
ated from a geometric distribution with parameter1−ρ and
42
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(Xi : i ≥ 0) are generated usingP ∗. The key issue is to
select aP ∗ (or equivalently, theG(·)) so that the variance
of Z is reduced, and whenever possible, a.o. is achieve

Asmussen, Binswanger and Hojgaard (1998) propo
that the IS pdfg(·) have a very heavy tail so that the
following condition is satisfied:

Condition 1 The distributionK with pdf k(x) =
f 2(x)
cg(x)

, wherec = ∫ ∞
0

f 2(x)
g(x)

dx, is subexponential and its tail

cdf K(x) is of order F(x)2 in the sense thatlogK(x) ∼
logF(x)2.

Once this condition holds then

EP ∗(Z2) = cnPK(Sn > u) ∼ ncnPK(X > u)

and a.o. follows.
In particular, they propose the following IS pdf to be

used to simulate(Xi : i ≤ n):

g(x) = 1

(x + e) log(x + e)2
for x ≥ 0.

Note that this distribution has a very heavy tail as its ta
distribution functionG(x) = 1/ log(x + e) decreases at
a logarithmic rate, and the first moment does not exis
They show that for many commonly used distributions th
above density satisfies condition 1 and hence a.o. estima
µn(u). Intuitively, one may see this by noting that on the se
{Sn > u}, typically X(n) > u, andX(i) for (i ≤ n − 1) are
small and insensitive tou. The rvZ, on this set equals the
product of the ratiof (X(i))/g(X(i)) for (i ≤ n). Now, the
ratiof (X(n))/g(X(n)) is small and decreases asu increases.
The other ratios,f (X(i))/g(X(i)) for (i ≤ n−1), typically,
are each greater than 1, but are relatively unaffected asu

increases to infinity. Hence, foru large enough, with high
probability, Z is small, and with little variation, on the set
{Sn > u}.

For the case ofµN (u), it is easily seen thatE(NcN )

needs to be finite for a.o.. In particular,c < 1/ρ. This,
creates problems for large values ofρ. Intuitively, this
can be seen by the fact that the value of the produ
5n−1

i=1 [f (X(i))/g(X(i))]2 increases geometrically withn,
while its relative frequency of occurrence≈ ρn(1 − ρ)

decreases at a lower geometric rate, leading to infinite se
ond moment. In the next section we develop the haza
rate twisting framework and show that “delayed” hazar
rate twisting overcomes this problem of infinite varianc
for large values ofρ.
3
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3 HAZARD RATE TWISTING AND DELAYED
CHANGES OF MEASURE

3.1 Hazard Rate Twisting

Consider again the pdff (x) = λ(x)e−3(x). As, men-
tioned in the Introduction, we cannot select a new pdf b
positive exponential twisting, i.e., such that its value a
x is proportional toeθxλ(x)e−3(x) for some θ > 0, as
the normalisation constant,

∫ ∞
0 eθxλ(x)e−3(x) is infinite.

However, subexponential twisting such that the new pdf
proportional toeθ3(x)λ(x)e−3(x) can be performed as then
the normalization constant

∫ ∞

0
eθ3(x)λ(x)e−3(x) = 1/(1 − θ),

is finite for θ < 1. This results in the new hazard rate
twisted pdf

fθ (x) = (1 − θ)λ(x)e−(1−θ)3(x), x ≥ 0.

Consider the problem of estimatingµn(u) using IS
densityfθ (·) to generate theXi ’s. In this case

Z = f (X1)

fθ (X1)
· · · f (Xn)

fθ (Xn)
1{Sn>u}

= 1

(1 − θ)n
e−θ

∑n
i=1 3(Xi)1{Sn>u}. (5)

The following lemma gives a lower bound for
∑n

i=1 3(Xi)

in (5). This is useful in upper boundingZ.
Lemma 1 Consider any set of non-negative num-

bers (x1, . . . xn). Under Assumption (1), for everyε > 0
and for

∑n
i=1 xi large enough, the hazard function satisfies

the following “asymptotic concavity” property:

n∑
i=1

3(xi) ≥ 3(

n∑
i=1

xi) − ε. (6)

Using (6) we get the following bound onZ, on the set
{Sn > u}, for u sufficiently large and0 ≤ θ < 1:

Z ≤ 1

(1 − θ)n
e−θ(3(u)−ε) ≤ 1

(1 − θ)n
e−θ3(u)+ε .

Differentiating the RHS, we find thatθ = 1− n/3(u)

achieves the minimum upper bound. Using this bound w
see that,

EP ∗(Z21{Sn>u}) ≤ e2ε(
e3(u)

n
)2ne−23(u).
42
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From the fact thatµn(u) ∼ nF(u) = ne−3(u), it follows
that the hazard rate twisting withθ = 1 − n/3(u) is a.o.
(One can also show that the hazard rate twisting is also a
for θ = 1 − b/3(u) for all constantsb > 0.) However,
this approach does not work quite so well, for estimatin
µN (u). In that case, since the probability thatN = n

for n ≥ 1, equalsρn(1 − ρ), the unconditioned bound on
EP ∗(Z21{SN >u}) equals

e2εe−23(u)(1 − ρ)

∞∑
n=1

(
e3(u)

n
)2nρn.

Using Stirling’s formula, we see that(2n/e)2n ∼ (2n −
1)!/2

√
πn and then

∞∑
n=1

(
e3(u)

n
)2nρn

is close to
∞∑

n=1

2
√

πn
(23(u)

√
ρ)2n

(2n − 1)! .

This term, in turn is bounded by an appropriately select

constant,K0, times32(u)
∑∞

n=0
(23(u)

√
ρ)2n

(2n)! , and therefore

by K032(u)e23(u)
√

ρ . This implies that the variance is
finite even asu → ∞, for all ρ < 1. Also,

lim
u→∞

log(σP ∗(Z))

log(µ(u))
≥ 1 − √

ρ.

Thus a significant variance reduction over naive simulati
may be expected for small values ofρ. However for
ρ > 0.25 it is likely to (asymptotically) performs worse
than standard simulation. In the next section we tackle th
problem using delayed hazard rate twisting.

3.2 Delayed Hazard Rate Twisting

The delayed hazard rate twisted pdffθ,x∗(·) has the form
shown in (1). We now show that delayed hazard rate twisti
for an appropriately selected(x∗, θ), leads to a.o. estimation
of µN (u) when X′

i s satisfy Assumptions (1) and (2). Se
θ = θu = 1 − b/3(u) whereb is a positive constant. Let
x∗ = x∗

u wherex∗
u , for sufficiently largeu, is the unique

solution to the equation

3(x) = 2 log3(u) − loga, (7)

wherea > 0 is any constant so that(1+a)ρ < 1. It follows
that x∗

u → ∞ as u → ∞. Let P ∗ denote the probability
measure under whichN has Geometric(1− ρ) distribution
4
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and(Xi : i ≥ 0) have pdffθu,x∗
u
(·). As before, letZ be the

product of the likelihood ratio and the indicator1{SN >u}.
Theorem 1 For (Xi : i ≥ 0) with hazard rates that

satisfy Assumptions (1) and (2), the IS technique usingP ∗
asymptotically optimally estimatesµN (u), i.e.,

lim
u→∞

log(σP ∗(Z))

log(µN (u))
= 1.

The strategy for proving the above theorem is to partiti
the set{SN > u} into subsets and then bound the likelihoo
ratio over sets of significant probability and show that s
where likelihood ratios are large have small probability.
particular, forn ≥ 1 andk ≤ n let

An,k = {N = n, SN > u, X(k) < x∗, X(k+1) ≥ x∗}.

where for convenience we defineX(0) = 0andX(N+1) = ∞.
Also let An = ∪k=n

k=0An,k. Then

{SN > u} = ∪∞
n=1An.

Another version of the inequality in Lemma 1 is used f
the bounding of likelihood ratios. The detailed proof
given in Juneja, Shahabuddin and Chandra(1999).

In most cases we want to build confidence interva
for the estimators, i.e., we need to estimate the variance
the importance sampling estimator. Hence in addition
ensuring that the estimator has a small variance, we a
need to ensure that the variance of the variance estim
is small. The problem withx∗

u selected using (7) is that
while EP ∗(Z2) is small, the fourth momentEP ∗(Z4), which
governs the variance of the variance can be seen to be infi
Hence, in practice we recommend thatx∗

u be selected so tha
3(x∗

u) = 4 log3(u) − loga. Repeating the above analys
with a view to upper boundingEP ∗(Z4), it can be seen that
our new choice ofx∗

u gives a.o. both in the estimation o
µN (u) andEP ∗(Z2).

However, there is a cost involved in selecting a high
x∗

u . This is discussed in greater detail in Juneja, Shahabud
and Chandra(1999). The next section discusses an impro
version of delayed hazard rate twisting which reduces
requiredx∗

u .

3.3 Weighted Delayed Hazard Rate Twisting

We now consider a more general method of delayed haz
rate twisting where the new probability of taking value
less thanx∗

u is less than the original probability of taking
these values. The difference is used to make the tails hea
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than in the case of delayed twisting. Letw be a constant.
Then the new measure is given by

fθu,x∗
u
(x) = f (x)

1 + w
for x ≤ x∗

u

=
(

1 − F(x∗
u)

1 + w

)
fθ (x)

F θ (x∗
u)

for x > x∗
u.

Note thatw = 0 in the above expression gives ordinary
delayed hazard rate twisting. We now consider the case
where

0 < w <
1

ρ
− 1. (8)

We use the sameθu as before. Let0 < a < 1/[ρ(1+w)]−1
and letx∗

u be defined by

3(x∗
u) = log3(u) − 1

2
log(aw).

Note that x∗
u has similar asymptotic properties as under

delayed twisting. It is also easy to check thatPθ,x∗
u
(X >

x∗
u) = 1−F(x∗

u)/(1+w) ∼ w/(1+w). This is contrast to
ordinary delayed hazard rate twisting where this probability
equalede−3(x∗

u) and decreased to0 asu → ∞. Also note
that Pθ,x∗

u
(X > u) ∼ w/(e(1 + w)). Hence in general

we are giving more weight to the tail of the distribution
than before and thus making the rare event happen mor
frequently. The penalty we pay is that now we incur a
likelihood ratio (1 + w) > 1 whenX < x∗

u , which we did
not do before. However, due to the upperbound in (8), the
geometric increase in this penalty withn is absorbed by
the larger geometric decrease in the frequency of observin
largeN .

The proof of the following theorem is given in Juneja,
Shahabuddin and Chandra (1999):

Theorem 2 For (Xi : i ≥ 0) with hazard rates that
satisfy Assumptions (1) and (2), the IS technique using th
weighted delayed hazard twisting distribution a.o. estimates
µN (u).

Again for variance estimation considerations, we select

0 < w <
1

ρ1/3
− 1

determinex∗
u using

3(x∗
u) = log3(u) − 1

4
log(aw3)

where nowa satisfies0 < a < 1/[ρ(1 + w)3] − 1. Even
though both delayed hazard rate twisting and weighted
delayed hazard rate twisting give a.o. estimates ofµN (u)

and EP ∗(Z2), the varianceσ 2
P ∗(Z) in weighted delayed
25
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hazard rate twisting seems to be orders of magnitude l
This is discussed further in Juneja, Shahabuddin and Cha
(1999). It is also evident from the experiments in the ne
section.

4 EXPERIMENTAL RESULTS

We consider the case wheref (x) is the Weibull density
with rate parameter 1 and scale parameter 0.5. We cons
several values ofu and ρ. For each case we estimate th
probability and the relative error (99% confidence interv
half width divided by the quantity that is estimated) usin
delayed and weighted delayed hazard rate twisting. We u
10,000,000 replications for each case. We also comp
the variance reduction obtained over standard simulation
each case. For this we use the accurate estimates ofµN (u),
obtained using weighted delayed hazard rate twisting,
estimate the variance of the standard simulation estim
tor that uses the same run-length; the latter is given
µN (u)(1 − µN (u))/10, 000, 000.

For the ordinary delayed case we useb = 1 and a =
(1/2ρ) − 0.5. For the weighted delayed case we choo
b = 1, a = (1/2ρ1/4) − 0.5, and w = a. These values
of a andw satisfy the conditions given previously for th
case when we also desire good estimates for the varia
Table 1 gives thea and x∗

u computed for various values
of ρ and u when we use the two methods. Note thatx∗

u

increases asu increases but at a much slow rate for th
weighted delayed case as compared to the plain dela
case.

Table 2 gives the results of the simulation using t
two methods with the parameter values in Table 1. Not
how ordinary delayed hazard rate twisting gives substan
improvement over standard simuation. However, the
grows significantly asu becomes larger. But weighted
delayed hazard rate twisting does much better and the
using this method remains almost bounded.

Table 1:  Values ofa and x∗ corresponding to Delayed
Hazard Rate Twisting (D) and Weighted Delayed Haza
Rate Twisting (W) for differentρ and u. The b was 1 in
each case and thew in W was the same asa.

Values of (a, x∗)

u Me. ρ = 0.25 ρ = 0.50 ρ = 0.75

100 D (1.5, 77.5) (0.5, 98.1) (.166, 121)

W (.207, 15.0) (.0946, 21.7) (.0373, 31.3)

200 D (1.5, 104) (0.5, 127) (.166, 153)

W (.207, 17.8) (.0946, 25.1) (.0373, 35.3)

400 D (1.5, 134) (0.5, 161) (.166, 190)

W (.207, 20.9) (.0946, 28.7) (.0373, 39.5)

800 D (1.5, 168) (0.5, 198) (.166, 230)

W (.207, 24.2) (.0946, 32.5) (.0373, 44.0)
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Table 2:  Estimates of probabilities and relative errors usi
Delayed Hazard Rate Twisting (D) and Weighted Delaye
Hazard Rate Twisting (W) for differentρ andu. For each
case 10,000,000 replications were simulated. The quantit
in brackets are estimated variance reduction factors ov
standard simulation. The estimates of the probabilitie
relative errors and variance reduction factors for metho
D with u = 400, 800 are not reliable, as they did not
sufficiently converge in the given number of replications.

Estimates of Probabilities
u ρ D W

100 0.25 1.84E−5 ± 27% 1.68E−5 ± 1.1%
(0.51) (320)

0.5 6.76E−5 ± 20% 6.40E−5 ± 1.3%
(.24) (67)

0.75 4.39E−4 ± 4.7% 4.59E−4 ± 2.3%
(.69) (2.7)

200 0.25 1.48E−7 ± 84% 2.55E−7 ± 1.4%
(6.3) (1.4E+4)

0.50 1.06E−6 ± 59% 8.94−7 ± 1.2%
(1.8) (5272)

0.75 4.68E−6 ± 55% 4.55E−6 ± 2.3%
(.48) (288)

400 0.25 2.40E−10± 153% 7.04E−10± 1.7%
(1179) (3.3E+6)

0.5 2.09E−9 ± 182% 2.33E−9 ± 1.4%
(96) (1.4E+6)

0.75 6.71E−9 ± 175% 9.49E−9 ± 1.6%
(32) (2.8E+5)

800 0.25 1.86E−14± 171% 1.77E−13± 2.1%
(1.2E+7) (8.7E+9)

0.50 4.69E−14± 258% 5.62E−13± 1.7%
(2.1E+6) (3.9E+9)

0.75 4.83E−13± 209% 2.02E−12± 1.7%
(3.1E+5) (1.2E+9)
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