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ABSTRACT

Consider the problem of estimating the small probabil-
ity that the maximum of a random walk exceeds a large
threshold, when the process has a negative drift and the
underlying random variables may have heavy tailed distri-
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Mikosch (1997)). For many insurance companies it is
reasonable to assume that the premium accumulates deter-
ministically at a rater. The claim sizegB; : i > 0) are
i.i.d. and subexponentially distributed and their inter-arrival
times (A; : i > 0) are exponentially distributed. Let de-
note the initial reserve of such a company. Then its wealth

butions. We consider one class of such problems that has at time+ equals

applications in estimating the ruin probability associated
with insurance claim processes with subexponentially dis-
tributed claim sizes, and in estimating the probability of
large delays in single served/G/1 queues with subex-
ponentially distributed service times. Significant work has
been done on analogous problems for the light tailed case
(when the moment generating function exists in a neighbor-

N()
U(t)=u+rt—ZBi,
i=1

whereN (t) = supn : Z’}:l A; <), is the Poisson count-
ing process. An important parameter for selecting the pre-

hood around zero, so that the tail decreases at an exponentiafiumrate, determining the appropriate level of initial reserve

rate or faster) involving importance sampling methods that
use exponential twisting. However, for the subexponential
case, moment generating functions do not exist in the perti-
nent regions making exponential twisting infeasible. In this
paper we introduce importance sampling techniques where
the new probability measure is obtained by twisting the
hazard rate of the original distribution. For subexponential
distributions this amounts to twisting at a subexponential
rate. We also introduce the technique of “delaying” the
change of measure and show that the combination of the
two techniques produces asymptotically optimal estimates
of the small probabilities mentioned above for a large class
of subexponential distributions.
1 INTRODUCTION
Consider a random walk, = >""_,&;, where eacl; can
be expressed as a difference of the random variableg{rv)
andA;. The sequence of rgB; : i > 0) is i.i.d. and has a
heavy tailed distribution, i.e., a distribution whose tail decays
at a subexponential rate. The sequence ofAy: i > 0)
is also i.i.d., having an exponential distribution with rate
and is independent @B; : i > 0). Assume tha¥ (§;) < 0.
In this paper we develop techniques for efficient estimation
of the small probabilityP (max, H, > u) asu — oo.

One application of such probabilities arises in the in-
surance industry (see, e.g., Embrechts, Kluppelberg and
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and for managing the risk of the portfolio is the probability
of eventual ruin, i.e.P(U(t) < 0 for somet). Noting that
ruin can occur only at instants of claim arrivals, we can
re-express the ruin probability @& H, > u for somen) =
P(max, H, > u), where§; = B; — rA;.

Another application arises in estimating steady state
probability of large delays in &4//G/1 queue observing
first-come-first-serve rule (see, e.g., Section VI.9 of Feller
(1966)). If W, denotes the waiting time of customey
B,, denotes its service time ant), denotes the inter-arrival
time between customer andn + 1, then it is well known
that Wit1= Wy + By — An)+ = (W, +$n)+ PrOQreSSing
recursively,

Wn+l=max(én+"'+Ela€n+"'+‘§2»~--a$n)~

This implies that W,,1 has the same distribution as
max <, H,. Thus, the steady state probability of waiting
time exceeding: equalsP (max, H, > u). Such probabil-
ities are useful in performance analysis of certain commu-
nications networks (see, e.g., Heidelberger (1995)).

The probability P (max, H, > u), typically, cannot be
determined analytically. Simulation has proved an effective
tool for accurate estimation of such probabilities. How-
ever, as is well known, naive simulation takes a prohibitive
amount of computational effort to estimate small probabili-
ties. Importance sampling (IS) has been successfully used to
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efficiently estimate small probabilities when the underlying
distributions are light tailed, i.e., when the tail cumulative
distribution function (cdf) decreases at an exponential or
faster rate and hence the moment generating function is
finite in a neighborhood of zero. We refer the reader to
Glynn and Iglehart (1989) and Heidelberger (1995) for an
introduction to the use of importance sampling and a survey,
respectively. It involves simulating the system under a new
probability P* and appropriately modifying the resulting
output to get an un-biased estimate of the small probabil-
ity. The key problem is to select A* which significantly
reduces the variance of the resulting estimator.

We refer the reader to Siegmund (1976), As-
mussen(1985), Lehtonen and Nyrhinen (1992) for IS tech-
nigues for the efficient estimation #f(max, H, > u) when
the (B; : i > 0) have light tailed distributions. These tech-
nigues involve using appropriate “exponentially twisted”
distributions for eachd; and B; (A new distributionFy is
said to be obtained by exponentially twisting distribution
F by an amoun® if dFy(x) = ¢’*dF(x)/M (), where
M () denotes the moment generating function of distribution
F). In particular, B; needs to be positively twisted (i.e.,

6 > 0). However, when(B; : i > 0) has a tail that decays

at a subexponential rate, then such a exponential twisting
is no longer feasible and alternative techniques need to be
developed.

Initial research suggests that the efficient simulation
for estimating the probability of a random walk exceeding
a large threshold, when the underlying variables are non-
negative and subexponentially distributed, is feasible. In
particular, in Asmussen and Binswanger (1997) the problem
of estimating P(max, H, > u) is tackled by using the
Pollaczeck-Khinchine formula to represent this probability
as P(Z{V:l X; > u), where(X; :i > 1) is a sequence of
non-negative i.i.d. random variables corresponding to the
ladder heights of the random walle, : n > 0) and N is
a geometrically distributed random variable with parameter
o = LE(A;). Itis easy to check thdt(&;) < Ois equivalent
to the conditionp < 1. It is well known thatX; has
an integrated tail distribution with c% [5‘ Fp(y)dy,

where Fp(-) denotes the tail cdf o3;. Typically, X;

is subexponentially distributed iB; is (see Embrechts,
Kluppelberg and Mikosch (1997)). These papers also focus
onthe easier problem of efficiently estimatiRgd ";_; X; >

u), wheren is fixed, to gain insight towards developing
efficient simulation techniques foP(ZlN:l X; > u). Let

Sn Z;l:l Xi.

Asmussen and Binswanger (1997) propose a condition-
ing approach for estimating (S, > u) andP(Sy > u) and
show that it is "asymptotically optimal" (i.e., as— o0)
when the tail distribution ofX; decreases at a polynomial
rate (i.e.,X; has a Pareto like, regularly varying distribu-
tion; see, Feller (1966) for a discussion on regularly varying
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distributions). Asymptotic optimality (a.o0.) is the standard
criteria used in the literature to judge the efficiency of rare
event simulation and it is reviewed in Section 2. However
when the tail distribution of(; decreases at a subexponen-
tial, but a higher rate, as when it has a Weibull distribution
with shape parameter less than 1, this approach is not asymp-
totically optimal (also abbreviated as “a.0.” in the rest of
the paper). Asmussen, Binswanger and Hojgaard (1998)
propose an importance sampling approach which works for
such distributions for estimatinB(S,, > u). The basic idea
in that approach is to use a distribution that has a tail that is
(in an informal sense) an order of magnitude heavier than
that of X;. However, forP(Sy > u), it suffers from the
drawback that the IS estimator has infinite variance when
p is sufficiently close to 1.

In this paper we also focus on the problem of developing
efficient simulation techniques using IS, to estimatg,, >
u) and P(Sy > u), albeit our hazard rate approach is
different from the approach in Asmussen, Binswanger and
Hojgaard (1998). Our major contributions are:

1. We arrive atthe IS distribution to efficiently es-
timate P(S, > u), by twisting the hazard rate
of the original distribution. This hazard rate
twisted distribution is determined as follows:
Suppose that the original probability density
function (pdf) of the random variablg; exists
and is represented agx)e~ /o 204y where
A(x) is its hazard rate, i.e., its the ratio of the
pdf and the tail distribution function. Then
after twisting the hazard rate by an amount
0 < 6 < 1 the resulting twisted pdf equals
A(x)(L—@)e~ o 1=02(0)dy  Eor example, for
a Pareto distribution with pdf

-1
£ ==

xOl

x>1 (¢>1)

0 otherwise,

the hazard rate twisting amounts to polynomial
twisting leading to the twisted pdf

(x—D(A-06)
I+ @-Da-0) °
0 otherwise

fo(x)

Through appropriate selection @fas a func-
tion of u, with the property tha# increases to

1 asu — oo, we show that fonX; : i > 0)
subexponentially distributed and under mild
regularity conditionsP (S, > u) can be esti-
mated a.o.

The above approach, suffers from a drawback
similar to that suffered by the IS approach
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suggested in Asmussen, Binswanger and Ho- for all n. In fact, it suffices to show th&®) holds forn = 2.
jgaard (1998); it performs poorly for large Thus subexponentiality implies tha@(S, > u) ~ nF(u).
values ofp. To remedy this, we introduce the It can also be shown that for case wheé¥eis a geometric
concept ofdelayed hazard rate twisting a.o. random variable with parametdr— p (i.e. P(N = i) =
estimateP (Sy > u) for all values ofp < 1. (L—p)p' fori =0,1,2..)),

Again, if f(-) denotes the pdf of the original

distribution, then undedelayed hazard rate P(Sy > u) ~ 1Lf(u)

twisting, the new pdf

(see, e.g., Embrechts, Kluppelberg and Mikosch (1997)).

(x) = x < x¥, : ; ) )
Jo.ur () F) These asymptotic results are used in proving a.o. in the

_ _F(x*) B x> axt(l) estimation of these quantities. Also note X >
Fo(x*) u) ~nP(X1 > u), indicating that on the s€tS,, > u}, we
. have S, ~ X(,).
where Fy(-) denotes the tail cdf correspond- To develop our hazard rate twisting framework, we
ing to fy(-) and (@, x*) are appropriately se- assume thak is a continuous random variable with a pdf
lected increasing functions af. Thus, the given by f(x). As mentioned in the Introduction,(x) =
tails become heavier from the twisting, but f(x)/F(x) denotes the hazard rate. Letx) = f(j‘ A(y)dy
the probability that the random variable takes denote the hazard function. Thefi(x) = A(x)e~2® and
small values remains unchanged. F(x) = e 2™ In Pitman(1980), it is shown that amongst
3. We generalize the concept of delayed haz- the distributions whose hazard rater) eventually decreases
ard rate twisting toveighted delayed hazard to 0, a necessary and sufficient condition for a distribution
rate twisting Here, the IS distribution has to belong to the sub-exponential class is that:

slightly less probability of taking small values

compared to the original distribution. The dif- _ “ ) —AG) e
ference is used to make the tails even heavier ull)moo/O Ax)e dx =1 ©)
as compared to the tails under delayed haz-
ard rate twisting. We show experimentally This is useful in checking membership to the subexponential
that this gives much larger variance reduction class. For a detailed exposition on subexponential distribu-
compared to delayed hazard rate twisting. tions the reader is referred to Embrechts, Kluppelberg and
Mikosch (1997).
Section 2 defines subexponential distributons and de- Let S() be a slowly varying function, i.e.,

scribes importance sampling and related work in more detail. |im,_, . S(sx)/S(x) = 1 for all + > 0. In our analysis,
Sections 3 elaborates on each of the items listed above. EX-we need additional mild regularity conditions on the distri-

perimental results are presented in Section 4. bution of the rvX;; the complete set of assumptions that
we make on the distribution of; are as follows:

2 PRELIMINARIES AND RELATED WORK Assumption 1  The hazard rate is eventually de-
creasing and eventually everywhere differentiable. Fur-

2.1 Subexponential Distributions thermore, it has the form,

Let (X; : i < n) be iid. rv's with cdf F(-) and taking A(x) = S(x)/xP,

values on(0, oo). Let F(x) = 1— F(x) denote the tail cdf

and F**(-) denote the n-fold convolution af (-). For any for0<p <1

two fUnCtionSgl(M) andgz(u) (that take non-zero values for Assumption 2 For B = 1, there exists ap > 0

all sufficiently largeu), we use the notatiogs (#) ~ g2(u) such that

to denote thatim,_,, g1(u)/g2(u) = 1. Finally, let X,

1 < i < n denote theith order statistics of X1, ... X,) A(x) = [log(x)]”

with X,y being the maximum.

A cdf F(-) is said to be subexponentially distributed if for all x large enough.

It can be checked that the commonly used families
of subexponential distributions: Pareto, Weibull with de-
— 2) creasing failure rate (i.eF(x) = ¢ ™, for & < 1) and
nF() nP(Xy>u) log-normal distributions, satisfy these assumptions. Also,
Assumption (1) is sufficient for (3) to hold and hence it
guarantees subexponentiality. The limitations imposed by

Fu)  P(Sy >u)
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these assumptions are minor from practical viewpoint and (X; : i > 0) are generated using*. The key issue is to
are discussed in Juneja, Shahabuddin and Chandra (1999)select aP* (or equivalently, theG(-)) so that the variance
As mentioned in Section 1, we are interested in es- of Z is reduced, and whenever possible, a.o. is achieved.

timating w,(u) = P(S, > u) = E(ls,>4) for n fixed,
and uy(u) = P(Sy > u) = E(Lisy>u)) Wherely, is an
indicator random variable. The basic ideas in this paper
can be easily extended to the case wherbas a general
distribution that is bounded by a geometrically decreasing
function.

Typically, probabilities such ag, (u) and uy(u) are

efficiently estimated by developing an alternate representa-

tion of these probabilities aBp«(Z), whereZ is a random
variable whose expectation under the probability measure
P* (that may be same &) equals the value of the desired
probability but whose variance is much smaller than the
variance of the naive estimator, i.e., the random variable
1s,~4) under probabilityP (for estimatingu, (#)). Then,
many independent samples @f under P* are generated,

and the average of the samples provides a point estimator of

the desired probability. The variance is also estimated from
the given sample and the normal approximation provided
by the central limit theorem is used to construct confidence
intervals.

We are interested in cases whens large, i.e., when
the probabilities are very small. A standard criteria to judge
whether any rare event probability estimator is efficient or
not for large values ofi, is a.0.. Letop+2(Z) denote the
variance of rvZ, when generated using the probabiliy.

Definition 1 The estimator corresponding t8 is
said to be a.o., iff

- lo «(Z
lim inf 109@P+(2)) > (4)
u—oco |og(Ep+(Z))

One can easily show that the naive simulation estimator
is not a.0. as in that case, the ratio in (4) tends to 1/2.

2.2 Importance Sampling and Related Work

Let G(-) denote a distribution function with pdf(-) such

that g(x) > 0 if f(x) > 0. Let P* denote the resultant
probability measure onXi,...X,) when eachX; has

the distributionG(-). The probability u, (1) may be re-

expressed as follows:

Mn(u) = EP(]-{S,,>u})
= Ep+(L5,>u)L(X1,..., X))
where L(X1,...X,) = [li.1f(Xi)/g(X;) is called
the likelihood ratio. Hence, in this caseZ =
Ls,>uyL(X1, ..., X,), generated using@*, is the new esti-

mator foru, (u). Similarly, the estimator for the probability
un@) is Z = Lisy=uyL(X1, ..., Xn), WhereN is gener-
ated from a geometric distribution with parameter p and
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Asmussen, Binswanger and Hojgaard (1998) propose
that the IS pdfg(-) have a very heavy tail so that the
following condition is satisfied:

Condition 1 The distributionK with pdf k(x) =

2 oo f2(x) . . . .
=200 Wherec = Jo 0 dx, Is subexponential and its tail

cdf K (x) is of order F(x)? in the sense thalbgK (x) ~
log F (x)2.
Once this condition holds then

Ep«(Z%) = " Pk (S, > u) ~ nc" Px (X > u)

and a.o. follows.
In particular, they propose the following IS pdf to be
used to simulatéX; : i < n):

1

(x + e)log(x + e)? for

glx) = x> 0.

Note that this distribution has a very heavy tail as its tail
distribution functionG(x) = 1/log(x + ¢) decreases at
a logarithmic rate, and the first moment does not exist.
They show that for many commonly used distributions the
above density satisfies condition 1 and hence a.o. estimates
un (). Intuitively, one may see this by noting that on the set
{Sp > u}, typically X,y > u, and X for (i <n —1) are
small and insensitive te. The rv Z, on this set equals the
product of the ratiof (X(;))/g(X)) for (i <n). Now, the
ratio f (X ))/g (X)) is small and decreases@aicreases.
The other ratiosf (X)) /g(X ) for i <n—1), typically,

are each greater than 1, but are relatively unaffected as
increases to infinity. Hence, for large enough, with high
probability, Z is small, and with little variation, on the set
{Sn > u}

For the case ofuy (1), it is easily seen thak (NcV)
needs to be finite for a.o.. In particular,< 1/p. This,
creates problems for large values pf Intuitively, this
can be seen by the fact that the value of the product
H?:‘ll[f(X(i))/g(X(i))]z increases geometrically with,
while its relative frequency of occurrence p"(1 — p)
decreases at a lower geometric rate, leading to infinite sec-
ond moment. In the next section we develop the hazard
rate twisting framework and show that “delayed” hazard
rate twisting overcomes this problem of infinite variance
for large values of.
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3 HAZARD RATE TWISTING AND DELAYED

CHANGES OF MEASURE
3.1 Hazard Rate Twisting

Consider again the pdf (x) = A(x)e 2™, As, men-
tioned in the Introduction, we cannot select a new pdf by
positive exponential twisting, i.e., such that its value at
x is proportional toe?*A(x)e=A™) for somed > 0, as
the normalisation constantly” e?*A(x)e™*™) is infinite.
However, subexponential twisting such that the new pdf is
proportional toe? 2™ (x)e= 2™ can be performed as then
the normalization constant

oo
/ A (e A = 1/(1 - 9),
0

is finite for & < 1. This results in the new hazard rate
twisted pdf

fo(x) = (1 — O)a(x)e DA, x>0.

Consider the problem of estimating,(x) using IS
density fp(-) to generate th&X;’s. In this case

F(XD) ()
fo(X1)  fo(Xn)

1 v ax
a—oy° PR NI, .

Z

Lis,>u)

(%)

The following lemma gives a lower bound f3r’_; A(X;)
in (5). This is useful in upper bounding.

Lemma 1  Consider any set of non-negative num-
bers (x1, ...x,). Under Assumption (1), for every> 0
and for)"7_, x; large enough, the hazard function satisfies
the following “asymptotic concavity” property:

Do AG@) = AQ x) —e.
i=1 i=1

Using (6) we get the following bound ag, on the set
{S, > u}, for u sufficiently large and <6 < 1:

(6)

1

7 < e—0A—e) 1
~@A-or

70A(u)+e'
T @a-oy

Differentiating the RHS, we find th#t=1—n/A(u)
achieves the minimum upper bound. Using this bound we
see that,

eA@W) o,
Epr(Z21(5,5u) < €% (——)%e7240.
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From the fact thatw,(u) ~ nF(u) = ne~2® it follows

that the hazard rate twisting with=1—n/A(u) is a.o.
(One can also show that the hazard rate twisting is also a.o.
for 6 = 1 — b/A(u) for all constantsh > 0.) However,

this approach does not work quite so well, for estimating
un@). In that case, since the probability that = n

for n > 1, equalsp” (1 — p), the unconditioned bound on
Ep+(Z?1(s5y~y)) equals

> eA(u)
eZGe—ZA(L{) (l _ ,0) Z( )2}1[011.
n=1 n

Using Stirling’s formula, we see tha@n/e)?* ~ (2n —
1)!/2,/mn and then

N\ eA
Z(e (M) )2npl’l
n=1 n

is close to

. (2A ) /P)*"
;zm—(zn ~r

This term, in turn is bounded by an appropriately selected

2n
constant,Ko, timesA2(u) Yoo %, and therefore

by KoA2u)e? VP This implies that the variance is
finite even ast — oo, for all p < 1. Also,

log(op+(Z))
u=co log(u(u))

>1-p.

Thus a significant variance reduction over naive simulation
may be expected for small values pf However for

p > 0.25 it is likely to (asymptotically) performs worse
than standard simulation. In the next section we tackle this
problem using delayed hazard rate twisting.

3.2 Delayed Hazard Rate Twisting

The delayed hazard rate twisted pfif,«(-) has the form
shownin (1). We now show that delayed hazard rate twisting
for an appropriately selectéd*, 6), leads to a.o. estimation
of uy(u) when X/s satisfy Assumptions (1) and (2). Set
0 =6, =1—b/Au) whereb is a positive constant. Let
x* = x} wherex}, for sufficiently largeu, is the unique
solution to the equation

A(x) =2logA(u) — loga, @)
wherea > 0Qis any constant so that+a)p < 1. It follows
thatx — oo asu — oo. Let P* denote the probability
measure under whicN has Geometrid — p) distribution
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and(X; : i > 0) have pdffy, . (-). As before, letZ be the
product of the likelihood ratio and the indicatiys, ;.
Theorem 1 For (X; : i > 0) with hazard rates that
satisfy Assumptions (1) and (2), the IS technique usifig
asymptotically optimally estimatasy (u), i.e.,

log(or(2)) _,
w00 10g (e (u))

The strategy for proving the above theorem is to partition
the sef{ Sy > u} into subsets and then bound the likelihood
ratio over sets of significant probability and show that sets
where likelihood ratios are large have small probability. In
particular, forn > 1 andk < n let

Apx={N=n,5v>u,Xqup < x*, X1 = x*}.

where for convenience we defiggy = OandX y1) = oo.
Also let A, = US=0 A, . Then

Another version of the inequality in Lemma 1 is used for
the bounding of likelihood ratios. The detailed proof is
given in Juneja, Shahabuddin and Chandra(1999).

In most cases we want to build confidence intervals

than in the case of delayed twisting. Letbe a constant.
Then the new measure is given by

f @)

S35 (x) Trw for x <x}
= (1— M) _fg(X) for x> x.
1+w Fo(x})

Note thatw = 0 in the above expression gives ordinary
delayed hazard rate twisting. We now consider the case
where

(8)

O<w<—-1
0
We use the sam&, as before. Led < a < 1/[p(1+w)]—1
and letx;’ be defined by

A(x)) =log A(u) — %Iog(aw).

Note thatx; has similar asymptotic properties as under
delayed twisting. It is also easy to check that,: (X >
xN)=1-F(x})/(14+w)~ w/(14+w). This is contrast to
ordinary delayed hazard rate twisting where this probability
equalede—2(%) and decreased © asu — co. Also note
that Py x(X > u) ~ w/(e(L + w)). Hence in general

for the estimators, i.e., we need to estimate the variance of we are giving more weight to the tail of the distribution

the importance sampling estimator. Hence in addition to

than before and thus making the rare event happen more

ensuring that the estimator has a small variance, we also frequently. The penalty we pay is that now we incur a

need to ensure that the variance of the variance estimator likelihood ratio (1 + w) > 1 when X < x*

is small. The problem with selected using (7) is that,
while E p«(Z2) is small, the fourth momerf p+ (Z%), which

*, which we did
not do before. However, due to the upperbound in (8), the
geometric increase in this penalty withis absorbed by

governs the variance of the variance can be seen to be infinite. the larger geometric decrease in the frequency of observing

Hence, in practice we recommend thfitbe selected so that
A(x)) =4logA(u) — loga. Repeating the above analysis
with a view to upper bounding p+(Z%), it can be seen that
our new choice ofx) gives a.o. both in the estimation of
wy () and E p«(Z2).

However, there is a cost involved in selecting a higher

large N.

The proof of the following theorem is given in Juneja,
Shahabuddin and Chandra (1999):

Theorem 2 For (X; : i > 0) with hazard rates that
satisfy Assumptions (1) and (2), the IS technique using the
weighted delayed hazard twisting distribution a.0. estimates

x;. Thisis discussed in greater detail in Juneja, Shahabuddin py (u).

and Chandra(1999). The next section discusses an improved
version of delayed hazard rate twisting which reduces the

requiredx;’.

3.3 Weighted Delayed Hazard Rate Twisting

We now consider a more general method of delayed hazard

rate twisting where the new probability of taking values
less thanx; is less than the original probability of taking

these values. The difference is used to make the tails heavier
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Again for variance estimation considerations, we select

O<w<—5-1
p1/3

determinex;’ using
* 1 3
A(x)) =logA(u) — 2 log(aw?)

where nowa satisfies0 < a < 1/[p(1+ w)3] — 1. Even
though both delayed hazard rate twisting and weighted
delayed hazard rate twisting give a.o. estimateg ofu)

and Ep+(Z?), the variances2,(Z) in weighted delayed
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hazard rate twisting seems to be orders of magnitude less.

Table 2: Estimates of probabilities and relative errors using

Thisis discussed further in Juneja, Shahabuddin and ChandraDelayed Hazard Rate Twisting (D) and Weighted Delayed

(1999). It is also evident from the experiments in the next
section.

4 EXPERIMENTAL RESULTS

We consider the case wher&x) is the Weibull density

Hazard Rate Twisting (W) for different andu. For each
case 10,000,000 replications were simulated. The quantities
in brackets are estimated variance reduction factors over
standard simulation. The estimates of the probabilities,
relative errors and variance reduction factors for method
D with u = 400,800 are not reliable, as they did not

with rate parameter 1 and scale parameter 0.5. We considersufficiently converge in the given number of replications.

several values ofi and p. For each case we estimate the
probability and the relative error (99% confidence interval
half width divided by the quantity that is estimated) using
delayed and weighted delayed hazard rate twisting. We used
10,000,000 replications for each case. We also compute
the variance reduction obtained over standard simulation in
each case. For this we use the accurate estimateg 0f),
obtained using weighted delayed hazard rate twisting, to
estimate the variance of the standard simulation estima-
tor that uses the same run-length; the latter is given by
pn () (1 — py(u))/10,000 000

For the ordinary delayed case we use- 1 anda =
(1/2p) — 0.5. For the weighted delayed case we choose
b=1 a=(1/20Y% — 05, andw = a. These values
of a andw satisfy the conditions given previously for the

case when we also desire good estimates for the variance.

Table 1 gives the: andx;; computed for various values

of p andu when we use the two methods. Note thgt
increases aw increases but at a much slow rate for the
weighted delayed case as compared to the plain delayed
case.

Table 2 gives the results of the simulation using the
two methods with the parameter values in Table 1. Notice
how ordinary delayed hazard rate twisting gives substantial
improvement over standard simuation. However, the RE
grows significantly ast becomes larger. But weighted
delayed hazard rate twisting does much better and the RE
using this method remains almost bounded.

Table 1: Values ofz and x* corresponding to Delayed
Hazard Rate Twisting (D) and Weighted Delayed Hazard
Rate Twisting (W) for differenfo andu. Theb was 1 in
each case and the in W was the same as.

Values of (a, x*)

u  Me p =025 p = 0.50 p =075

100 D (15,775) (0.5,98.1) (.166, 121)
w (.207, 15.0) (.0946 217) (.0373313)

200 D (15,104 (0.5,127) (.166, 153
W (.207,17.8) (.0946 25.1) (.0373 35.3)

400 D (15,134 (0.5, 161) (.166, 190
w (.207, 20.9) (.0946 28.7) (.0373 39.5)

800 D (15,168 (0.5,198) (.166, 230
w (.207,24.2) (.0946 32.5) (.0373 44.0)
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Estimates of Probabilities

0 D W
100 0.25 184E-5+27% 168FE-5+1.1%
(0.51) (320)
0.5 6.76E—5 £+ 20% 640E—-5+ 1.3%
(.24) (67)
0.75 439E—-4+47% 459FE -4+ 2.3%
(.69) 2.7)
200 0.25 148E-7+84% 255E—-7+ 1.4%
(6.3) (1.4E+4)
0.50 1.06E—6+59% 894-7+1.2%
(1.8) (5272)
0.75 4.68E—6+55% 455E—6+ 2.3%
(.48) (288)
400 0.25 240E-104+153% 704E—-10+1.7%
(1179) (3.3E+6)
05 209E-9+182%  233E-9+1.4%
(96) (1.4E+6)
0.75 6.71E—9+175%  949E—-9+ 1.6%
(32) (2.8E+5)
800 0.25 186E—-14+171% 177E-13+2.1%
(1.2E+7) (8.7E+9)
0.50 4.69E—14+258% 562E—13+1.7%
(2.1E+6) (3.9E+9)
0.75 4.83E—-13+209% 202E—-12+1.7%
(3.1E+5) (1.2E+9)

5 ACKNOWLEDGEMENT

This work was patrtially supported by NSF Career Award
Grant DMI-96-25297. The work of Anurag Chandra was
performed while he was at the Indian Institute of Technology,
Delhi.

REFERENCES

Asmussen, S. 1985. Conjugate processes and the simulation
of ruin problems. Stochastic Processes and Applica-
tions 20, 213-229.

Asmussen, S., and Binswanger, K. 1997. Simulation of
ruin probabilities for subexponential claimsASTIN
BULLETIN 27, 2, 297-318.

Asmussen, S., Binswanger, K., and Hojgaard, B. 1998.
Rare events simulation for heavy tailed distributions.



Juneja, Shahabuddin, and Chandra

Research Report, Dept. of Mathematical Statistics,
Lund University, Box 118, SE-22100 Lund, Sweden.

Embrechts, P., Kluppelberg, C and Mikosch, T. 1981d-
elling Extremal EventsSpringer-Verlag, Berlin, Hei-
delberg.

Feller, W. 1966.An Introduction to Probability Theory and
its Applications Volume IlJohn Wiley & Sons, Inc..
Glynn, P.W., and Iglehart, D.L. 1989. Importance sampling
for stochastic simulationsManagement Sciencg5,

11, 1367-1393.

Heidelberger, P. 1995. Fast Simulation of Rare events in
gueueing and reliability model#ACM Transactions on
Modeling and Computer Simulatidp 1, 43-85.

Juneja, S., Shahabuddin, P., and Chandra, A. 1999. Rare
event simulation of heavy tailed risk processes using
hazard rate twisting and delayed change of measure.
Research Report, Department of IEOR, Columbia Uni-
versity, New York, NY 10027, USA.

Lehtonen, T., and Nyrhinen, H. 1992. Simulating level-
crossing probabilities by importance samplinghd-
vances in Applied Probabilitg4, 858-874.

Pitman, E. J. G. 1980. Subexponential distribution functions.
J. Austral. Math. Soc. Ser. 29, 337-347.

Siegmund, D. 1976. Importance sampling in the Monte
Carlo study of sequential test¥he Annals of Statistics
4, 673-684.

AUTHOR BIOGRAPHIES

SANDEEP JUNEJA is an Assistant Professor in the Me-
chanical Engineering Department at the Indian Institute of
Technology (1IT) Delhi. Prior to joining the faculty at lIT

he was a Senior Consultant at Andersen Consulting, India
(1995-96), and Director Quantitative Analysis at American
Credit Indemnity, U.S.A.(1993-95). He received a B.Tech.
in Mechanical Engineering from IIT Delhi (1989) and a
Masters in Statistics and Ph.D. in Operations Research from
Stanford University (1993).

PERWEZ SHAHABUDDIN is an Associate Professor in
the Industrial Engineering and Operations Research Depart-
ment at Columbia University. From 1990 to 1995, he was
a Research Staff Member at the IBM T.J. Watson Research
Center. He received a B.Tech. in Mechanical Eng. from the
Indian Institute of Technology, Delhi (1984), and a M.S. in
Statistics and a Ph.D. in Operations Research from Stanford
University (1990).

ANURAG CHANDRA is in the Ph.D. program in Op-
erations Research at the Sloan School of Management,
Massachusetts Institute of Technology. He obtained his
B.Tech. in Computer Science from the Indian Institute of
Technology, Delhi, in 1999.

427



	MAIN MENU
	PREVIOUS MENU
	---------------------------------------
	Search CD-ROM
	Search Results
	Print

