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ABSTRACT

In this paper we consider a two-node tandem Jackson
work. Starting from a given state, we are interested
estimating the probability that the content of the seco
buffer exceeds some high levelL before it becomes empty
The theory of Markov additive processes is used to de
mine the asymptotic decay rate of this probability, for lar
L. Moreover, the optimal exponential change of meas
to be used in importance sampling is derived and used
efficient estimation of the rare event probability of intere

Unlike changes of measures proposed and studie
recent literature, the one derived here is a function of
content of the first buffer, and yields asymptotically efficie
simulation for any set of arrival and service rates. T
relative error is bounded independent of the levelL, except
when the first server is the bottleneck and its buffer
infinite, in which case the relative error is bounded linea
in L.

1 INTRODUCTION

The tandem Jackson network has received consider
attention as a reference example for the analysis and tes
of different methodologies and various techniques to sp
up simulations involving rare events. The particular inter
in this system stems from the fact that in spite of its (appare
simplicity, its large deviations behaviour is not yet ful
understood. The main difficulty being its multi-dimension
state space and the complicated large deviations behav
along its boundaries.

Among rare events of interest in the tandem Jack
network, the most studied is the overflow of the total netwo
population (see, e.g., Parekh and Walrand 1989, Anantha
et al. 1990, Frater and Anderson 1989, Frater et al. 19
Tsoucas 1992, Glasserman and Kou 1995). Exact la
deviations analysis leading to an asymptotically optim
change of measure is quite difficult. Instead, a heuris
change of measure is suggested in Parekh and Wal
(1989), which interchanges the arrival rate (to the fi
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queue) and the slowest service rate. The same chang
measure is suggested based on time reversal arguments
e.g., Anantharam et al. 1990, Frater et al. 1991). Howev
analysis in Glasserman and Kou (1995) and counter examp
in Glasserman and Wang (1997) show that the importan
sampling estimator based on this change of measure is
necessarily asymptotically efficient; in fact, it has an infini
variance in some parameter regions. Other rare events
interest are the buffer overflow at the individual networ
nodes. If the node of interest is the bottleneck (relative
all preceding nodes), then the optimal exponential chan
of measure is to interchange the arrival rate and the serv
rate at this (bottleneck) node; the service rates at all ot
nodes are kept unchanged (see, e.g., Parekh and Wal
1989, Frater and Anderson 1989). However, this change
measure is not optimal (not even asymptotically efficien
if we are interested in the buffer overflow at a node aft
the bottleneck. The theory ofeffective bandwidthhas been
used to derive heuristics for the efficient simulation of
class of feed-forward discrete-time queueing networks, s
e.g., Chang et al. (1994) and De Veciana et al. (199
(This class essentially resembles a feed-forward fluid-flo
network.) Another approach is considered in Kroese a
Nicola (1998) to study a fluid-flow line with unreliable nodes
To the best of our knowledge, analogous approaches
application to continuous-time queueing networks has n
yet been introduced; not even for a simple tandem Jack
network.

In this paper we consider a two-node tandem Jacks
network, and study the buffer overflow event at the seco
node. We present a new Markov additive process (MA
representation of the system. (For MAP definitions a
properties, see Ney and Nummelin 1987). This MAP is e
ponentially (and optimally) tilted for use in an importanc
sampling procedure to estimate the probability of buff
overflow in the second node. Unlike changes of meas
considered in the literature, the one we derive here depe
on the contents of the first buffer. No complete proof of i
optimality is available at this time, but empirical studies
this paper strongly confirm its asymptotic efficiency. Th
11
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5)
resulting estimates have relative error which is (asympt
ically) bounded independent of the overflow level, exce
when the first server is the bottleneck and its buffer is in
nite. In the latter case, the relative error is (asymptotical
linearly bounded in the overflow level.

In Section 2 we give some preliminaries. A MAP
representation of the system and its exponential cha
of measure are introduced in Section 3. In Sections
and 3.3, the optimal changes of measure are derived
finite and infinite first buffer, respectively. Empirical resul
in Section 4 demonstrate the (asymptotic) efficiency of t
developed importance sampling estimator. Conclusions
related future research are given in Section 5.

2 PRELIMINARIES

Consider a simple Jackson network consisting of two que
in tandem. Customers arrive at the first queue (buff
according to a Poisson process with rateλ. The service time
of a customer at the first queue is exponentially distribu
with rateµ1. Customers that leave the first queue enter
second one. The service time in the second queue has
exponential distribution with rateµ2. We assume stability
of the queueing system, i.e.,

λ < min{µ1, µ2}.

The size of the first buffer is denoted byb1 (which may
be finite or infinite.) LetXt and Yt denote the number of
customers in the first and second queue at timet , respectively.
We assume that the second buffer is initially non-emp
to simplify notation and without loss of generality, we s
Y0 = 1. Let Pi denote the probability measure under whic
(Xt ) starts fromi at time 0 (i.e.,X0 = i, 0 ≤ i ≤ b1); and
let Ei denote the corresponding expectation operator.
Section 3 we will consider various changes of measure;
will denote byP̃i any such measure for which(Xt ) starts
at i. Ẽi denotes the corresponding expectation opera
We are interested in the probability that, starting fro
(X0, Y0) = (i, 1), the second queue hits some large lev
L ∈ N before hitting 0. We denote this probability byγi

and will refer to it as theoverflow probabilityof the second
buffer, given that the initial number of customers in the fir
queue isi.

3 EXPONENTIAL CHANGE OF MEASURE

The key to understanding the change of measure that
are going to propose is Asmussen and Rubinstein (19
where an exponential change of measure for Markov addi
processes is discussed in the context of rare event simula
Basically, a Markov additive process in continuous time is
stochastic process(Jt , St ), where(Jt ) is a finite state Markov
chain and(St ) behaves like a process with stationary a
41
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independent increments during the time intervals when(Jt )

is in any given state. Moreover, a jump of(Jt ) from i to
j has a certain probability (depending only oni andj ) of
triggering a jump of(St ) at the same time. The size of thi
jump has a fixed distribution, which depends only oni and
j .

To see why the theory of Markov additive process
is relevant for the tandem queue, consider the followi
process(St ), defined by

St = Y0 + (Dt − Et), t ≥ 0, (1)

where (Dt ) denotes the departure process from the fi
queue and(Et ) is a Poisson process with intensityµ2,
independent of(Dt ). It is not difficult to see that(Xt , St ) is
a Markov additive process. Namely, during intervals whe
(Xt ) is constant,(St ) behaves like a pure death proce
with rateµ2. Moreover, a downward jump of(Xt ) triggers
(at the same time) an upward jump of(St ) of size 1. Now,
settingX0 = i andS0 = Y0 = 1, observe that the overflow
probabilityγi , as defined in the previous section, is exac
the probability that(St ) hits levelL before hitting level 0.
We now have a closer look at the process(St ). We first
consider the case where the first buffer has finite capa
b1; in this case the state space of the driving process(Xt )

is finite and the theory of Asmussen and Rubinstein (199
carries through.

3.1 Finite First Buffer

For eachs ≥ 0, define the matrixMt(s) whose (i, j)th
element isEi esSt I{Xt=j}. Notice thatMt(·) is a gener-
alization of themoment generating functionfor ordinary
random variables. LetG(s) be the tri-diagonal matrix of
dimensionb1 + 1, given byG(s) =




−λ − µ2 + µ2 e−s λ

µ1 es −λ − µ1 − µ2 + µ2 e−s λ

.
.
.

.
.
.

.
.
.

µ1 es −µ1 − µ2 + µ2 e−s




It can be shown that

Mt(s) = et G(s), t ≥ 0, (2)

which follows from the observation that

M ′
t (s) = G(s) Mt(s),
2



Efficient Simulation of a Tandem Jackson Network

ure

)

for all t > 0, where the elements of the matrixG(s) are
determined from an infinitesimal analysis. For example, for
i = 1, . . . , b1, ash ↓ 0, we have

Ei esSh I{Xh=i−1}
= Ei ( esSh | Xh = i − 1) Pi (Xh = i − 1)

= µ1 h es + o(h),

This shows that(i, i − 1)th element of the matrixG(s) is
equal toµ1 es . Notice that a downward jump of(Xt ) leads
to an upward jump of(St ).

3.2 Change of Measure

Next, we define a change of measure based on the fam
ily of matrices (G(s)). For any s ≥ 0, define κ(s) :=
log(sp(Mt(s)))/t , where sp(Mt(s)) denotes the spectral ra-
dius (or the maximum eigenvalue) ofMt(s). Using (2)
we identifyκ(s) as the largest positive eigenvalue ofG(s).
Let w(s) = {wk(s), 0 ≤ k ≤ b1} denote the corresponding
right-eigenvector. For anyθ ≥ 0 and any initial statei for
the first buffer, we consider the following change of measure,
P̃i , under which(Xt , St ) is a Markov additive process (as
defined above), but for which(Xt ) has a different Q-matrix
given by

Q̃ = 1−1(w(θ)) G(θ) 1(w(θ)) − κ(θ) I, (3)

and (St ) has death rate

µ̃2 = µ2 e−θ . (4)

Here, we have used the notation1(a) to denote a diagonal
matrix with entries corresponding to a vectora. Notice that
Q̃ is a genuineQ-matrix. Writing out (3), we find that
the so-calledconjugatearrival and service rates of the first
queue are given by

λ̃(k) = Gk,k+1(θ)
wk+1(θ)

wk(θ)
, k = 0, 1, . . . , b1 − 1, (5)

µ̃1(k) = Gk,k−1(θ)
wk−1(θ)

wk(θ)
, k = 1, 2, . . . , b1. (6)

Note that the conjugate rates depend onk, the content of
the first buffer.

It can be shown (for example, by following a particular
trajectory) that the likelihood ratio corresponding toP̃i over
an interval[0, T ] is given by

WT (θ) = wi(θ)

wXT
(θ)

e−θ ST +T κ(θ). (7)
413
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The deterministic timeT in (7) may be replaced with a
stopping time depending on the history of(Xt , St ). Let τ

be the first time at which(St ) hits levelL or level 0, then
(starting withi in the first buffer)

γi = Ei I{Sτ =L} = Ẽi Wτ (θ) I{Sτ =L}

= Ẽi

wi(θ)

wXτ (θ)
e−θ L+τκ(θ) I{Sτ =L}.

The above equation shows how we may estimateγi under the
new measure. The optimal exponential change of meas
for importance sampling is obtained by settingθ = θ∗, such
that κ(θ∗) = 0. Under this change of measure,

γi = Ẽi

wi(θ
∗)

wXτ (θ∗)
e−θ∗ L I{Sτ =L}. (8)

Now, if

inf
L

P̃i (Sτ = L) = δ, (9)

for some strictly positive constantδ, then (8) gives the
following lower and upper bounds forγi :

δ e−θ∗L wi(θ
∗)

maxk wk(θ∗)
≤ γi ≤ e−θ∗ L wi(θ

∗)

mink wk(θ∗)
.

Since we also have

Ẽi W 2
τ (θ∗) ≤ e−2θ∗L wi(θ

∗)

mink wk(θ∗)
,

it follows that simulation underθ∗ yields abounded relative
error if (9) holds (or, equivalently, if a lower bound onγi

decays no faster than e−θ∗L.) Empirical results in Section 4
support our claim of bounded relative error. Equations (8
and (9) imply thatθ∗ is the exponential decay rateof γi ;
the correspondinggeometric decay rateis denoted byη.

We now focus on the eigenvectorw(θ∗), which we
simply denote byw with entries{wk, 0 ≤ k ≤ b1}. We
normalizew such thatw0 = 1. Given the tri-diagonal form
of G(θ∗) it is easy to see that

w1 = (λ + µ2 − µ2 η)/λ ,

wk+2 + a1 wk+1 + a2 wk = 0 , k = 0, . . . , b1 − 2,

wherea1 = −(λ + µ1 + µ2 − µ2 η)/λ anda2 = µ1/(λ η).

These equations completely specifywb1 in terms ofη.
However, we also have the boundary conditionwb1(−µ1 −
µ2 + µ2η) + wb1−1 µ1/η = 0. This extra equation enables
us to determineη. The following characteristic equation
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plays a significant role in the evaluation of the change
measure:

z2 + a1 z + a2 = 0, (10)

with a1 anda2 as defined above.
If the first server is the bottleneck(µ1 < µ2), then

Equation (10) has two complex solutionsz e±iφ , and the
eigenvectorw is therefore given by

wk = zk (cos(kφ) + c sin(kφ)), k = 0, . . . , b1,

with c = (w1/z−cos(φ))/ sin(φ). It follows from Equations
(4), (5) and (6) that the conjugate rates are given by:µ̃2 =
µ2 η,

λ̃(k) = λz
(cos((k + 1)φ) + c sin((k + 1)φ))

(cos(kφ) + c sin(kφ))
,

k = 0, . . . , b1 − 1,

µ̃1(k) = µ1

ηz

(cos((k − 1)φ) + c sin((k − 1)φ))

(cos(kφ) + c sin(kφ))
,

k = 1, . . . , b1.

If the second server is the bottleneck(µ2 < µ1), then
Equation (10) has two real solutions, say,z1 and z2. The
eigenvectorw is therefore given by

wk = c1 zk
1 + c2 zk

2, k = 0, . . . , b1,

with c1 and c2 as determined from the two equation
w0 = c1+c2 = 1andw1 = c1z1+c2z2 = (λ+µ2−µ2 η)/λ.
The corresponding conjugate rates are determined f
Equations (4), (5) and (6):

µ̃2 = µ2 η ,

λ̃(k) = λ
c1 zk+1

1 + c2 zk+1
2

c1 zk
1 + c2 zk

2

, k = 0, . . . , b1 − 1,

µ̃1(k) = µ1

η

c1 zk−1
1 + c2 zk−1

2

c1 zk
1 + c2 zk

2

, k = 1, 2, . . . , b1.

3.2.1 Remark 1

If the service rates at both nodes are equal (i.e.,µ1 = µ2) and
the first buffer is finite, then it can be shown that Equati
(10) has two complex solutionsz e±iφ . Therefore, this is a
special case of that in which the first node is the bottlene
and the conjugate rates can be determined similarly.
41
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3.3 Infinite First Buffer

The theory of Markov additive processes as described abo
only holds for driving Markov process with a finite state
space. In particular, we cannot apply the change of meas
derived in Section 3.1 to the estimation ofγi in the case where
the first buffer has infinite capacity. However, by reasonin
analogously we obtain a similar change of measure; in fa
it has somewhat simpler form than that for the case wi
finite first buffer.

Formally, when the first buffer has infinite capacity, the
matrixG(θ) of Section 3.1 becomes an infinite dimensiona
matrix of the same tri-diagonal form. Putting,w0 = 1,
w1 = (λ + µ2 − µ2 η)/λ, and

wk+2 + a1 wk+1 + a2 wk = 0, k = 0, 1, . . . ,

wherea1 = −(λ + µ1 + µ2 − µ2 η)/λ anda2 = µ1/(λ η),
we see thatw is completely specified by the geometric
decay rateη = e−θ∗

. However, in this case we have no
boundary condition to obtainη. The determination ofη
depends on which server is the bottleneck.

If the first server is the bottleneck(µ1 < µ2), then
η is such that the characteristic equation (10) has only o
solution, say,z. (The reader may verify this by considering
the approximate model where the capacityb1 of the first
buffer is large but finite.) Consequently, the eigenvectorw
is of the form

wk = zk(1 + c k), k = 0, 1, 2, . . . ,

with c = (λ + µ2 − µ2 η)/(λz) − 1. The conjugate rates
(as defined in Section 3.1) also follow from Equations (4
(5) and (6): µ̃2 = µ2 η,

λ̃(k) = λ z
1 + c (k + 1)

1 + c k
, k = 0, 1, . . . ,

µ̃1(k) = µ1

η z

1 + c (k − 1)

1 + c k
, k = 1, 2, . . . .

Empirical results in Section 4 indicate that when the firs
buffer is infinite and is the bottleneck, the change of measu
proposed above yields estimates with relative error whic
is (asymptotically) linear in the overflow levelL; a formal
proof is not yet available.
4
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3.3.1 Remark 2

By using some algebra it is not difficult to show that if th
first server is the bottleneck thenη is a root of the cubic
equation

−4λµ1 + (λ2 + 2λµ1 + µ2
1 + 2λµ2 + 2µ1µ2 + µ2

2) η

−2µ2 (λ + µ1 + µ2) η2 + µ2
2 η3 = 0. (11)

Similarly, z can be shown to be the root of

µ1µ2 + (−λ2 − λµ1 − λµ2) z2 + 2λ2 z3 = 0. (12)

If the second server is the bottleneck(µ2 < µ1), then
the conjugate rates are even simpler in form. In this ca
wk = zk, k ≥ 0, with z = 1/η = µ2/λ. (This can again be
verified by considering the approximate model with largeb1.)
The corresponding conjugate rates are:λ̃ = µ2, µ̃1 = µ1
andµ̃2 = λ, i.e., we interchange the arrival rate and the sm
est service rate. Empirical results in Section 4 indicate t
this change of measure yields estimates with bounded r
tive error. Note that this is consistent with the optimal chan
of measure obtained from large deviations analysis of ot
but related, overflow probabilities in queueing networks (s
e.g., Parekh and Walrand 1989, Frater and Anderson 19

3.3.2 Remark 3

For an infinite first buffer, asµ1 approachesµ2 from below,
it can be shown thatη andz from Equations (11) and (12
approachλ/µ2 and µ2/λ, respectively. Therefore, whe
the service rates are equal, the conjugate rates are obta
by interchanging the arrival rate and the service rates (
λ̃ = µ1 = µ2 and µ̃1 = µ̃2 = λ.) Empirical results in
Section 4 indicate that this change of measure (which
the commonly used heuristic) yields estimates with relat
error that is (asymptotically) bounded linearly inL. This
agrees with observations made in the literature (see,
Glasserman and Kou 1995, Heidelberger 1995) that
above change of measure is less effective when the ser
rates are equal.

4 EXAMPLES

We give four concrete examples of the tandem Jack
network with two servers. In the first example, we consid
a system in which the second server is the bottleneck. In
second and third examples, the first server is the bottlen
The interesting case of equal service rates is considere
the fourth example. We are interested in the estimation
the overflow probability in the second bufferγ = γ1 (i.e.,
starting fromX0 = 1 and Y0 = 1), for both cases: finite
and infinite first buffer.
4
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In all the experimental results presented here, the sam
number of replications, namely,106, is used to obtain each
estimate (using importance sampling). The actual simulatio
effort, however, increases slightly for higher overflow levels
For each estimate in Tables 1,2,3 and 4, we also include
relative error RE (standard deviation divided by the mean
and its invariance constant IC (assuming thatγ1 ∝ e−θ∗L,
IC is the constant of proportionality.)

For the tandem Jackson network being considered, n
merical values of the overflow probabilities can be obtaine
using the algorithm outlined in Garvels and Kroese (1999
For the purpose of validation, these values are also list
in the tables.

4.1 Example 1(λ = 1, µ1 = 4 andµ2 = 2)

The second server is the bottleneck.
For a finite first buffer,b1 = 9, the geometric decay rate

η of the second buffer is approximately1 0.49967. Equation
(10) has two real solutionsz1 = 2.00198andz2 = 3.99868,
and the eigenvectorw is given by

wk = c1 zk
1 + c2 zk

2, k = 0, . . . , b1,

with c1 = 1.00066 and c2 = −0.00066. This leads to a
change of measure which is very close to interchangin
the arrival rate and the slowest (second) service rate, i.
λ̃ ≈ 2, µ̃1 ≈ 4 and µ̃2 ≈ 1.

For an infinite first buffer, we find thatη = 1/2, and
the eigenvectorw is given by

wk = 2k, k = 0, 1, 2, . . . .

This leads tõλ = 2, µ̃1 = 4 andµ̃2 = 1, i.e., interchanging
the arrival and the slowest service rates.

The resulting estimates and their relative errors ar
displayed in Table 1. For both cases, finite and infinit
first buffer, the estimates (for an increasing overflow leve
L) exhibit bounded relative error. This is consistent with
well established theoretical and empirical results (see, e.
Parekh and Walrand 1989, Frater and Anderson 1989).

4.2 Example 2(λ = 1, µ1 = 2 andµ2 = 3)

The first server is the bottleneck.
For a finite first buffer,b1 = 9, we find that η =

0.28898. Equation (10) has two complex solutionsz e±iφ ,
with z = 2.63077and φ = −0.22144. The eigenvectorw
is therefore given by

wk = zk (cos(kφ) + c sin(kφ)), k = 0, . . . , b1,

1All numerical values are rounded to 5 significant digits.
15
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with c = (w1/z − cos(φ))/ sin(φ) = −0.98048. The con-
jugate rates are determined as in Section 3.1.

For an infinite first buffer,η is a solution of (11):

−8 + 36η − 36η2 + 9η3 = 0,

and z is a solution of (12):

3 − 3z2 + z3 = 0.

The numerical values areη = 0.31194and z = 2.53209,
and the eigenvectorw satisfies

wk = zk(1 + c k), k = 0, 1, . . . ,

with c = w1/z − 1 = 0.21014. The change of measure is
obtained accordingly (as in Section 3.3).

The resulting estimates and their relative errors a
displayed in Table 2. For a finite first buffer, the estimat
(for an increasing overflow level,L) exhibit bounded relative
error. When the first buffer is infinite, the estimates a
accurate but their relative error increases linearly withL.

4.3 Example 3(λ = 1, µ1 = 4/3 andµ2 = 2)

The first server is the bottleneck.
Using the same procedure as in the above exam

for a finite first buffer,b1 = 9, we find thatη = 0.41467.
Equation (10) has two complex solutionsz e±iφ , with z =
1.79315andφ = −0.21466, and the eigenvectorw is given
by

wk = zk (cos(kφ) + c sin(kφ)), k = 0, . . . , b1,

with c = (w1/z − cos(φ))/ sin(φ) = −1.09603.
Table 1: Estimates of the overflow probability in Example 1. (The
second server is the bottleneck.)

(λ, µ1, µ2) L γ̂ (IS) RE (IS) IC γ (Numerical)

(1, 4, 2) 20 1.43e-6 0.11% 1.516 1.428e-6
b1 = 9 25 4.44e-8 0.11% 1.514 4.446e-8

50 1.30e-15 0.11% 1.515 1.303e-15
60 1.27e-18 0.11% 1.519 1.264e-18
100 1.12e-30 0.11% 1.516 1.120e-30

(1, 4, 2) 20 1.43e-6 0.11% 1.500 1.432e-6
b1 = ∞ 25 4.47e-8 0.11% 1.500 4.472e-8

50 1.33e-15 0.11% 1.500 1.332e-15
60 1.30e-18 0.11% 1.500 1.301e-18
100 1.18e-30 0.11% 1.500 1.183e-30
416
,

For an infinite first buffer, we find (as in the above ex-
ample) thatη = 0.45520, z = 1.71147, and the eigenvector
w is given by

wk = zk(1 + c k), k = 0, 1, . . . ,

with c = w1/z − 1 = 0.22094.
The resulting estimates and their relative errors ar

displayed in Table 3. As in the above example, for a finite
first buffer, the estimates exhibit bounded relative error
When the first buffer is infinite, the relative error increases
linearly with L.

4.4 Example 4(λ = 1, µ1 = 2 andµ2 = 2)

Equal service rates at both nodes.
As noted in Remark 1 (Section 3.1), for a finite first

buffer, b1 = 9, we follow the same procedure as if the first
server is the bottleneck. We find thatη = 0.47847. Equation
(10) has two complex solutionsz e±iφ , with z = 2.0445
andφ = −0.15, and the eigenvectorw is given by

wk = zk (cos(kφ) + c sin(kφ)), k = 0, . . . , b1,

with c = (w1/z − cos(φ))/ sin(φ) = −0.0704.
For an infinite first buffer, the conjugate rates are ob-

tained by exchanging the arrival and service rates (se
Remark 3 in Section 3.3).

The resulting estimates and their relative errors ar
displayed in Table 4. Here too, for a finite first buffer,
the estimates (for an increasing overflow level,L) exhibit
bounded relative error. When the first buffer is infinite, the
relative error increases linearly withL.

4.5 Remark

According to the theory in Section 3, the derived change
of measure holds for any starting state, provided thatY0 ≥ 1.
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Table 2: Estimates of the overflow probability in Example 2. (The first
server is the bottleneck.)

(λ, µ1, µ2) L γ̂ (IS) RE (IS) IC γ (Numerical)

(1, 2, 3) 20 1.88e-11 0.24% 1.138 1.878e-11
b1 = 9 25 3.75e-14 0.24% 1.127 3.759e-14

50 1.24e-27 0.24% 1.123 1.247e-27
60 5.06e-33 0.24% 1.128 5.063e-33
100 1.38e-54 0.24% 1.128 1.377e-54

(1, 2, 3) 20 2.05e-11 0.49% 0.270 2.048e-11
b1 = ∞ 25 4.63e-14 0.56% 0.206 4.610e-14

50 4.32e-27 0.87% 0.086 4.305e-27
60 2.94e-32 0.98% 0.067 2.956e-32
100 8.59e-53 1.38% 0.034 8.595e-53

Table 3: Estimates of the overflow probability in Example 3. (The first
server is the bottleneck.)

(λ, µ1, µ2) L γ̂ (IS) RE (IS) IC γ (Numerical)

(1, 4/3, 2) 20 1.15e-8 0.23% 0.508 1.150e-8
b1 = 9 25 1.40e-10 0.23% 0.506 1.405e-10

50 3.89e-20 0.23% 0.505 3.887e-20
60 5.83e-24 0.23% 0.503 5.843e-24
100 2.99e-39 0.23% 0.503 2.982e-39

(1, 4/3, 2) 20 1.35e-8 0.52% 0.092 1.348e-8
b1 = ∞ 25 1.96e-10 0.60% 0.069 1.966e-10

50 2.19e-19 0.95% 0.027 2.203e-19
60 6.50e-23 1.07% 0.021 6.541e-23
100 6.78e-37 1.52% 0.010 6.790e-37

Table 4: Estimates of the overflow probability in Example 4. (Equal
service rates at both nodes.)

(λ, µ1, µ2) L γ̂ (IS) RE (IS) IC γ (Numerical)

(1, 2, 2) 20 2.55e-7 0.19% 0.646 2.557e-7
b1 = 9 25 6.40e-9 0.19% 0.645 6.397e-9

50 6.32e-17 0.19% 0.643 6.340e-17
60 3.99e-20 0.19% 0.645 3.987e-20
100 6.23e-33 0.19% 0.645 6.235e-33

(1, 2, 2) 20 2.77e-7 0.29% 0.290 2.787e-7
b1 = ∞ 25 7.68e-9 0.31% 0.258 7.661e-9

50 1.56e-16 0.38% 0.176 1.559e-16
60 1.39e-19 0.40% 0.160 1.382e-19
100 9.63e-32 0.46% 0.122 9.618e-32
417
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WhenY0 = 0 (i.e., starting with an empty second buffer)
the process(Yt ) stays at level 0 for a while before taking of
to higher levels. For any such starting state (for examp
an empty system), empirical results (not included her
show that the same change of measure yields estima
with a bounded relative error, except when the first serv
is the bottleneck and its buffer is infinite. In this case, th
relative error increases sharply withL, suggesting that a
different (exponential) change of measure to be used alo
the boundary (while(Yt ) = 0) should perhaps be sought.

Indeed, when we use the conditional transition probab
ities (given an overflow of the second buffer) as a change
measure on(Yt ) = 0, the relative error of the resulting esti
mates increases linearly (but slowly) withL. Unfortunately,
determining the conditional transition probabilities along th
boundary(Yt ) = 0 is of the same order of complexity as
determining the probability we are trying to estimate.

5 CONCLUSIONS

This paper represents an introduction and a preliminary stu
of a new approach for the analysis and efficient simulati
of rare events in queueing networks. We have introduc
a MAP (Markov additive process) representation of a tw
node tandem Jackson network. An exponential change
measure is used in an importance sampling procedure
estimate the probability of overflow in the second buffer. Th
optimal tilting parameter and the correspondingconjugate
rates are determined by solving an appropriate eigenva
problem. Unlike heuristics proposed and studied in t
literature, our approach yields conjugate rates which,
general, depend on the content of the first buffer. Importan
sampling simulations with this change of measure yie
asymptotically efficient estimators, with a bounded relativ
error, except when the first node is the bottleneck and
buffer is infinite; in this case the relative error is bounde
linearly in the overflow level. Further research is now bein
conducted to examine the feasibility and effectiveness
this new approach for other rare events of interest in Jack
networks.
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