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ABSTRACT queue) and the slowest service rate. The same change of

measure is suggested based on time reversal arguments (see,

In this paper we consider a two-node tandem Jackson net- e.g., Anantharam et al. 1990, Frater et al. 1991). However,
work. Starting from a given state, we are interested in analysisin Glasserman and Kou (1995) and counter examples
estimating the probability that the content of the second in Glasserman and Wang (1997) show that the importance
buffer exceeds some high levelbefore it becomes empty.  sampling estimator based on this change of measure is not
The theory of Markov additive processes is used to deter- necessarily asymptotically efficient; in fact, it has an infinite
mine the asymptotic decay rate of this probability, for large variance in some parameter regions. Other rare events of
L. Moreover, the optimal exponential change of measure interest are the buffer overflow at the individual network
to be used in importance sampling is derived and used for nodes. If the node of interest is the bottleneck (relative to
efficient estimation of the rare event probability of interest. all preceding nodes), then the optimal exponential change

Unlike changes of measures proposed and studied in of measure is to interchange the arrival rate and the service
recent literature, the one derived here is a function of the rate at this (bottleneck) node; the service rates at all other
content of the first buffer, and yields asymptotically efficient nodes are kept unchanged (see, e.g., Parekh and Walrand
simulation for any set of arrival and service rates. The 1989, Frater and Anderson 1989). However, this change of
relative error is bounded independent of the levebxcept measure is not optimal (not even asymptotically efficient)
when the first server is the bottleneck and its buffer is if we are interested in the buffer overflow at a node after
infinite, in which case the relative error is bounded linearly the bottleneck. The theory @fffective bandwidtinas been

in L. used to derive heuristics for the efficient simulation of a
class of feed-forward discrete-time queueing networks, see,
1 INTRODUCTION e.g., Chang et al. (1994) and De Veciana et al. (1994).

(This class essentially resembles a feed-forward fluid-flow
The tandem Jackson network has received considerable network.) Another approach is considered in Kroese and
attention as a reference example for the analysis and testingNicola (1998) to study a fluid-flow line with unreliable nodes.
of different methodologies and various techniques to speed To the best of our knowledge, analogous approaches for
up simulations involving rare events. The particular interest application to continuous-time queueing networks has not
in this system stems from the fact that in spite of its (apparent) yet been introduced; not even for a simple tandem Jackson
simplicity, its large deviations behaviour is not yet fully  network.

understood. The main difficulty being its multi-dimensional In this paper we consider a two-node tandem Jackson
state space and the complicated large deviations behaviournetwork, and study the buffer overflow event at the second
along its boundaries. node. We present a new Markov additive process (MAP)

Among rare events of interest in the tandem Jackson representation of the system. (For MAP definitions and
network, the most studied is the overflow of the total network properties, see Ney and Nummelin 1987). This MAP is ex-
population (see, e.g., Parekh and Walrand 1989, Anantharam ponentially (and optimally) tilted for use in an importance
et al. 1990, Frater and Anderson 1989, Frater et al. 1991, sampling procedure to estimate the probability of buffer
Tsoucas 1992, Glasserman and Kou 1995). Exact large overflow in the second node. Unlike changes of measure
deviations analysis leading to an asymptotically optimal considered in the literature, the one we derive here depends
change of measure is quite difficult. Instead, a heuristic on the contents of the first buffer. No complete proof of its
change of measure is suggested in Parekh and Walrandoptimality is available at this time, but empirical studies in
(1989), which interchanges the arrival rate (to the first this paper strongly confirm its asymptotic efficiency. The
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resulting estimates have relative error which is (asymptot-
ically) bounded independent of the overflow level, except
when the first server is the bottleneck and its buffer is infi-
nite. In the latter case, the relative error is (asymptotically)

independent increments during the time intervals whghn
is in any given state. Moreover, a jump @f;) fromi to
J has a certain probability (depending only band j) of
triggering a jump of(S;) at the same time. The size of this

linearly bounded in the overflow level. jump has a fixed distribution, which depends onlyicend

In Section 2 we give some preliminaries. A MAP ;.
representation of the system and its exponential change To see why the theory of Markov additive processes
of measure are introduced in Section 3. In Sections 3.1 is relevant for the tandem queue, consider the following
and 3.3, the optimal changes of measure are derived for process(S;), defined by
finite and infinite first buffer, respectively. Empirical results
in Section 4 demonstrate the (asymptotic) efficiency of the
developed importance sampling estimator. Conclusions and
related future research are given in Section 5.

St =Yo+ Dy — Ep), t=>0, 1)
where (D;) denotes the departure process from the first
gueue and(E;) is a Poisson process with intensity,
independent ofD,). It is not difficult to see thatX,, S;) is

a Markov additive process. Namely, during intervals where
Consider a simple Jackson network consisting of two queues (X;) is constant,(S;) behaves like a pure death process
in tandem. Customers arrive at the first queue (buffer) with rateus. Moreover, a downward jump afX;) triggers
according to a Poisson process with ratelhe service time (at the same time) an upward jump @) of size 1. Now,

of a customer at the first queue is exponentially distributed settingXo =i andSo = Yo = 1, observe that the overflow
with ratex1. Customers that leave the first queue enter the probability y;, as defined in the previous section, is exactly
second one. The service time in the second queue has andthe probability that(S;) hits level L before hitting level 0.
exponential distribution with rat@,. We assume stability We now have a closer look at the procdss). We first

of the queueing system, i.e., consider the case where the first buffer has finite capacity
b1; in this case the state space of the driving process

is finite and the theory of Asmussen and Rubinstein (1995)
carries through.

2 PRELIMINARIES

A < min{u, 2}

The size of the first buffer is denoted Iy (which may

be finite or infinite.) LetX, andY; denote the number of
customersinthe firstand second queue at timespectively.

We assume that the second buffer is initially non-empty;
to simplify notation and without loss of generality, we set
Yo = 1. LetP; denote the probability measure under which
(X;) starts fromi at time 0 (i.e.,Xo=1i,0<i < by); and

let E; denote the corresponding expectation operator. In
Section 3 we will consider various changes of measure; we
will denote by]f"i any such measure for whiatk,) starts
ati. [; denotes the corresponding expectation operator.
We are interested in the probability that, starting from
(Xo, Yo) = (i, 1), the second queue hits some large level
L € N before hitting 0. We denote this probability by

and will refer to it as theverflow probabilityof the second
buffer, given that the initial number of customers in the first
queue isi.

3.1 Finite First Buffer

For eachs > 0O, define the matrixM,(s) whose (i, j)th

element isE; 'S Iix,—j). Notice thatM;(-) is a gener-
alization of themoment generating functiofor ordinary

random variables. LeG(s) be the tri-diagonal matrix of
dimensionb; + 1, given by G(s) =

7}»7112+;42975 A

npe —A—py—pp+pupe’ A

n1€  —pg—pup+upe

It can be shown that

MI(S) = eIG(S)a t= 07 (2)

3 EXPONENTIAL CHANGE OF MEASURE

. which follows from the observation that
The key to understanding the change of measure that we
are going to propose is Asmussen and Rubinstein (1995),
where an exponential change of measure for Markov additive
processes is discussed in the context of rare event simulation.
Basically, a Markov additive process in continuous time is a
stochastic procesd;, S;), where(J;) is afinite state Markov
chain and(S;) behaves like a process with stationary and
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for all > 0, where the elements of the matrx(s) are

The deterministic timeT in (7) may be replaced with a

determined from an infinitesimal analysis. For example, for stopping time depending on the history @f;, S;). Lett

i=1...,b1,ash | 0, we have
E; €% Iix,=i-1)
= E(&%|Xp=i—-DP;(Xp=i—1

= p1h€ +o(h),
This shows thati, i — 1)th element of the matrixG(s) is
equal tou1 €. Notice that a downward jump @fX,) leads
to an upward jump ofS;).

3.2 Change of Measure

Next, we define a change of measure based on the fam-

ily of matrices (G(s)). For anys > 0, definex(s) :=
log(sp(M;(s)))/t, where spM,(s)) denotes the spectral ra-
dius (or the maximum eigenvalue) af,(s). Using (2)
we identify x (s) as the largest positive eigenvalue@®ts).
Let w(s) = {w(s), 0 < k < b1} denote the corresponding
right-eigenvector. For ang > 0 and any initial state for

be the first time at whiclgs;) hits level L or level 0, then
(starting withi in the first buffer)
E; Ijs,=1) = E; W (0) Ijs,=1)

- (6
o w; () o0 L+7x(0) Is,
wy, (0)

Vi =

=L}

The above equation shows how we may estinpatender the
new measure. The optimal exponential change of measure
for importance sampling is obtained by settihg- 6*, such
that« (6*) = 0. Under this change of measure,

= wi(0%) g
i = K e Iis —11. 8
% T {S;=L} (8)
Now, if

the first buffer, we consider the following change of measure, for some strictly positive constart, then (8) gives the

P;, under which(X,, S;) is a Markov additive process (as
defined above), but for whicfX;) has a different Q-matrix
given by

0 = A7) GO) AW(®)) — k() 1, ®)
and (S;) has death rate
fio = poe. 4)

Here, we have used the notatiar{a) to denote a diagonal
matrix with entries corresponding to a vectorNotice that
0 is a genuineQ-matrix. Writing out (3), we find that
the so-callecconjugatearrival and service rates of the first
gueue are given by

wi41(0)

Mm=GMHw>Ww)

,k=0,1,...,b1—1, (5)

wi—1(0)
wi (0)

f1(k) = Grx-1(6) L k=21,2,...,b1. (6)

Note that the conjugate rates dependiorthe content of
the first buffer.

It can be shown (for example, by following a particular

trajectory) that the likelihood ratio correspondingPftoover
an interval[O, T] is given by

Wr(0) = —w":: (f;) e 0 STk O, 7
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following lower and upper bounds for;:

w; (0%)
ming wy (6*)

(0%
se 'L w; (67) <y < e 0L
max, wg(0*) — T

Since we also have

i w2 < et i@
ming; wy (6*)

it follows that simulation unde#* yields abounded relative
error if (9) holds (or, equivalently, if a lower bound on
decays no faster tharr& =) Empirical results in Section 4
support our claim of bounded relative error. Equations (8)
and (9) imply thatv* is the exponential decay ratef y;;
the correspondingeometric decay rates denoted by.

We now focus on the eigenvector(6*), which we
simply denote byw with entries{wy,0 < k < b1}. We
normalizew such thatwg = 1. Given the tri-diagonal form
of G(0*) it is easy to see that

w1 =X+ u2—pu2n/r,

W42 Farwiyr +azwp =0, k=0,...,b1 -2,

wherea; = —(A + 1+ 2 — p2n)/A andaz = u1/(An).

These equations completely specify, in terms ofy.
However, we also have the boundary conditiog) (—u1 —
w2 + uon) + wp,—1 n1/n = 0. This extra equation enables
us to determine;. The following characteristic equation
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plays a significant role in the evaluation of the change of
measure:

P +arz+az=0, (10)

with a1 andas as defined above.

If the first server is the bottleneckt1 < u2), then
Equation (10) has two complex solutiopg™?, and the
eigenvectomw is therefore given by

wi = Z° (cogke) + ¢ sinkp)), k=0,..., b1,

withc¢ = (w1/z—Cc09¢))/ sin(¢). Itfollows from Equations
(4), (5) and (6) that the conjugate rates are given oy =
l’L2 n!

(cog(k + 1)¢p) + ¢ sin((k + 1)¢))

Ak = Az . ,
(cogke) + ¢ sin(ke))
k=0,...,b;—1,
1) M1 (coq(k — 1)) + ¢ sin((k — L)¢))
! nz (coske) + ¢ sin(ke)) ’
k=1,...,b1.

If the second server is the bottlenegky < w1), then
Equation (10) has two real solutions, say,andz. The
eigenvectomw is therefore given by

— k k —
wg =c121+c225, k=0,...,b1,
with ¢1 and ¢ as determined from the two equations:
wo = c1+c2 = landwy = c1z1+cz2 = (A+p2—p2n)/A.
The corresponding conjugate rates are determined from
Equations (4), (5) and (6):

f2 = uz2m ,

€1 Z’{H +c2 z1§+1

rk) = A , k=0,...,b1—1,

Qﬁ+qé

k-1 k-1
M1 €12y ~+c22

= —,

k) = —= =1 —=2_
n o c1zptc2zp

k=12,...,b1.

3.2.1 Remark 1

If the service rates at both nodes are equal (e = 12) and

the first buffer is finite, then it can be shown that Equation
(10) has two complex solutionse™?. Therefore, this is a
special case of that in which the first node is the bottleneck,
and the conjugate rates can be determined similarly.
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3.3 Infinite First Buffer

The theory of Markov additive processes as described above
only holds for driving Markov process with a finite state
space. In particular, we cannot apply the change of measure
derived in Section 3.1 to the estimationgfn the case where

the first buffer has infinite capacity. However, by reasoning
analogously we obtain a similar change of measure; in fact,
it has somewhat simpler form than that for the case with
finite first buffer.

Formally, when the first buffer has infinite capacity, the
matrix G (9) of Section 3.1 becomes an infinite dimensional
matrix of the same tri-diagonal form. Puttingso = 1,
w1 = (A + p2 — p2n)/A, and

Wi42 +arwgsr+azwr =0, k=0,1,...,

wherea; = —(A + u1 + p2 — u2n) /A andaz = pu1/(A n),
we see thaw is completely specified by the geometric
decay raten = e ?". However, in this case we have no
boundary condition to obtain. The determination of
depends on which server is the bottleneck.

If the first server is the bottlenecki1 < u2), then
n is such that the characteristic equation (10) has only one
solution, sayz. (The reader may verify this by considering
the approximate model where the capadityof the first
buffer is large but finite.) Consequently, the eigenvegtor
is of the form

wp = XA +ck), k=0,1,2,...,

with ¢ = (A + u2 — u2n)/(rz) — 1. The conjugate rates
(as defined in Section 3.1) also follow from Equations (4),
(5) and (6): 2 = pan,

l+ck+1)

Ak) = A ,
k) =hz—" 7

k=0,1,...,

. l+ck-1)
p1(k) = morer—
nz

k=1,2,....
1+ck

Empirical results in Section 4 indicate that when the first
buffer is infinite and is the bottleneck, the change of measure
proposed above yields estimates with relative error which
is (asymptotically) linear in the overflow levél; a formal
proof is not yet available.
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3.3.1 Remark 2

By using some algebra it is not difficult to show that if the
first server is the bottleneck thenis a root of the cubic
equation

—hpu1 4+ (A% + 201 + 13 4 2hpo + a2 + ud) n

—2p2 (A + p1 + p2) n? + u2nd =0. (11)
Similarly, z can be shown to be the root of
pipe + (=32 = Apy — ) 2+ 2028 =0, (12)

If the second server is the bottlenegky < 1), then
the conjugate rates are even simpler in form. In this case,
wi = X, k > 0, with z = 1/n = uo/A. (This can again be
verified by considering the approximate model with larg¢
The corresponding conjugate rates ake= w2, fi1 = 11
andiip = A, i.e., weinterchange the arrival rate and the small-
est service rate. Empirical results in Section 4 indicate that
this change of measure yields estimates with bounded rela-
tive error. Note that this is consistent with the optimal change
of measure obtained from large deviations analysis of other,
but related, overflow probabilities in queueing networks (see,
e.g., Parekh and Walrand 1989, Frater and Anderson 1989).

3.3.2 Remark 3
For an infinite first buffer, ag1 approacheg.» from below,

it can be shown thay andz from Equations (11) and (12)
approachi/u2 and ua/A, respectively. Therefore, when

the service rates are equal, the conjugate rates are obtained

by interchanging the arrival rate and the service rates (i.e.,
A = u1 = uo and iy = > = A.) Empirical results in
Section 4 indicate that this change of measure (which is
the commonly used heuristic) yields estimates with relative
error that is (asymptotically) bounded linearly Iin This
agrees with observations made in the literature (see, e.g.,
Glasserman and Kou 1995, Heidelberger 1995) that the
above change of measure is less effective when the service
rates are equal.

4 EXAMPLES

We give four concrete examples of the tandem Jackson
network with two servers. In the first example, we consider
a system in which the second server is the bottleneck. In the
second and third examples, the first server is the bottleneck.
The interesting case of equal service rates is considered in
the fourth example. We are interested in the estimation of
the overflow probability in the second buffer= y1 (i.e.,
starting fromXo = 1 and Yp = 1), for both cases: finite
and infinite first buffer.
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In all the experimental results presented here, the same
number of replications, namel§0®, is used to obtain each
estimate (using importance sampling). The actual simulation
effort, however, increases slightly for higher overflow levels.
For each estimate in Tables 1,2,3 and 4, we also include its
relative error RE (standard deviation divided by the mean)
and its invariance constant IC (assuming thatx e "L,

IC is the constant of proportionality.)

For the tandem Jackson network being considered, nu-
merical values of the overflow probabilities can be obtained
using the algorithm outlined in Garvels and Kroese (1999).
For the purpose of validation, these values are also listed
in the tables.

4.1 Example 1(A =1, u1 =4 anduz = 2)

The second server is the bottleneck.

For a finite first bufferp; = 9, the geometric decay rate
n of the second buffer is approximatél§.49967. Equation
(10) has two real solutiong = 2.00198andz; = 3.99868
and the eigenvectow is given by

wk=61z]{+czz’§, k=0,...,bs,

with ¢; = 1.00066 and ¢ = —0.00066 This leads to a
change of measure which is very close to interchanging
the arrival rate and the slowest (second) service rate, i.e.,
A2 j1~4andjio ~ 1.

For an infinite first buffer, we find thay = 1/2, and
the eigenvectow is given by

we =2 k=0,1,2,....

This leads to. = 2, ji; = 4 andjiz = 1, i.e., interchanging
the arrival and the slowest service rates.

The resulting estimates and their relative errors are
displayed in Table 1. For both cases, finite and infinite
first buffer, the estimates (for an increasing overflow level,
L) exhibit bounded relative error. This is consistent with
well established theoretical and empirical results (see, e.g.,
Parekh and Walrand 1989, Frater and Anderson 1989).

4.2 Example 2. =1, u1 =2 anduz = 3)

The first server is the bottleneck.

For a finite first buffer,by = 9, we find thatn =
0.28898 Equation (10) has two complex solutiong™?,
with z = 2.63077and ¢ = —0.22144 The eigenvectow
is therefore given by

wi = ¥ (cogke) + ¢ sinkep)), k=0,..., b1,

1Al numerical values are rounded to 5 significant digits.
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with ¢ = (w1/z — cog¢))/ sin(¢) = —0.98048 The con-
jugate rates are determined as in Section 3.1.
For an infinite first buffery is a solution of (11):

—8+36n — 36172 +91° =0,
andz is a solution of (12):
3-372+2=0.

The numerical values arg = 0.31194and z = 2.53209
and the eigenvectow satisfies

wy =2*A+ck), k=0,1,...,

with ¢ = w1/z — 1 = 0.21014 The change of measure is
obtained accordingly (as in Section 3.3).

The resulting estimates and their relative errors are
displayed in Table 2. For a finite first buffer, the estimates
(for anincreasing overflow level,) exhibit bounded relative
error. When the first buffer is infinite, the estimates are
accurate but their relative error increases linearly with

4.3 Example 3(A =1, u1 =4/3anduy = 2)

The first server is the bottleneck.

Using the same procedure as in the above example,
for a finite first buffer,b; = 9, we find thaty = 0.41467
Equation (10) has two complex solutions™?, with z =
1.79315and¢ = —0.21466 and the eigenvectav is given

by
wi = Z° (cogke) + ¢ sinkp)), k=0,..., b1,

with ¢ = (w1/z — coS¢))/ sin(¢) = —1.09603

For an infinite first buffer, we find (as in the above ex-
ample) thaty = 0.4552Q z = 1.71147 and the eigenvector
w is given by

wy =2X(L+ck), k=0,1,...,

with ¢ = wy/z — 1 = 0.22094

The resulting estimates and their relative errors are
displayed in Table 3. As in the above example, for a finite
first buffer, the estimates exhibit bounded relative error.
When the first buffer is infinite, the relative error increases
linearly with L.

4.4 Example 4L, =1, u1 =2 anduz = 2)

Equal service rates at both nodes.

As noted in Remark 1 (Section 3.1), for a finite first
buffer, by = 9, we follow the same procedure as if the first
server is the bottleneck. We find that= 0.47847 Equation
(10) has two complex solutionset’?, with z = 2.0445
and¢ = —0.15, and the eigenvectowr is given by

wi = ZX (cogke) + ¢ sinkp)), k=0,..., b1,

with ¢ = (w1/z — cog¢))/ sin(¢) = —0.0704

For an infinite first buffer, the conjugate rates are ob-
tained by exchanging the arrival and service rates (see
Remark 3 in Section 3.3).

The resulting estimates and their relative errors are
displayed in Table 4. Here too, for a finite first buffer,
the estimates (for an increasing overflow leve), exhibit
bounded relative error. When the first buffer is infinite, the
relative error increases linearly with.

4.5 Remark

According to the theory in Section 3, the derived change
of measure holds for any starting state, provided Ygat 1.

Table 1. Estimates of the overflow probability in Example 1. (The

second server is the bottleneck.)

[ Gounpa) [ L] 7(S) [RE(9)]

IC [ ¥ (Numerical) |

1, 4,2 20 || 1.43e-6 | 0.11% | 1.516 1.428e-6
b1=9 25 || 4.44e-8 | 0.11% | 1.514 4.446e-8
50 || 1.30e-15| 0.11% | 1.515 1.303e-15
60 || 1.27e-18| 0.11% | 1.519 1.264e-18
100 || 1.12e-30| 0.11% | 1.516 1.120e-30
1, 4, 2) 20 || 1.43e-6 | 0.11% | 1.500 1.432e-6
b1 =0 25 || 4.47e-8 | 0.11% | 1.500 4.472e-8
50 || 1.33e-15| 0.11% | 1.500 1.332e-15
60 || 1.30e-18| 0.11% | 1.500 1.301e-18
100 || 1.18e-30| 0.11% | 1.500 1.183e-30
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Table 2: Estimates of the overflow probability in Example 2. (The first
server is the bottleneck.)

[ Gpuu2) [ L [ 20S) [RE@S)] IC [ y (Numerical)]
(1,2, 3) || 20 || 1.88e-11] 0.24% | 1.138| 1.878e-11
b1 =9 25 || 3.75e-14| 0.24% | 1.127 3.759%e-14
50 || 1.24e-27| 0.24% | 1.123 1.247e-27
60 || 5.06e-33| 0.24% | 1.128 5.063e-33
100 || 1.38e-54| 0.24% | 1.128 1.377e-54
(1, 2, 3) 20 || 2.05e-11| 0.49% | 0.270 2.048e-11
b1 =0 25 || 4.63e-14| 0.56% | 0.206 4.610e-14
50 || 4.32e-27| 0.87% | 0.086 4.305e-27
60 || 2.94e-32| 0.98% | 0.067 2.956e-32
100 || 8.59e-53| 1.38% | 0.034 8.595e-53

Table 3: Estimates of the overflow probability in Example 3. (The first
server is the bottleneck.)

[ puu2) [ L [ 70S) [RE@S)] IC [ y (Numerical)]
(1, 4/3, 2) || 20 1.15e-8 | 0.23% | 0.508 1.150e-8
b1 =9 25 || 1.40e-10| 0.23% | 0.506 1.405e-10
50 || 3.89e-20| 0.23% | 0.505 3.887e-20
60 || 5.83e-24| 0.23% | 0.503 5.843e-24
100 || 2.99e-39| 0.23% | 0.503 2.982e-39
(1, 4/3,2) || 20 1.35e-8 | 0.52% | 0.092 1.348e-8
b1 =00 25 || 1.96e-10| 0.60% | 0.069 1.966e-10
50 || 2.19e-19| 0.95% | 0.027 2.203e-19
60 || 6.50e-23| 1.07% | 0.021 6.541e-23
100 || 6.78e-37| 1.52% | 0.010 6.790e-37

Table 4: Estimates of the overflow probability in Example 4. (Equal
service rates at both nodes.)

[ Oppu) [ L ]| 70S) [RE(S)[ IC [ y (Numerical)]
(1,2,2) | 20 || 255e-7 ] 0.19% | 0.646] 2557e-7
b1=9 || 25| 6.40e-9| 0.19% | 0.645| 6.397e-9
50 | 6.32e-17| 0.19% | 0.643| 6.340e-17
60 || 3.99e-20| 0.19% | 0.645| 3.987e-20
100 || 6.23e-33| 0.19% | 0.645| 6.235e-33
(1,2,2) || 20 || 2.77e-7| 0.29% [ 0.290| 2.787e-7
by=o0 | 25 | 7.68e-9| 0.31% | 0.258|  7.661e-9
50 || 1.56e-16| 0.38% | 0.176|| 1.559e-16
60 || 1.39e-19| 0.40% | 0.160| 1.382e-19
100 || 9.63e-32| 0.46% | 0.122| 9.618e-32
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is the bottleneck and its buffer is infinite. In this case, the Proceedings of INFOCOM'94EEE Press: 466-473.
relative error increases sharply with suggesting that a  Frater, M.R., and B.D.O. Anderson. 1989. Fast estimation
different (exponential) change of measure to be used along of the statistics of excessive backlogs in tandem net-

the boundary (whilgY;) = 0) should perhaps be sought. works of queues.Australian Telecommun. Ref3:
Indeed, when we use the conditional transition probabil- 49-55.

ities (given an overflow of the second buffer) as a change of Frater, M.R., T.M. Lenon, and B.D.O. Anderson. 1991.
measure orY;) = 0, the relative error of the resulting esti- Optimally efficient estimation of the statistics of rare
mates increases linearly (but slowly) with Unfortunately, events in queueing networkslEEE Trans. Autom.
determining the conditional transition probabilities along the Control 36: 1395-1405.
boundary(Y;) = 0 is of the same order of complexity as  Garvels, M.J.J., and D.P. Kroese. 1999. On the entrance
determining the probability we are trying to estimate. distribution in RESTART simulation. IiProceedings

of the Second Workshop on Rare Event Simulation
5 CONCLUSIONS (RESIM’99),Enschede, The Netherlands, 65—88.

Glasserman, P., and S-G. Kou. 1995. Analysis of an im-
This paper represents an introduction and a preliminary study portance sampling estimator for tandem queusSM

of a new approach for the analysis and efficient simulation Transactions of Modeling and Computer Simulat®n

of rare events in queueing networks. We have introduced (1): 22-42.

a MAP (Markov additive process) representation of a two- Glasserman, P., and Y. Wang. 1997. Counterexamples in
node tandem Jackson network. An exponential change of importance sampling for large deviations probabilities.

measure is used in an importance sampling procedure to Ann. Appl. Probab.7 (3): 731-746.

estimate the probability of overflow in the second buffer. The Heidelberger, P. 1995. Fast simulation of rare events in
optimal tilting parameter and the correspondtanjugate gueueing and reliability modelACM Transactions of
rates are determined by solving an appropriate eigenvalue Modeling and Computer Simulatidh (1): 43-85.
problem. Unlike heuristics proposed and studied in the Kroese, D.P., and V.F. Nicola. 1998. Efficient simulation of
literature, our approach yields conjugate rates which, in backlogs in fluid flow linesInt. J. Electron. Commun.
general, depend on the content of the first buffer. Importance AEU 52 (3): 165-171.

sampling simulations with this change of measure yield Ney, P., and E. Nummelin. 1987. Markov additive processes
asymptotically efficient estimators, with a bounded relative I. Eigenvalue properties and limit theoren®he Annals
error, except when the first node is the bottleneck and its of Probability 15 (2): 561-592.

buffer is infinite; in this case the relative error is bounded Ney, P., and E. Nummelin. 1987. Markov additive processes

linearly in the overflow level. Further research is now being Il. Large deviations.The Annals of ProbabilityL5 (2):

conducted to examine the feasibility and effectiveness of 593-609.

this new approach for other rare events of interest in Jackson Parekh, S., and J. Walrand. 1989. A quick simulation

networks. method for excessive backlogs in networks of queues.
IEEE Transactions on Automatic Contrgt: 54—66.
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