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ABSTRACT

Discrete resource allocation is a common problem 
supply chain management. However, stochastic discre
resource allocation problems are difficult to solve. In th
paper, we propose a new algorithm for solving suc
difficult problems. The algorithm integrates the neste
partitions method with an optimal computing budge
allocation method. The resulting hybrid algorithm retain
the global perspective of the nested partitions method a
the efficient simultaneous simulation experiments of th
optimal computing budget allocation. Numerical result
demonstrate that the hybrid algorithm can be effective
used for a large-scale discrete resource allocation proble

1 INTRODUCTION

Many resource allocation problems in supply chai
management such as facility planning, job schedulin
buffer allocation, pollution control, and portfolio
management can be modeled as stochastic discr
optimization problems. Owing to the complexity inheren
in these systems, the search of optimal solutions can b
difficult task. Two key difficulties for solving the problem
are: (1) the combinatorial explosion of alternative
normally leads to NP-hard optimization problems; (2) th
lack of analytical expressions relating performanc
functions to solutions usually results in noise estimates 
the performances. Recent methods proposed for t
problem include: simulating annealing (Gelfand and Mitte
1989), the stochastic ruler method (Yan and Mukai 1993
the stochastic comparison method (Gong et al. 199
ordinal optimization (Ho et al. 1992, Dai 1996, Cassandr
et al. 1998), the stochastic branch-and-bound meth
(Norkin et al. 1996), the method of Andradottir (1995), th
nested partitions method (Shi and Olafsson 1999), and 
simulated entropy method (Rubinstein 1999).
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In this paper, we develop a hybrid algorithm that
integrates with the nested partitions (NP) method, and an
efficient technique for simultaneous simulation
experiments. The NP method is a randomized optimizatio
method that has recently been developed for globa
optimization (Shi and Olafsson 1999). This method ha
been found to be promising for difficult combinatorial
deterministic optimization problems (Shi et al. 1999). The
NP method may be described as an adaptive samplin
method that uses partitioning to concentrate the samplin
effort in those subsets of feasible region that are considere
the most promising. It combines global search through
global sampling of the feasible region, and local search tha
is used to guide where the search should be concentrated

In each iteration, the NP method needs to identify the
most promising region by conducting a set of simultaneou
simulation experiments. However, simulation can be both
expensive and time consuming. In our hybrid approach, w
apply our efficient technique to control the simultaneous
simulation experiments. As a result, the simulation
efficiency is significantly improved and the overall
computation time for searching the optimal design is
drastically reduced. Intuitively, to have a set of
simultaneous simulation experiments, a larger portion o
the computing budget should be allocated to those desig
that are critical in the process of identifying good designs
In other words, a larger number of simulations must be
conducted with those critical designs in order to reduc
estimator variance. On the other hand, limited
computational effort should be expanded on non-critica
designs that have little effect on identifying the good
designs even if they have large variances. In doing so, le
computational effort is spent on simulating non-critical
designs and more computational effort is spent on
simulating critical designs; hence, the overall simulation
efficiency is improved. Ideally, we want to optimally
choose the number of simulation samples for all designs t
maximize simulation efficiency with a given computing
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budget. This is the basic idea of optimal computing budget
allocation (OCBA) (Chen et al. 1996, 1999).

We apply the hybrid algorithm for a stochast
resource allocation problem, where no analytic
expression exists for the objective function, and it 
estimated through simulation. Numerical results show th
our proposed algorithm can be effectively used for solvi
large-scale stochastic discrete optimization problems.

The paper is organized as follows: In section 2 w
formulate the resource allocation problem as a stocha
discrete optimization problem. In section 3 we present 
hybrid algorithm. The performance of the algorithm 
illustrated with one numerical example in Section 
Section 5 concludes the paper.

2 RESOURCE ALLOCATION PROBLEMS

There are many resource allocation problems in the des
of discrete event systems. In this paper we consider 
following resource allocation optimization problem:

                                
Θ∈θ

min J(θ)  (2.1)

where Θ is a finite discrete set and J: Θ → R is a
performance function that is subject to noise. Often J(θ) is
an expectation of some random estimate of t
performance,

                           J(θ)  = E[L(θ, ξ)] (2.2)

where ξ is a random vector that represents uncertain fact
in the systems. The "stochastic" aspect has to do with 
396
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problem of performing numerical expectation since th
functional L(θ,ξ) is available only in the form of a complex
calculation via simulation. The standard approach is 
estimate E[L(θ, ξ)] by simulation sampling, i.e.,

               E[L(θ, ξ)] ≈ )(ˆ θJ  ≡ ),(
1

1
∑
=

t

i
iL

t
ξθ  (2.3)

Unfortunately, t can not be too small for a reasonabl
estimation of E[L(θ, ξ)]. And the total number of
simulation samples can be extremely large since in t
resource allocation problems, the number of (θ1, θ2,…, θN)
combinations is usually very large as we will show th
following example.

2.1 Buffer Allocation in Supply Chain Management

We consider a 10-node network shown in Figure 1. The
are 10 servers and 10 buffers, which is an example o
supply chain, although such a network could be the mod
for many different real-world systems, such as 
manufacturing system, a communication or a traff
network. There are two classes of customers with differe
arrival distributions, but the same service requirements. W
consider both exponential and non-exponenti
distributions (uniform) in the network.  Both classes arriv
at any of Nodes 0~3, and leave the network after havi
gone through three different stages of service. The rout
is not probabilistic, but class dependent as shown in Figu
1. Finite buffer sizes at all nodes are assumed which
exactly what makes our optimization problem interestin
More specific, we are interested in distributing optimall
Exp(1)

Unif[1,7]
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Figure 1: A 10-node Network in the Resource Allocation Problem
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buffer spaces to different nodes given a limited budget 
them. A buffer is said to be full if there are as ma
customers as its size in it, not including the customer be
served in the server. We consider the problem of allocat
12 buffer units, among the 10 different nodes number
from 0 to 9. We denote the buffer size of node i by Bi.
Specifically,

                       B0 + B1 + B2 + … +B9 = 12. (2.4)

Note that there are 293,930 different combinations 
[B0, B1, B2, ...,  B9] which satisfy the constrain in (2.4)
Unfortunately, due to the dynamic nature of the syste
there is no closed-form analytical formula to evaluate t
performance function. For each combination, th
performance measure estimation involves a very lo
simulation (for steady state simulation) or a huge numb
of independent replications (for transient simulation). T
total simulation cost is prohibitively large even if th
simulation cost for a single design alternative is n
expensive. In Section 4, we will illustrate the benefits 
using the proposed algorithm to this buffer allocatio
problem.

3 A HYBRID ALGORITHM

In this section, we will present our hybrid algorithm fo
solving optimization problems discussed in the previo
section. Our approach integrates Nested Partitions met
and optimal computing budget allocation (OCBA). Optim
Computing Budget Allocation (OCBA) enhances th
efficiency of simultaneous simulation experiments b
intelligently determining the best allocation of simulatio
trials or samples necessary to maximize the probability
identifying the optimal ordinal solution. The integration wit
a Nested Partitions method further extends the applicab
to an optimization with an extremely huge design space.

3.1 Nested Partitions Method

The Nested Partitions (NP) method has recently be
proposed to solve global optimization problems. T
method can be briefly described as follows. In ea
iteration we assume that we have a region that 
considered the most promising. We partition this mo
promising region into M subregions and aggregate 
entire surrounding region into one region. At eac
iteration, we therefore look at M +1 disjoint subsets that
cover the feasible region. Each of these M +1 regions is
sampled using some random sampling scheme and 
estimated performance function values at random
selected points are used to estimate the promising index
each region. This index determines which region becom
39
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the most promising region in the next iteration. If one o
the subregions is found to be best this region becomes t
most promising region. If the surrounding region is found
to be best the method backtracks to a larger region. T
choose this larger region we use a fixed backtracking rul
The new most promising region is then partitioned an
sampled in a similar fashion. The methodology describe
above may be divided into four main steps that constitu
the NP method. Each of these steps can be implemented
a generic fashion, but can also be combined with oth
optimization methods and adapted to take advantage of a
special structure of a given problem.

1. Partitioning . The first step is to partition the
current most promising region into several
subregions and aggregate the surrounding
region into one region. The partitioning
strategy imposes a structure on the feasible
region and is therefore very important for the
speed of convergence of the algorithm. If the
partitioning is such that most of the good
solutions tend to be clustered together in the
same subregions, it is likely that the
algorithm quickly concentrates the search in
these subsets of the feasible region. It should
be noted that since the feasible region is finite
the partitioning can be done by grouping
arbitrary points together in each subregion.
Therefore, a good partitioning strategy
always exists, although it may not be easy to
identify.

2. Random Sampling. The next step of the
algorithm is to randomly sample from each of
the subregions and from the aggregated
surrounding region. This can be done in
almost any fashion. The only condition is that
each solution in a given sampling region
should be selected with a positive probability.
Clearly uniform sampling can always be
used. However, it may often be worthwhile to
incorporate special structures into the
sampling procedure. The aim of such a
sampling method should be to select good
solutions with a higher probability than poor
solutions.

3. Calculation of Promising Index. Once each
region has been sampled the next step is to
use the sample points to calculate the
promising index of each region. However, the
total number of designs that must be
evaluated using simulation in each iteration is
equal to the total number of samples in all
regions. The total simulation time in this step
7
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could be very long. So Step 3 is the most time
consuming step in the NP algorithm.
Therefore, the improvement of computation
efficiency at Step 3 is crucial to the efficiency
of the hybrid algorithm. OCBA will be
applied to improve simulation efficiency as
shown in the following subsection.

4. Backtracking. If one of the subregions has
the best promising index, the algorithm
moves to this region and considers it to be the
most promising region in the next iteration. If
the surrounding region has the best promising
index the algorithm backtracks to a larger
region.

3.2 The OCBA Technique

In the Step 3 of the NP algorithm, we have to conduct a se
simultaneous simulation experiments, which is the most tim
consuming step in the whole algorithm. The OCBA techniq
is applied to improve the efficiency of this bottleneck.

More specifically, suppose we select a design (o
solution) θa using the following criterion in this set o
simultaneous simulation experiments:

         θa≡ arg 
θ

min  )(ˆ θJ (≡ ),(
1

1
∑
=

t

i
iL

t
ξθ ). (3.1)

Define the probability of correct selection, P(CS) ≡ P{ The
current top-raking design θb is actually the best design }
Let tθ be the number of simulation samples of design θ. If
simulation is performed on a sequential computer and 
difference of computation costs of simulating differe
designs is negligible, the total computation cost can 
approximated by ∑ Θ∈θ θt . The goal is to choose tθ for all

θ such that the total computation cost is minimized, subj
to the restriction that the confidence level defined 
P{CS} is greater than some satisfactory level.

θt
min ∑ Θ∈θ θt

s.t. P{CS} ≥ P*.

where P* is a user-defined confidence level requireme
which corresponds to the stopping criterion in ea
iteration of the Nested Partition Method.

Chen et al. (1999) approximate P{CS} using the
Chernoff bounds (Ross 1994) and a Bayesian model (C
1996) and offer an asymptotically solution, which 
summarized in the following theorem.
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Theorem 1.   Given total number of simulation budget
T to be allocated to a finite number of competing design
the P{CS} can be asymptotically maximized when
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for θ ∈ Θ and θ i ≠ a ≠ b,

where a is the design having the largest sample mean, b is
the design having the second largest sample mean, and

δi,j = ∑
=

it

u
u

i

iL
t 1

),(
1 ξ  - ∑

=

jt

u
u

j

jL
t 1

),(
1 ξ , for any i, j ∈ Θ.   #

4 NUMERICAL RESULTS

In this section, we apply the hybrid algorithm to the buffe
allocation problem discussed in section 2. Before we rep
the numerical result of the hybrid algorithm, we firs
demonstrate in section 4.1 how OCBA technique can 
applied to a simplified version of the buffer allocation
problem. In this simplified version, where the total o
designs (or solutions) is 210. We show that OCBA ca
achieve a speedup factor as high as 23. This means that
total computation time is reduced by 96% with the use 
OCBA. In section 4.2, we apply the hybrid algorithm to
deal with the original buffer allocation problem that has 
much larger design space. We show that a better solut
can be obtained with a reasonable simulation cost.

4.1 A Reduced Problem

Consider the 10-node network presented in section 2 
which the objective is to select a design with minimum
expected time to process the first 100 customers from
same initial state that the system is empty. Multip
simulation runs are needed to seatmate E[L(• •  • )] for
each θ. As discussed in section 2, even for an allocation 
12 buffer units to 10 nodes, there are 293,930 differe
combinations. While the simulation time for each
combination is not very long, the total simulation time fo
293,930 designs are not affordable. By observation, we c
see the network is symmetric. To reduce the number 
designs for consideration to a much smaller size, we set
three constraints for symmetry reasons:

                        B0 = B1 = B2 = B3 (4.1.a)
                                B4 = B6 (4.1.b)
                                B5 = B7 (4.1.c)
8
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With the above three constraints, the number
designs considered here is reduced to 210. Since
network is symmetric, we originally anticipated that 
optimal design should satisfy the above three constra
This turns out to be wrong after we apply the hyb
algorithm, as we will show later in next subsection. No
we first focus on the reduced 210 designs and apply OC
to this simplified problem. Different computing budge
are allocated. 10,000 independent experiments 
performed to estimate P{CS}. In all the numerical
illustrations, we estimate P{CS} by counting the numbe
of times we successfully find the true best design in th
10,000 independent experiments. P{CS} is then obtained
by dividing this number by 10,000, representing the cor
selection frequency. Figure 2 shows the test results u
OCBA and  equal allocation of simulation budget (with
OCBA).

From Figure 2, we observe that a higher compu
budget can obtain a higher P{CS}. Using the OCBA
scheme, however, significantly reduces the computa
cost for a desired level of P{CS}. The speedup factor is a
high as 23. This means that our OCBA can further red
the required simulation time for a crude NP by 96%. T
is a tremendous saving already.

In order to have a better idea about the optimal des
we conduct a simulation experiment with P* = 99.999%.
The best design we obtained is [B0, B1, B2, ...,  B9] = [1, 1,
1, 1 , 2, 1, 2, 1, 1, 1]. We will show that the propo
hybrid algorithm can obtain a better design with
reasonable simulation cost in the next subsection.
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4.2 The Original Resource Allocation Problem

In this subsection we apply our hybrid algorithm to the
original 10-node network. Note that the problem
considered here has 293,930 different designs, which i
dramatically bigger than the 210 designs considered in th
reduced problem.

In each iteration, we randomly sample 45 designs from
the promising region, and 105 designs from the
surrounding regions, making the total 150 design for
consideration in an iteration. The stopping criterion is that
the confidence level of identifying the best in the 150
design is no less than 90%, i.e., P{CS}>90%.

In order to improve the quality of our sampling
designs, we adopt the very simple heuristic presented in
section 3.4.2 for our sampling scheme. Our algorithm
converges to a design [B0, B1, B2, ...,  B9] = [2, 1, 1, 1, 2, 1,
2, 1, 0, 1]. It turns out this design is better than the design
we found in Section 4.1. Obviously, this design does not
satisfy the symmetric constraints in (4.1). The total number
of simulation runs to converge to this design is only 3
times bigger than the needed cost for the reduced problem
in Section 4.1. Given that the design space is much bigge
(293,930/210≈1400 bigger), the timesaving is tremendous.

5 CONCLUSIONS

In this paper we introduced a hybrid algorithm for
stochastic discrete resource allocation optimization. The
hybrid algorithm combines a recently developed
9
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optimization framework, the Nested Partitions methods
with the paradigm of an efficient ranking and select
technique called optimal computing budget allocatio
(OCBA). We applied the proposed algorithm to 
stochastic buffer allocation problem. Our numerical res
show that we are able to quickly obtain a near optim
solution by evaluated a very small fraction of the solut
space.
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