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ABSTRACT presented in the past is described in (Norros 1995) and in

(Willinger et al. 1997). They propose a model based on the
A technique for the fast simulation of broadband use of Fractional Brownian Noise.
communications systems is proposed, which is based on More recently, the models proposed independently in
regenerative Importance Sampling techniques. Our (Gallardo, Makrakis, and Orozco-Barbosa 1998) and
algorithm is applicable to estimate the probability of rare (Karasaridis and Hatzinakos 1998) are a generalization to the
events when modeling the offered traffic using Fractional one presented in (Norros 1995) and (Willinger et al. 1997), in
Stable Noise (FSN) processes (including Fractional the sense that, rather than limiting the marginal distribution of
Brownian Noise as a particular case), which have been the process to be Gaussian, an alpha-stable distribution is how
recently proved to be able to capture both the long-range used, which allows us to achieve a better agreement between
dependence and the burstiness of today's aggregatethe burstiness of the artificial process and that of the real
network traffic. An exact description of FSN processes is traffic by selecting the proper stability coefficiemt The
given, as well as an approximation that allows for the model is stationary and long-range dependent and corresponds
application of Importance Sampling techniques. The results to the aggregation of a relatively large number of traffic

obtained for a simple example are also included. streams mixed together into a single flow.
Due to their representation by means of a stochastic
1 INTRODUCTION integral, it is not time-efficient to generate long traces of

artificial alpha-stable long-range dependent stochastic
Simulation is used quite extensively these days in the processes in a direct manner. In (Gallardo, Makrakis, and
planning process of telecommunications networks. Orozco-Barbosa 1999) an algorithm for the fast generation
Simulation allows the network designer to draw important of artificial traces of these processes is presented. Such
conclusions and make the right decisions before major approach uses an auto regressive (AR) model as an
capital investments are made. Theoretical and approximation to the actual process, based on the minimum
mathematical analysis serves the same purpose asdispersion (MD) principle. Because of the AR expression
simulation, but when the object of study is too complex, used to represent the process, in addition to being highly
analysis tends to be unmanageable. efficient for the generation of artificial traces, this

The validity of the conclusions obtained, either from algorithm allows for the application of Importance

simulation or theoretical analysis, depends greatly on how Sampling techniques to speed up simulations of systems
accurately the model captures the actual operation of theinvolving this type of traffic.
system under study. For this reason, especially during the Fast simulation is desirable when trying to estimate the
last few years, a great amount of research has been focuse@robability of occurrence of rare events in communications
on obtaining realistic models for the traffic generated by systems, such as buffer overflows, excessive delays or
the users of telecommunications networks. Self-similarity transmission errors. The authors in (Huang, Devetsikiotis,
and long-range dependence have been proved to beand Lambadaris 1995) and (Li, Wolisz, and Popescu-Zeletin
important features of aggregated traffic, and several 1998) have dealt with the application of Importance
models of this type have been proposed with the objective Sampling techniques to fast simulation of systems involving
of reflecting the real statistical behaviour of the traffic Gaussian processes in general. Unfortunately, those results
inside networks. One of the most relevant models are not directly applicable to alpha-stable processes.
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2 FRACTIONAL STABLE NOISE criterion. Equation (4) is equivalent to saying that for a

STOCHASTIC PROCESSES FSN processY, the conditional mean and dispersion
parameter  of YJ given the past  values

Fractional Stable Motion (FSM) processes are self-similar AN

stochastic _ processes with  stationary ~ increments {yj—lvyj—Z!-"!Yj—N} are given byY; = > a -

(Samorodnitsky and Taqqu 1994). Their marginal i=1

distributions are the so-called alpha-Stable distributions, and y51 respective|y_ In other words, the conditional

which are referred to in th&eneralized Central Limit

Theorem(Feller 1966) as describing the limit behaviour of

normalized sums of a relatively large number of independent .

identically distributed i{d) random variables; hence their - ( a “_)

appropriateness for modeling aggregate traffic. Fractional Vi =% (yg )]/ 0.Yj ©)

Brownian Motion (FBM) is a particular case of FSM, since

the Gaussian distribution belongs to the alpha-stable family. 3 REALISTIC TRAFFIC MODEL FOR

Fractional Stable Noise (FSN) processes are the stationary, = AGGREGATE TRAFFIC

long-range dependent increments of FSM processes during a

time interval of unit length. In this work, we are considering The traffic model proposed and verified independently in

three members of the FSN family:Balanced Linear FSN;  (Gallardo, Makrakis, and Orozco-Barbosa 1998) and

i) Anti-balanced Linear FSN; arii) Log-FSN. The exact (Karasaridis and Hatzinakos 1998) for aggregate streams is

distribution onj is given by:

expression of a FSN procesS’j is the following defined as follows. Léwj represent the number of arrivals
(Samorodnitsky and Taqqu 1994): or offered workload during thgth time interval of unit
length, then:
Y =1, 9(i.x)m (dx) @) W, =m+Y, (6)
whereM (dx) is an alpha-stable random measure, and: wherem is the mean value of the number of arrivals per

unit time anon is a zero-mean FSN process.
On|j+1-x~In|j - ;Log-FSN
o\ 0. H-y . H-Va . 4 ASYMPTOTIC BEHAVIOUR OF A QUEUE
g(ix)=di+1-4"""" -|j-A ;BalLFSN WITH FSN INPUT TRAFFIC
i +1-x|(HYa) _[i —x|(H-¥a) - Anti-balLESN
: X] [J X] ANt -ba It was shown in (Gallardo, Makrakis, and Orozco-Barbosa
2) 1998) and in (Norros 1995) th(t), the buffer occupancy

) ) ) in a stationary storage system, is given by:
In the previous equation, we use the notation:

A - - - - -
49 % 1 i) - V)= sup -9 (c-mt-]
for any real numbez and for anya > 0. As described in = sup [Y(r)-(c-m)F] (7)
(Gallardo, Makrakis, and Orozco-Barbosa 1999), a FSN o<r<t
process can be very accurately approximated by an auto
regressive (AR) process given by: wherem is the mean input rat€ is the service (or leak)

rate, withm < C, and¥Y(7) is a zero-mean stationary alpha-
a stable random process representing the new arrivals during

& i +e wj ) a period of lengthr. Assuming that the buffer size is
x>>1, and using theprinciple of the largest termor
Laplace’'s methodwhich is a heuristic rule that basically
translates to saying thedre events occur in the most likely
way, as described in Duffield and O’Connell (1995)), the
probability of buffer overflow can be approximated by:

sz_
|

M=

In equation (4)N denotes the order of the AR process
and is a positive integer. Thj;’s, called the innovations,

are iid §;(1,0,0) random variables, according to the
notation used in (Samorodnitsky and Tagqu 1994). Finally,
the coefficients a’s and the innovation dispersion pr[v(t) > x] = pr[y(-[o) >(C-m)ig + x] 8)
parametery, are calculated using the minimum dispersion
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0 H Ok 0 expected value ok(W) via Monte Carlo simulations using
where 7, :mm(HC—_mm’ t% W as the random process is equivalent to estimating it

using W' and unbiasing each sample by applying the
) ] ) likelihood ratio.
Therefore, analyzing the asymptotic behaviour of the

queue is equivalent to analyzing the behaviour of the 51 Estimator Variance
alpha-stable randomariable Y(7,) and its probability to

exceed the threshold described in equation (8). The expected value ®(W) and the sample mean obtained
using the standard Monte Carlo method are given

5 IMPORTANCE SAMPLING respectively byX and X in equation (11) below:

Importance sampling is one of the classical techniques for S
increasing the efficiency of Monte Carlo simulations X =Ey[xW); Xx==
(Bucklew, 1990; Glynn and Iglehart 1989). The basic idea N
is to modify the system under study by replacing one of the

stochastic processes involved with a new one in order towhere N is the number of samples taken and
reduce the variance of the estimator. That is usually {Wi|i =12,...,N} is a set of independent and identically

achieved by increasing in an intelligent way the probability . . . .
of occurrence of the events of interest. The estimated distributed {d) sample paths of the proces§. The

statistics that result from the simulation are then estimator is said to be unbiased becaE@e[)A(] =X.The
transformed (unbiased) to make them correspond to theariance of the estimator is given by:
original system.

X (w;) (11)

Mz

1

To be more specific, assume that we have a system 1 5 .,
whose behaviour depends on the stochastic proemssd VarW [X]=—{EW [X 6N)]— X } (12)
we want to estimate the expected value of a certain random N
variable X(W). The proces8V can represent the random
input traffic to an ATM switch anck(W) can be the cell
loss ratio or the proportion of cells with excessive delay.
Then:

When Importance Sampling (IS) is used, the unbiased
sample mean is now given by:

B [XW)]= X (w)Chy (w)ceiw ) X' =ﬁi§1><(wi)ﬂ(wi) (13)

where {Wi|i =1,2,...,N} is now a set oiid sample paths of

In the previous equatiolt)y, is the sample space of the modified proces#/'. The variance of the IS estimator
and the notation EW[E] denotes sampling using the g now given by:

process/N as the random input to the system. Suppose now

that W' is a modified stochastic process such that [A,] 1{ [ 2 2 ] _2}

fo(W)=0 whenever f,, (w)=0 (absolute continuity var, [X N B [x )0 Ww))-X (14)
conditio). The new probability density functiorpdj)

fw: (w) is usually referred to as theisted densityThen The major difficulty in applying the IS technique is to

find a twisted density that minimizes (or at least reduces
considerably, as compared to the standard Monte Carlo

we can see that:

[ ] fw (w) method) the variance of the IS estimator for a given
Eyw | X = Xlw vy, v (W) Colw number of samplen.
w[xW) J () ey o ()

5.2 Uniformly Bounded Likelihood Ratios
0 fy (W) O2
=By XW)s Y 0= Ew [xw)aw) o) Let X(w) be a function that assigns nonzero values to those
g fwvg W o

sample paths within a rare eve®itd Uy , and assigns a
zero value to the sample paths that do not beloy Tthe

indicator functionIB(w), which is 1 for allw O B and 0

for all w O B, is an example of that kind of functions.
Another example could be a function that assigns the

where the quotieml_(W)i fw (W)/ fW-(\N) is known as

the likelihood ratio or weight function of the
transformation Equation (10) suggests that estimating the
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proportion of cells with excessive delay within an ATM 6 REGENERATIVE SIMULATIONS
switch to the corresponding cell arrival sequewcéet us

note that if: The regenerative approach to simulations is motivated by
the fact that many stochastic systems have the property of
L(w)s k<1 ;: OwOB, k=constant (15) starting afresh probabilistically from time to time; that is,

whenever the regenerative condition is reached, the
evolution of the system is independent of its past and

then: governed by the same probability law. This enables us to
~ separate the course of the simulation ifddblocks, called
var, [X] EW,[XZ(W)D_Z(W)]-)?Z regenerative cycles (Crane and Lemoine 1977). When
-7 5 — regenerative methods are not used, Importance Sampling
Var, [X] Ew | X (VV) -X “breaks down” for long simulations (Glynn and Iglehart

1989), in the sense that the typical likelihood ratio goes to
zero (due to the fact that the sample space of the random

_ EW|x26N)|:|_(W)|—)?2 processW increases exponentially with the simulation
B 5 _ <k (16) length), making it necessary to collect an increasingly
Ew |X (W)J -X larger number of samples in order to obtain a significant

enough estimate. The effect of thiakdownis that, even
This equation clearly shows that when inequality (15) though IS estimators are unbiased, the estimate can be

is satisfied, the IS variance is reduced by a faktoas several orders of magnitude smaller that the actual value
compared to traditional Monte Carlo simulations. The when the number of samples is small (Devetsikiotis and
condition thatX(w) be zero outside a proper sub8ebf Townsend 1993). When using the regenerative approach,

Uw is necessary, because the last inequality in equationon the other hand, since the likelihood ratio is applied
(16) would not be satisfied otherwise, sihge/) cannot be within each cycle, it is maintained within reasonable
less than 1 for all sample pathsug,. bounds regardless of the overall simulation time.

When inequality (15) is satisfied, it is said that the Let {,Bl Bo,, ,BM} be the regeneration epochs, such
likelihood ratio is uniformly boundedwithin B (Juneja
1994). This result offers an alternative to trying to that 1 = Bo <1 <---< By . Consider the input process
minimize the IS variance itself, which tends to be rather A
complicated most of the time. We can try instead to instance w=(w, Wy, -, Wy ) = (W, Wy, --,Wy, ), where
minimize the maximum value tha{w) can take withirB N
or, at least, guarantee that this maximum value is less thatw; = (Wﬁi—l’wﬁi—1+1""’wﬁi _1), fori O{1, 2, ...,M}. The
1. In other words, if we are using a parametric approach in
the sense that the twisted density function depends on a
certain parametef (which could be one of the parameters eplica of the portion havingv; as input, foi, j 0 {1, 2,

a, o, or i of an alpha-stable random variable, for instance), ..., M}, i # j. Following with our telecommunications

then our best choice when applying this technique is to useemphasis, if our goal is to estimate the proportion of cells

& that satisfies: with a certain property (lost due to buffer overflow or
having excessive delay), then:

portion of the simulation havingy, as input is anid

Max Lg, ()< Max Le(w) ; D¢ (17) )
X (w) = =) (19)
and it will provide variance reduction as long as:

where N(w) is the number of cells with the specified
wt?é( LEO( )<1 (18) property and(w) is the total number of observed cells.
From here:
Because of the lack of closed-form expressions for the
pdf of alpha-stable random variables, this approach is more 1 Mo
attractive in our case than trying to minimize the 1S sample ™M DZ N(Wi) N vT/)
variance given in equation (14). X (w)= =L opg- (20)
1 _ >>1 —
L o5 o) o(@)

377



Fast Simulation of Broadband Telecommunications Networks

For the queueing system that we want to analyze, the H « a 1-a
i iti is Where =
regenerative condition would be met when the queue is a 2[I]'(2—a)[Cos(rra/2)
found empty.

In the previous equatiory, is the scale parameter of
both Y; andY,. It can be seen from equation (22) that a

We will consider three different ways of transforming the 9réat variance reduction can be achieved when using this
input processi) by modifying the mean arrival rate approach, as long as is smaller tharr,.

described in equation (6)i) by modifying the stability
coefficienta of the FSN proces\ﬁ , mentioned in equation
(4); and iii) by modifying the innovation dispersion
parametery,, also mentioned in equation (4). Since we The effect of changing the innovation dispersion
want to observe buffer overflows and/or excessive delays, Parameter of the process is equivalent to multiplying each
option (i) above is intended to increase the average traffic sampleY; by a constant facto(y’g/yg )]/" , Where y/; is
load, while options(ii) and (iii) intend to intensify the ~ the new dispersion parameter. Assume that the two
burstiness of the source by increasing the probability that ,53ndom variablesY, and Y, are now related by

YJ- has.blgger values. In what follows, we will eva-luate the Y, = (02/01)3(1- This time, the likelihood ratio is given
potential performance of each one of these options usmgb )

theuniformly bounded likelihood ratiosriterion, described y:

in section 5.2. According to the discussion in section 4,

7 TWISTED DENSITY FUNCTION

7.4 Modifying the Innovation Dispersion Parameter

regarding the asymptotic behavior of a queueing system le(y) o,

with FSN input traffic, we will select a twisted density as if '—(Y): m O 3%91" % (23)
we were dealing with an individual alpha-stable random Y2\ 2

variable

This method can give some variance reduction, but it
7.2 Modifying the Mean Arrival Rate is not as efficient as the one described in section 7.2.

Suppose we have two alpha-stable random variahlesd 8 LIKELIHOOD RATIO OF THE
Y,, such thatY; =Y, + y, whereu is a constant. The TRANSFORMATION

likelihood ratio relating these two variables for a vajue

According to the discussion in the previous section and
beyond the threshold is given by: ng seussion | previou !

based on the asymptotic behavior of the queueing system,
we selected the method of changing the stability parameter

fy, (y) y 701 of our traffic in order to intensify the burstiness of the input
L(y)= : e = E =1 (21) stream. We will not try to maximize the variance reduction
v2 Y y~H achieved because, as mentioned before, we do not have

closed form expressions for tpef of alpha-stable random
This approach is asymptotically inefficient in the sense variables. Thus, the modified process that we propose to

thatL(y) is uniformly bounded, but the bound is very close use is:
to 1 when the threshold is very large. An additional
disadvantage of this approach is that, if a mean arrival rate W =m+VY! (24)
is chosen that is very close to the service rate or greater, the : )
regeneration period mentioned in section 6 will increase, - o
reducing the effectiveness of the regenerative approach. ~ Where, Yj has now the conditional distribution

Sav((yg)]/“,o,\?j), where \?j , Ye, anda are as given in

section 2 anda' is the new stability coefficient. Now,
Now, suppose that the two random variab¥sand Y, assume that a sample pathof observed trafficonsists of
have a different stability coefficient. The likelihood ratio is K samples{wl,wz,wg,...,,wK}  then:
now given by:

7.3 Modifying the Stability Coefficient

( ) fu (W)= fwy (Wl)EfW2 (w, |W1)D--UWK (Wi Wy, Wa,... Wi )
—(a1-ay 2
L(y): le(y) oo al EK[X]_ }; E (22) ( 5)

D s
sziyi y>>1 as EKGQ
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A similar expression applies tdy,,- (w) From here

we can conclude that: M @ @
K FSH Traffic Generator FIFD Server Traffic Sink
L(w)= Ly (w) (26)
j=1 Figure 1: Configuration Used in our Simulations
where, using equations (4) and (25) we have: The traffic source is modeled as a modified balanced
Linear FSN process withh = 1.95 andH = 0.903. The
O fw, (wy) . average arrival rate is assumed to be 1965 cells/s, or 833
P ;forj=1 Kbps. These parameters are compatible with those found in
E wy 'V (Gallardo, Makrakis, and Orozco-Barbosa 1998) for a
0 traffic source generating an aggregate VBR video stream,
@fW,- (WJ |Wj—1'WJ—2~'-vW1)‘ Cfor2< i< N which could correspond to a video-on-demand service
Lj (w)= wa_. (WJ [Wj_1,Wj_p, w ) lores s provider. The service rate of the FIFO server in Figure 1 is
o 2358.5 cells per second or 1 Mbps, approximately 20%
Ot (W. |w-_l,w-_2,...,w-_N) greater than the mean arrival rate. The modified stability
O 'w; Wi T i i e gy . . . .
07 (W W W W ) ; for j>N coefficienta __use_d for the twisted density functlon_was 1.6.
Bw; T =2 T =N A set of 100iid simulation was run for both the direct and
(27) the fast algorithms. The simulations were run for 2000
seconds.
From equation (6) we obtain: Figure 2 compares the results obtained from direct and

fast simulation regarding the blocking probability vs.
buffer size in the server. It can be observed from that figure
that the results are satisfactorily similar for buffer sizes of
333, 1000, and 3000 cells. The direct simulation gives a

relatively deviated output for a buffer size of 9000 cells.

Direct simulation proved incapable of estimating the

Now, from equation (5) and the properties of alpha- blocking probability when the buffer size is greater than
stable random variables: 9000 cells (it gave zero probability), since the event
becomes too rare to be observed even after 100 simulation

B"Vj _m_YAj H runs.

ij (Wj |Wj_l,Wj_2,...,Wj_N)

= Ty, (Wj _mlyj—17Yj—21---’Yj—N) (28)

for
O¢
L (w)= E _ H (29) 1E-03 : : : : :
J BW -m-Y. E 2000 4000 6000 8000 10000
for' J J
E Te E SIEOA T - - c
% -e- Fast simulation
A ;5 —=-Direct simulation
. a
In equation (29), O, =(y£)]/ represents the e I
innovation scale parameter of both the original and the g
modified processes, ant, ( D) is thepdf corresponding to G086 - - - - oo oS
a normalizeds,(1,0,0) random variable.
9 RESULTS 1807

Buffer size

As a specific example, we are including in this section the
results obtained using both direct and fast simulation for a
simple system consisting of a traffic source and a server
with a constant service rate, as shown in Figure 1. The goal
was to estimate the blocking probability (or probability of
packet loss) of the queue.

Figure 2: Comparison of Results Obtained from
Direct and Fast Simulation

In addition to the results shown in Figure 2, Figure 3
shows the results obtained using the fast simulation
algorithm for buffer sizes of 27000, 54000 and 108000
cells.
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1E-03
1E-06 -
1E-09 -
1E-12 ~
1E-15 ~
1E-18 -
1E-21 ~
1E-24 -
1E-27 ~
1E-30 -
1E-33 ~
1E-36

40000 60000 80000 100000

20000

120000

Log (Blocking Probability)

Buffer size

Figure 3: Results Obtained from Fast Simulation

Table 1 shows the estimated as well as the observed

variance reduction for each case. The estimated variance

reduction (referred to asin equation (16)) is calculated
according to the asymptotic behaviour and equation (22).

Table 1: Estimated and observed variance reduction

Estimated Observed

Buffer size (cells) variance variance
reduction reduction

333 0.0693 0.2400

1000 0.0668 1.2000
3000 0.0644 1.4000
9000 0.0620 0.0395

> 9000 < 0.06 Undefined

10 CONCLUSIONS

A technique for the fast simulation of broadband
communications systems has been proposed. This
technique is applicable when modeling the offered traffic

using Fractional Stable Noise processes, which have been

recently proved to be very accurate in capturing the long-
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