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ABSTRACT

The regenerative method enjoys asymptotic properties that
make it a highly desirable approach for steady-state simu-
lation output analysis. It has been shown that virtually all
discrete-event simulations are regenerative. However, the
method is not in widespread use, perhaps primarily because
of a difficulty in identifying regeneration times.

Our goal in this paper is to highlight the essence of
the difficulty in identifying regeneration times in discrete-
event simulations. We focus on a very simple example
of a discrete-event simulation, and explore its regenerative
properties.

We show that for our example, it is possible to ex-
plicitly determine regeneration times. The ideas that are
used to establish this fact might prove useful in identifying
regeneration times in more general discrete-event system
simulations.

1 INT RODUCTION

Theregenerativemethod isbasedonthenotionof identifying
times when astochastic process probabilistically “restarts”.
It enjoysasymptoticpropertiesthat makeit ahighly desirable
approach for steady-state simulation output analysis.

When the stochastic process is an irreducible positive
recurrent Markov chain on adiscrete state space in discrete
or continuous time, it is easy to identify regeneration times.
In particular, the return times to any fixed state constitute
regeneration times.

It has been shown (Glynn 1994) that all “well-posed”
steady-statesimulationproblemsareregenerative. However,
identifying theregenerationtimesfor ageneral discrete-event
simulation has proved to be very difficult.

Most discrete-event simulations can be modeled as
a generalized semi-Markov process (GSMP); see Shedler
(1993) for example. GSMPs with single states (Haas and
Shedler 1987) admit aregenerativeanalysis. In thiscasethe
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regeneration times are easily identified. However, “most”
discrete-event simulations do not possess single states, and
one must turn to some other method for identifying re-
generations. Glynn (1982) exploited a theoretical device
introducedby AthreyaandNey (1978) andNummelin(1978)
to define regeneration times in general discrete-event sim-
ulations. However, it would appear that identifying such
regeneration timesin practiceisvery difficult. Glynn (1989)
gave easily verified sufficient conditions for a GSMP to be
regenerative or not, but again, identifying the regeneration
times in practice appears to be difficult.

Henderson and Glynn (1999) revisit the application of
theregenerativemethodtogeneral discrete-event simulation.
They discussthestateof theart in regenerativemethodology
and discrete-event systems simulation. Furthermore, they
are able to formalize the notion that, in the absence of some
new idea, the practical identification of regeneration times
wil l remain difficult. Our goal in this companion paper
is to highlight the essence of the difficulty in identifying
regeneration times in discrete-event simulations. We focus
on a very simple example of a discrete-event simulation,
and explore its regenerative properties.

In Section 2 we introduce the problem of steady-state
simulation, and formalize the notion of a regenerative pro-
cess. We also cover the properties of regenerative steady-
stateestimators that maketheregenerativemethod desirable
as an output-analysis approach.

InSection3weintroduce asimpleexampleof adiscrete-
event simulation, which is basically a superposition of re-
newal processes. Then, in Section 4 weexplorethestructure
of the superposition process, and show how one might de-
fine regeneration times. We also explain why it is difficult
to identify the regeneration times in practice, even for the
superposition process.

Section 5 continues the discussion of the superposition
example, and in particular, shows that it is in fact possible
(from an implementation point of view) to explicitly deter-
mine regeneration times. The idea that allows one to do so
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may apply to more general discrete-event systems, and the
implications of this point conclude the paper.

2 THE REGENERATIV E METHOD

Asmentioned in theintroduction, theregenerativemethod is
based on the concept of identifying times when astochastic
process probabilistically “restarts”.

To fix ideas, suppose that W = (W(t) : t ≥ 0) is a
stochastic process evolving on some state space S. Let
f : S → IR be a real-valued cost function, and define the
average cost of running the system W up to time t as

α(t) = 1

t

∫ t

0
f (W(s)) ds.

In great generality, it is known that α(t) → α as t →
∞, where α is a deterministic constant. This occurs, for
example, if W is apositive Harris recurrent Markov chain
and f isbounded (p. 154 Asmussen 1987). Thesteady-state
estimation problem is the problem of computing α.

Clearly, a reasonable estimator of α is α(t) for some
large t . Onemight then ask how accurate theestimator α(t)

is. The regenerative method is one approach to answering
this question.

Define a boundary sequence to be a sequence (T (n) :
n ≥ 0) of strictly increasingrandomtimeswithT (0) ≥ 0and
withT (n) → ∞ asn → ∞. A boundary sequenceinducesa
set of (random) cyclesC(i) = (W(t) : T (i−1) ≤ t < T (i))

for i ≥ 1.

Definition 1 We say that W is a regenerative sto-
chastic process if there exists a boundary sequence with the
property that the induced cycles are identically distributed
and one-dependent.

Remark 1: Thisdefinition isweaker than theclassical
definition of a regenerative process, which requires that the
cycles be i.i.d.

Remark 2: The same definition may be applied to
processes (Wn : n ≥ 0) in discrete time by simply taking
W(t) = Wbtc.

For i ≥ 1, define the “cycle quantities”

Yi =
∫ T (i)

T (i−1)

f (W(s)) ds and

τi = T (i) − T (i − 1),

so that Yi and τi are the accumulated cost and length of
the ith regenerative cycle respectively. The following result
discusses the asymptotic behaviour of the estimator α(t)

when W is aregenerative process. For a proof, see Glynn
(1982) or Sigman (1990).
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Define, for i ≥ 1, Zi = Yi(f ) − ατi .

Theorem 1 Suppose that W is a regenerative pro-
cess and f : S → IR.

1. If E(Y1(|f |) + τ1) < ∞, then α(t) → α a.s.,
as t → ∞, where α = EY1(f )/Eτ1.

2. If E(Y1(|f |)2 + τ 2
1 ) < ∞, then

√
t(α(t) − α) ⇒ σN(0, 1)

as t → ∞, whereσ 2 = E(Z2
1 +2Z1Z2)/Eτ1,

⇒ denotes weak convergence, and N(0, 1)

is a standard normal random variable.

The constant σ 2 is called the time-average variance
constant (TAVC) for W and f , and its estimation is the key
to obtaining confidence intervals for α(t). Define Zi(t) =
Yi(f ) − α(t)τi . A reasonable estimator of σ 2 is

σ 2(t)
4= 1

t

`(t)−1∑
i=1

[Zi(t)
2 + 2Zi(t)Zi+1(t)],

where `(t) = sup{n ≥ 0 : T (n) ≤ t} is the number of
complete regenerative cycles in [0, t].

Henderson and Glynn (1999) established the following
result relating to the asymptotic behaviour of the estimator
σ 2(t).

Theorem 2 Suppose that W is a regenerative pro-
cess and f : S → IR.

1. If E(Y1(|f |)2 + τ 2
1 ) < ∞, then σ 2(t) → σ 2

a.s. as t → ∞.
2. If E(Y1(|f |)4 + τ 4

1 ) < ∞, then there exists a
finite (deterministic) constant η such that

√
t(σ 2(t) − σ 2) ⇒ ηN(0, 1),

as t → ∞. An expression for η is given in
Henderson and Glynn (1999).

Theorem 2basically establishesthat theestimator σ 2(t)

converges to the TAVC at rate t−1/2.
Other estimators of the TAVC have been proposed.

Spectral density estimators of the TAVC typically converge
at rate t−β where β < 1/2; see p. 129 of Grenander and
Rosenblatt (1984). For “optimal” choices of the batch
size, both nonoverlapping and overlapping batch means
estimatorsof theTAVCconvergeat ratet−1/3; seeGoldsman
and Meketon (1986) and Song and Schmeiser (1995).

Hence, the regenerative estimator of the TAVC con-
verges faster than either of these methods.

Furthermore, onemust typically deal with“initialization
bias” (see Bratley et al. 1987 or Law and Kelton 1992),
8
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whereby estimators of α are biased when initial conditions
are not representative of steady-state conditions. In the
presence of regenerative structure, a slight modification of
the estimator α(t) does not suffer from initialization bias.
Bias is still exhibited through the fact that the modified
estimator takes the form of a ratio of sample means, but
it is possible to correct for “first-order” bias effects; see
Glynn and Heidelberger (1990), and Henderson and Glynn
(1999).

Once the regeneration times (T (n) : n ≥ 0) are identi-
fied, it is relatively straightforward to compute regenerative
estimators of α and σ 2. In the case that W is an irreducible
positive recurrent Markov chain on a discrete state space
in discrete or continuous time, the return times to any state
constitute regeneration times for the system. However, for
moregeneral processesit can bevery difficult to identify the
cycleboundaries, asweshall see. Wedefine theproblem of
identifying a boundary sequence as the cycle identification
problem.

3 A SUPERPOSITION PROCESS

The generalized semi-Markov process (GSMP) framework
is sufficient to capture the dynamics of an extremely large
class of discrete-event simulations; see Shedler (1993) for
example. A GSMP is a continuous-time process W =
(W(t) : t ≥ 0) that evolves on a discrete state space W.
Associated with each state w ∈ W is a set of active events.
Each active event is represented by an event clock that
registers the time remaining until the event occurs. When
an event occurs, the GSMP moves to a new state that is
probabilistically determined by the triggering event(s) and
the state it was previously occupying.

In order to illustrateour main ideas, wechoose to focus
our discussion on a particularly simple GSMP, namely one
consisting of a superposition of p ≥ 1 renewal processes,
where the state of the GSMP is the constant 1, i.e., the
state of the GSMP does not change! While this GSMP
is trivial, in that the state of the GSMP doesn’t change,
the dynamics of the renewal processes are what interests
us more. This example wil l be sufficient to showcase the
cycle identification problem.

More precisely, for 1 ≤ i ≤ p, let Ni = (Ni(t) : t ≥
0) be a renewal process with interarrival time distribution
function Fi , which we assume to be absolutely continuous
with density fi . For t ≥ 0, let Ri(t) = inf {s > t : N(s) >

N(t)} − t be the time remaining until the next event in the
ith renewal process at time t . Let Ri = (Ri(t) : t ≥ 0)

denote the residual lif e process for the ith renewal process.
We require that the renewal processes N1, N2, . . . , Np be
mutually independent.

For t ≥ 0, define W(t) = 1.
Now, we are interested in whether the process W is

regenerative. In our simple example where W is constant,
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this iscertainly thecase! However, in any realistic system it
is not clear how to determine whether W is regenerative or
not. A great deal isknown about the regenerativeproperties
of Markov chains(on both discreteand general statespaces).
Therefore, we wil l study the regenerative properties of W

indirectly through an associated general state space Markov
chain.

For n ≥ 1, let ξn denote the time of the nth renewal
in the superposition of the p renewal processes, and let
X(n) = (W(ξn), R1(ξn), . . . , Rp(ξn)) denotethestateof the
GSMP and residual lif e clocks just after the nth renewal in
thesuperposition of therenewal process. Then X = (X(n) :
n ≥ 0) is aMarkov chain on a state space X ⊆ {1} × IRp

+.
The process X has been studied before in the context

of future event sets for discrete-event simulation. Damerdji
and Glynn (1998) look at thismodel, ashaveearlier authors.

Wemay now ask whether theprocessX is regenerative.
When p = 1, this is certainly the case, because then X

consists of i.i.d. random variables! It would appear that
when p ≥ 2, X is not regenerative, because every time an
arrival occurs, there are p − 1 clocks that remain active.
However, despitethisobservation, thesuperposition process
is indeed regenerative. To see why, we need to look more
carefully at the transition probabilities.

4 A MINORIZ ATION

In thissection weexplorethetransition probability structure
of the superposition example in some detail. This then
leads to two methods for determining regenerations. The
regeneration concepts for general discrete-event systems
are discussed in more detail than is possible here in Glynn
(1982), Glynn and L’Ecuyer (1993) and Henderson and
Glynn (1999).

Define

P k(x, dy) = P (X(k) ∈ dy | X(0) = x)

to be the k-step transition kernel of X, and let

P (x, dy)
4= P 1(x, dy) be theone-step transition kernel. We

say that X possessesanm-minorization if thereexists aprob-
ability distribution ϕ, a non-negative function λ : X → IR,
and an ε > 0 such that

(A1) for all x, y ∈ X , P m(x, dy) ≥ λ(x)ϕ(dy),
and

(A2) λ(X(n)) > ε infinitely often a.s.

We wil l show that a λ and ϕ exist for which the
first condition holds with m = p (the number of renewal
processes), explain how this leads to regeneration, and
finally provide sufficient conditions on the clock setting
distributions so that the second condition holds.
9
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Let the set

A
4= {x ∈ X : x = (1, r1, r2, . . . , rp),

r1 < r2 < · · · < rp ≤ b}

for some b > 0. Let y = (1, s1, s2, . . . , sp). Then, for
x ∈ A,

P p(x, dy) ≥ f1(s1 + rp − r1) f2(s2 + rp − r2)

· · · fp(sp)ds1 ds2 · · · dsp. (1)

This result is shown graphically in Figure 1 for the
case p = 2, and explained below in the general case.

-
r1 r2

� -s2

� -s1

Figure 1: Constructing a Path from x to y for the Case
p = 2.

Starting from the state x ∈ A, the first event wil l be a
renewal at stream 1. Suppose that the clock for this event
is reset to a value s1 greater than the reading on clock p.
At the time of the first event, the reading on clock p will
be rp − r1, so that the first clock is set to s1 + rp − r1. This
yields the first term on the right-hand side of (1). Similarly,
at the time of the second event, the reading on clock p is
rp −r2, and the second clock is set to the value s2+rp −r2.
Continuing this line of reasoning, we see that the state y

could arise according to the above chain of events, and as
a result, we obtain (1).

Toseewhy theinequality in (1) isnot anequality (which
turns out to be important), it suffices to find a second chain
of events that leads to the state y. We wil l demonstrate
such a chain of events for the case p = 2. The case p ≥ 3
is similar. Suppose that s2 < r2 − r1; see Figure 2.

-
r1 r2

�-r ′
1

� -s1
� -s2

Figure 2: Constructing a Second Path from x to y for the
Case p = 2.

Again, the first event wil l be a renewal from stream
1. Suppose that the clock for this event is set to the value
r ′

1 = r2 − r1 − s2. Then the second event wil l also be a
renewal from stream 1. This time, reset clock 1 to thevalue
s1. At the time of the second event, the readings on the
clocks wil l be (s1, s2) as required. So this chain of events
can also lead to the state y, and we now see why (1) is an
inequality and not an equality.
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Supposethat thedensitiesfi areall decreasing on [0, b]
and F̄i(b) > 0, whereF̄i = 1 − Fi . Then, from (1),

P p(x, dy) ≥ f1(s1 + b) f2(s2 + b) · · · fp(sp)

ds1 ds2 · · · dsp (2)

for all x ∈ A. Observe that the right-hand side of (2) is
independent of x ∈ A. So let ϕ be the distribution with
density

f1(s1 + b) f2(s2 + b) · · · fp(sp)

F̄1(b) F̄2(b) · · · F̄p−1(b)
,

and

λ(x) = I (x ∈ A)F̄1(b) F̄2(b) · · · F̄p−1(b) (3)

Then ϕ is aprobability, and

P p(x, dy) ≥ λ(x)ϕ(dy),

which is the required minorization. (We assume for now
that (A2) holds.)

So how can this observation be used to define regen-
eration times?

Let us assume that we have an m-minorization, where
m is some positive integer (not necessarily p).

We may write

P m(x, dy) = λ(x)ϕ(dy) + (1 − λ(x))Q(x, dy), (4)

for a suitably defined kernel Q. Given that X(n) = x then,
one could generate X(n+m) using (4) and the composition
method (Law and Kelton p. 474). In particular, one could
generate a Bernoulli r.v. Zn with P (Zn = 1) = λ(x). If
Zn = 1, then X(n + m) is generated according to ϕ, and if
not, X(n+m) is generated according to Q(x, ·). The point
is that if Zn = 1, then X(n + m) is distributed according
to ϕ independently of X(n), and therefore, by the Markov
property, X(n + m), X(n + m + 1), . . . is independent of
X(1), . . . , X(n).

Of course, one must then generate the intermediate
values (X(n + 1), X(n + 2), . . . , X(n + m − 1) accord-
ing to the appropriate conditional distribution given X(n)

and X(n + m), and these values wil l almost certainly be
dependent on both X(n) and X(n + m).

The main observation is that the times n + m when
Zn = 1 yield regeneration times for the process X in the
sense that we have defined in Section 2. To see this, note
that conditional on Zn = 1, X(n + m) is independent of
X(0), X(1), . . . , X(n). However, X(n + m) is dependent
on X(n + 1), . . . , X(n + m − 1), so that the regenerative
cycle beginning at time n + m is dependent on X(n +
1), . . . , X(n+m−1). At the time of the next regeneration,
0
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at timek+m say, X(k+m) wil l beconditionally independent
of X(0), . . . , X(k) and thereforeof X(0), . . . , X(n+m−1),
sothat thecycleswil l beone-dependent. Andif λ(X(n)) > ε

infinitely often, then it is easy to see that the chain will
regenerate infinitely often. So theprocessX is regenerative.

However, it may be difficult (or impossible from an
implementation point of view) to generate iterates from
Q(x, ·), and to “fil l in” the intermediary values X(n +
1), . . . , X(n + m − 1). Although defining regenerations is
theoretically possibleusingthismethod, practically speaking
it is not workable. Fortunately, the decomposition (4) can
beutilized in asecond way to determineregeneration times.

Suppose that one simply generates a sample path of
X in any convenient manner, without regard to (4). After
the sample path has been generated, we then attempt to
determine when regenerations occurred. Given the decom-
position (4), we see that

P (Z0 = 1|X) = P (Z0 = 1 | X(0) = x, X(m) = y)

= λ(x)ϕ(dy)

P m(x, dy)

4= w(x, y).

In other words, the probability of a regeneration at time m

is given by w(X(0), X(m)). If we can compute w(x, y),
then wecan determine regeneration times regardlessof how
sample paths of X are constructed. For a detailed review of
how to determine such regeneration times, see Henderson
and Glynn (1999).

Now, wehaveexplicit formulaefor λ(x) and ϕ(dy), but
we do not have an explicit formula for P m(x, dy). Hence,
we do not have a method for computing w(x, y), and again
weare thwarted. Practically speaking, wecannot determine
regenerations using this second approach either!

So we finally arrive at the principal difficulty in using
this method to attempt to determine regeneration times for
X: We require explicit knowledge of P m(x, dy).

This isalso theproblem in attempting to apply thesame
approach in general discrete-event simulations. While it is
typically possible to show that a minorization of the form
(2) exists, and to explicitly compute λ and ϕ, it is very
difficult to explicitly compute P m(x, dy).

Of course, it is easy to compute the one-step transi-
tion kernel P (x, dy). Perhaps the chain has a suitable 1-
minorization? Unfortunately, Henderson and Glynn (1999)
show that “most” discrete-event simulations wil l only have
m-minorizations where m > 1. In fact, Henderson and
Glynn (1999) show that under reasonable conditions, the
minimum value of m such that an m-minorization exists is
given by the minimum number of active clocks in any state.

This general result also applies to our superposition
example, so that the superposition process does not have
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an m-minorization for m < p. We content ourselves with
a heuristic argument for why this should be the case here.

Suppose that the superposition process X has an m-
minorization, where m < p, and that X(0) = x =
(1, r1, . . . , rp). For the sake of discussion, suppose that
r1 < r2 < · · · < rp. After m < p transitions, clocks
p−m+1, . . . , p wil l bereading rp−m+1−T , . . . , rp−T , for
some T > 0. Therefore, the probability distribution ϕ must
beconcentratedonaset inwhich theclocksp−m+1, . . . , p

have the form given above. It follows that λ(x) can only
be positive on a set C ⊆ X with very specific clock struc-
ture that has Lebesgue measure 0. Since the clock-setting
distributions are absolutely continuous, the probability that
X visits the set C infinitely often is 0. So then, λ(Xn) = 0
eventually, and the chain cannot regenerate infinitely often.
Therefore, we must have m ≥ p to obtain minorizations.

Under appropriate conditions on the clock setting dis-
tributions, the p-minorization constructed above wil l have
λ(Xn) > ε infinitely often for some ε > 0. This then en-
sures that the chain X regenerates infinitely often. Example
sufficient conditionsaregiven in the following result, which
was basically established in Damerdji and Glynn (1998).
Let λj betheinverseof themeanof thej th clock-settingdis-
tribution, and define pj = λj /

∑
k λk, for each j . Finally,

for x = (1, c1, . . . , cp) define

π(dx) =
p∑

i=1

pi dFi(ci)
∏
j 6=i

λj F̄j (cj ) dcj ,  (5)

so that π is aprobability measure.

Proposition 3 Suppose that the support of each of
the clock-setting densities fi has left end-point zero, and
that the means are all finite. Then the chain X is Harris
recurrent with unique stationary distribution π as defined
in (5). If, in addition, the clock-setting densities fi are
decreasing on [0, γ ] for some γ > 0 with F̄i(γ ) > 0 for
all i = 1, . . . , p, then λ and ϕ as defined above yield a
p-minorization for the chain X.

In view of the difficulty in specifying the p-step tran-
sition kernel and hence of identifying regeneration times, it
would seem that the regenerative structure of X is purely
of theoretical interest. However, it may still be possible to
supply a practical algorithm for determining regeneration
times in general discrete-event simulations. Our belief in
this possibility is justified through the ideas presented in
the next section.

5 A SECOND MINORIZ ATION

Wenow modify thesuperpositionexampleslightly. Suppose
that the state of the GSMP at any time is the index of
the renewal process from which the most recent renewal
occurred.
1
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To be precise, let Ai(t) = t − inf {0 ≤ s ≤ t : N(s) =
N(t)} denote the “age” of the ith renewal process at time
t , and let Ai = (Ai(t) : t ≥ 0) be the corresponding age
process. For t ≥ 0, define W(t) = argmin{Ai(t) : i ≥ 0},
the index of the renewal process from which the most
recent renewal occurred (with ties broken by choosing the
minimum index, for example), and let W = (W(t) : t ≥ 0).
The Markov chain X now evolves on the (redefined) state
space X ⊆ {1, 2, . . . , p} × IRp

+.
Suppose that x ∈ A, where we redefine the set A to

be {x ∈ X : x = (i, r1, r2, . . . , rp), 1 ≤ i ≤ p, r1 < r2 <

· · · < rp ≤ b} for some b > 0. In words, A is the set in
which the clock settings are in increasing order but smaller
than b, and the GSMP state i is arbitrary. Define the set
B = {y ∈ X : y = (i, s1, s2, . . . , sp), i = p}, so that the
most recent renewal when the chain X is in the set B is
from the pth renewal process. Then, for x ∈ A and y ∈ B,

P p(x, dy) = f1(s1 + rp − r1) f2(s2 + rp − r2)

· · · fp(sp)ds1 ds2 · · · dsp. (6)

Observe that (6) is an equality and not an inequality,
i.e., we have been able to give an explicit formula for
P p(x, dy) for x ∈ A and y ∈ B. The reasoning behind (6)
is similar to that for (1), in that it arises when each new
clock setting is greater than the current reading on clock
p. Note however, that for y to be contained in B, the pth
event must have been from renewal process p, so that each
of the new clock settings must have been greater than the
reading on clock p at the time the new clock setting was
established.

We now have that for x ∈ A and y ∈ B, P p(x, dy) ≥
λ(x)ϕ(dy), where λ and ϕ were defined in Section 4, and
an explicit expression for P p is known. It follows that the
regeneration density w(x, y) is known, and so we can use
the second method alluded to in Section 4 to determine
regeneration times. In other words, regeneration times can
be easily determined for the superposition process.

The critical ingredient in obtaining regeneration times
asaboveisexplicit knowledgeof thep-step transition kernel
P p(x, dy) onsome“rectangle”, i.e., somerectangular subset
of X × X . In our case the rectangle was the set A × B.
We then lower bound the p-step transition kernel on the
rectangle, and this leads to randomized regenerations as
discussed earlier.

It is certainly of interest to ask whether these ideas
can be applied to more general discrete-event simulations.
The answer to this question is “yes, with conditions”. The
primary observation is that them-step transition kernel for a
GSMP,whilenot globally easy todescribe, iseasy todescribe
on that part which describes m-step transitions in which the
clock with the highest initial reading is the trigger event
at the mth transition. Assuming that no event cancellation
37
occurs, this happens if and only if each triggering event
along the m-step path is set to a value greater than the
current value of the clock that had the highest initial clock
reading.

Wedo not believethat thisapproach isavery “efficient”
algorithm for determining regenerations. In particular, it
appears that the time between regenerations could be very
large. Nevertheless, it does show that it is possible for
regenerations to be explicitly identified in relatively general
discrete-event simulations. Further research may identify
moreefficient algorithmsfor identifying regeneration times.
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