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ABSTRACT

The regeneratve methal enjoys asymptott properties that
male it a highly desirabé approab for steady-sta simu-
lation outpu analysis It has been shown tha virtually all
discreteevert simulatiors are regeneratve. However, the
methal is nat in widespred use perhajs primarily because
of a difficulty in identifying regeneratio times.

Our god in this pape is to highlight the essene of
the difficulty in identifying regeneratio times in discrete-
evert simulations We focus on a very simple example
of a discreteevert simulation and explore its regenerait/e
properties.

We show tha for our example it is possibé to ex-
plicitly determire regeneratio times The ideas tha are
usal to establis this fact might prove usefu in identifying
regeneratio times in more generé discreteevert system
simulations.

1 INTRODUCTION

Theregeneratve methal isbasel on the notion of identifying

times when astochastt proces probabilisticaly “restarts”.
It enjoysasymptott propertiestha makeit ahighly desirable
approab for steady-stag simulation output analysis.

When the stochasti proces is an irreducibk posiive
recurremh Markov chain on adiscret stak spa@ in discrete
or continuows time, it is eay to identify regeneratio times.
In particula, the retum times to any fixed stake constitute
regeneratio times.

It has been shown (Glynn 1994 tha all “well-posed”
steady-statsimulatian problensareregenerait/e. However,
identifying theregeneratiotimesfor ageneradiscreteevent
simulation has proved to be very difficult.

Most discreteevent simulatiors can be modelal as
a generalizd semi-Marlov proces (GSMP) see Shedler
(1993 for example GSMPs with single states (Haas and
Shedle 1987 admi aregenerai/e analysis In thiscaethe
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regeneratio times are easily identified However, “most”

discreteevert simulatiors do not posses single statesand
one mug turn to some othea methal for identifying re-

generations Glynn (1982 exploited a theoretich device

introducel by Athreyaarnd Ney (1978 and Nummelin (1978)
to define regeneratio times in genera discreteevent sim-

ulations However, it would appea tha identifying such
regeneratio timesin practieisvety difficult. Glynn (1989)
gave easily verified suficient conditiors for a GSMP to be
regenerait/e or not, but again identifying the regeneration
times in practie appeas to be difficult.

Hendersa ard Glynn (1999 revisit the application of
theregenerate methal to generadiscreteevert simulation.
They discusthe stak of the art in regeneratve methodology
ard discreteevert systens simulation Furthermore they
are able to formalize the notion that, in the absene of some
new ideg the practica identification of regeneratio times
will reman difficult. Our god in this companim paper
is to highlight the essene of the difficulty in identifying
regeneratio times in discreteevert simulations We focus
on avery simple exampk of a discreteevert simulation,
and explore its regeneraite properties.

In Sectio 2 we introdue the problem of steady-state
simulation ard formalize the notion of a regenerai/e pro-
cess We also cover the properties of regenerave steady-
stak estimatos tha make the regeneratve methal desirable
as an output-analys approach.

In Section3weintroduce asimple exampkof adiscrete-
evert simulation which is basicaly a superpositia of re-
newal processesThen in Sectio 4 we explore the structure
of the superpositia processand show how one might de-
fine regeneratio times We als explain why it is difficult
to identify the regeneratio times in practice even for the
superpositia process.

Section 5 continues the discussio of the superposition
example ard in particula, shows that it is in fact possible
(from an implementatio point of view) to explicitly dete-
mine regeneratio times The idea tha allows one to do so
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may apply to more generadiscreteevernt systemsand the
implicatiors of this point concluck the pape.

2 THE REGENERATIV E METHOD

Asmentiond in theintroduction the regenerave methal is
basel on the concep of identifying times when astochastic
proces probabilisticaly “restarts”.

To fix ideas suppos tha W = (W() : ¢t > 0) isa
stochasti proces evolving on somre stae spae S. Let
f S - R be arealvaluad cod function, and defire the
average cog of running the systen W up to time ¢ as

1 t
a(t) = —/ f(W(s))ds.
I Jo

In grea generaliy, it is known tha «(t) > « ast —
0o, Where « is a deterministt constant This occurs for
example if W is aposiive Harris recurreth Markov chain
ard f isboundd (p. 154 Asmussa 1987) The steady-state
estimatio problam is the problem of computirg .

Clearly, a reasonald estimato of « is «(¢) for some
large . One might then ask how accurag¢ the estimato « ()
is. The regeneratve methal is one approab to answering
this question.

Define a bounday sequene to be a sequene (T (n) :
n > 0) of strictly increasig randantimeswith 7/(0) > Oand
withT (n) - coasn — oo. A bounday sequeneinducesa
sa of (random) cyclesC(i) = (W) : T(i—1) <t < T(i))
fori > 1.

Definition 1 ~ We say that W is a regeneative sto-
chastic proces if there exists a bounday sequene with the
property that the inducel cycles are identically distributed
and one-dependent.

Remark 1: Thisdefinition isweake than the classical
definition of aregeneraitve processwhich requires that the
cycles be i.i.d.

Remark 2: The sane definition may be applied to
processe (W, : n > 0) in discree time by simply taking
W) = WUJ'

For i > 1, defire the “cycle quantities”

T3)
Y, = / f(W(s))ds and
T(i—1)

7 = TGO -TG-1),
so tha Y¥; ard t; are the accumulatd cog and lengh of
the ith regeneratve cycle respedtely. The following result
discusse the asymptott behaviour of the estimato «(r)
when W is aregenerat/e process For a proof, see Glynn
(1982 or Sigman (1990).
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Defing fori > 1, Z; = Y;(f) — aT;.
Theorem 1  Supposthat W is aregenegative pro-
cesand f: S —> R

1. If EQY1(|f]) + 1) < oo, then a(r) - « a.s.,
ast — oo, whae a = EY1(f)/E11.
2. If EM(IfD?+ ) < oo, then

Vi(a(t) —a) = oN(O, 1)

ast — oo, whaeo? = E(Z2+2Z1Z5)/Et,
= denots we& convergence and N (0, 1)
is astandad normd randam variable.

The constat o is called the time-averag variance
constah (TAVC) for W ard f, ard its estimatian is the key
to obtainirg confidene intewvals for «(¢). Define Z;(¢) =
Yi(f) —a(t)t;. A reasonald estimato of o2 is

(-1

1
o2(1) 2 - ; [Z:(t)% + 2Z; (1) Ziz1 (D],

wher £(t) = supn > 0: T(n) < t} is the numbe of
complete regeneraitve cycles in [0, ¢].

Hendersa and Glynn (1999 establishd the foll owing
resut relating to the asymptott behaviour of the estimator
o2(t).

Theorem 2 Suppos that W is aregeneative pro-
cesad f: S —> R

1. 1f EQ1(If1)? + t2) < oo, then 02(r) — o?
a.s ast — oo.

2. If E(IfD*+13) < oo, then there exists a
finite (deterministi¢ constan » such that

Vi@?(t) — %) = gN(, ),

ast — oo. An expressim for n is given in
Hendersa and Glynn (1999).

Theoren 2basicaly establishstha the estimato o2(¢)
converges to the TAVC at rate 1~ 1/2,

Othe estimatos of the TAVC have been proposed.
Spectradensiy estimatos of the TAVC typically converge
at rate 1 wher B < 1/2; see p. 129 of Grenande and
Rosenblat (1984). For “optimal’ choices of the batch
size both noroverlappirg and overlappirg batdh means
estimatos of the TAV C convergeat rater ~1/3; see Goldsman
ard Meketan (1986 and Sorg ard Schmeise (1995).

Hence the regenerate estimato of the TAVC con-
verges faste than eithe of thee methods.

Furthermoreonemug typically ded with “initialization
bias' (see Bratley et al. 1987 or Law and Kelton 1992),
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wherely estimatos of « are biasel when initial conditions
are nat representate of steady-sta conditions In the
presene of regenerait/e structure a slight modificatian of
the estimato «(r) does not sufer from initialization bias.
Bias is still exhibited throuch the fact tha the modified
estimato takes the form of a ratio of sampé means but
it is possibe to corred for “first-order’ bias effects see
Glynn and Heidelbeger (1990) ard Hendersa and Glynn
(1999).

Once the regeneratio times (7' (n) : n > 0) are identi-
fied, it isrelaively straightforwad to compue regeneratve
estimatos of « ard o2. In the case that W is an irreducible
posiive recurreth Markov chan on a discree stak space
in discree or continuots time, the retum times to any state
constitue regeneratio times for the system However, for
more generaprocesseit can be very difficult to identify the
cycle boundariesas we shal see We define the problam of
identifying a bounday sequene as the cycle identification
problem

3 A SUPERPOSITION PROCESS

The generalizd semi-Marlov proces (GSMP) framework
is suficient to captue the dynamics of an extremey large
class of discreteevert simulations see Shedle (1993 for
example A GSMP is a continuous-tire proces W =
(W) : t = 0) tha evolves on a discret stak spae W.
Associate with ead stae w € W isasé of acive events.
Ead acive evert is representg by an evert clock that
registess the time remainirg until the evert occurs When
an evert occurs the GSMP moves to a new stae tha is
probabilisticaly determine by the triggering event(9 and
the stak it was previously occupying.

In orde toillustrate our main ideas we choo to focus
our discussia on a particularyy simple GSMP, nameYy one
consistig of a superpositia of p > 1 rerewa processes,
whetr the stae of the GSMP is the constam 1, i.e. the
stak of the GSMP does not changé While this GSMP
is trivial, in that the stat of the GSMP doesnt change,
the dynamics of the renewal processe are wha interests
us more This exampk will be suficient to showcas the
cycle identificatian problem.

More precisey, for 1 <i < p, let N; = (N;(¢) : t >
0) be arenewa proces with interarival time distribution
function F;, which we assune to be absolutey continuous
with densiy f;. For ¢t > 0, let R;(¢) = inf{s >t : N(s) >
N(t)} — t be the time remainirg until the next evert in the
ith rerewa proces at time ¢t. Let R; = (R;(t) : t > 0)
denot the residud lif e proces for the ith rerewal process.
We requite that the rerewal processs N1, No, ..., N, be
mutually independent.

For ¢t > 0, define W() = 1.

Now, we are interesté in whethe the proces W is
regenerat/e. In our simple exampk wher W is constant,
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thisiscertainly the casé However, in any realistic systen it
is nat clea how to determire whethe W is regenerait/e or
not A gred ded isknown abou the regeneraitve properties
of Markov chairs (on both discree and generastae spaces).
Therefore we will study the regeneraive properties of W
indirectly throuch an associatd generastat spa® Markov
chain.

For n > 1, let &, denot the time of the nth rerewal
in the superpositia of the p rerewa processesard let
X(n) = (W&, Ri&), ..., Rp(&,)) denoethestaeof the
GSMP ard residué lif e clocks just after the nth rerewal in
the superpositia of thererewal process Then X = (X (n) :
n > 0) is aMarkov chan on astae spae X C {1} x Ri.

The proces X has been studial before in the conext
of future evert ses for discreteevernt simulation Damerdji
and Glynn (1998 look at thismode| as have earlie authors.

We may now ak whethe the proces X isregeneraive.
When p = 1, this is certainy the case becaus then X
consiss of i.i.d. randan variable$ It would appea that
when p > 2, X is not regeneraie, becaus every time an
arrival occurs there are p — 1 clocks tha reman acive.
However, despit this obsewvation the superpositia process
is indeal regenerave. To see why, we neal to look more
carefully at the transitin probabilities.

4 A MINORIZ ATION

In this sectia we explore the transitian probability structure
of the superpositia exampk in sone detail This then
leads to two method for determiniry regenerations The
regeneratio conceps for generd discreteevent systems
are discussd in more detal than is possibé here in Glynn
(1982) Glynn ard L'Ecuyer (1993 and Hendersa and
Glynn (1999).
Define

P*(x,dy) = P(X(k) € dy | X(0) = x)

to be the k-stg transitim kernd of X, amd let

P(x,dy) = P(x, dy) bethe one-ste transitian kernel We
say that X possesssan m-minorizatianif there exists aprob-
ability distribution ¢, a non-regaive function A : X - R,
ard an € > 0 sud that

(A1) for all x,y € X, P"(x,dy) > Mx)p(dy),
and
(A2) A(X (n)) > € infinitely often a.s.

We will show tha a A amd ¢ exist for which the
first condition holds with m = p (the numbe of renewal
processes) explain how this leads to regeneration and
finally provide suficient conditiors on the clock setting
distributions so tha the secom condition holds.
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Let the set

A 2 xeX:x=Q,r1,r2,....,1p),

rL<ra<---<rp, <b}

for sone b > 0. Let y = (1,51, s2,..
X €A,

.,$p). Then for

PP(x,dy) = fi(s1+rp—r1) fo(sa+rp, —12)
< fpspdsydsa - ds,. )

This resut is shown graphicaly in Figure 1 for the
ca® p = 2, and explained below in the gener& case.

L | n
I T T >

r r2

Figure 1: Constructig a Path from x to y for the Case
p=2

Startirg from the stak x € A, the first evert will be a
rerewal at strean 1. Suppos tha the clock for this event
is rese to avalue s; greate than the readirg on clock p.
At the time of the first event the readirg on clock p will
ber, —r1, so tha the first clock is sé to s1 +7, —r1. This
yields the first term on the right-hard side of (1). Similarly,
at the time of the secoml event the readirg on clock p is
rp —r2, and the secorl clock is se to the value s +r), — 2.
Continuirg this line of reasoningwe see tha the stae y
could arise accordim to the albove chan of events ard as
a result we obtain (1).

To seewhy theinequality in (1) isnot an equaliy (which
turns out to be important) it suffices to find a secoml chain
of event tha leads to the stak y. We will demonstrate
suc achan of evens for thecas p = 2. Thecae p > 3
is similar. Suppos tha s2 < r» — r1; see Figure 2.

— 51—
/
| rrlw S24>%

r r2

Figure 2: Constructig a Seconl Path from x to y for the
Caz p =2

Again, the first evert will be arenewal from stream
1. Suppos tha the clock for this evert is sd to the value
ry = r2 —r1 — s2. Then the secoml evert will also be a
rerewal from stream 1. Thistime, resé clock 1 to the value
s1. At the time of the secom event the reading on the
clocks will be (s1, s2) as required So this chain of events
can alwo lead to the stae y, ard we now see why (1) is an
inequaliy and not an equality.

370

Suppos tha the densities f; areall decreasigon [0, 5]
and F;(b) > 0, whereF; = 1— F;. Then from (1),

PP(x,dy) > fi(s1+Db) fals2+b) - fp(sp)
dsidsy ---dsp (2)

for all x € A. Obseve tha the right-hard side of (2) is
independenof x € A. So let ¢ be the distribution with
density

f1(s1+b) fa(s2 +b) - fp(sp)
F1(b) F2(b) - - Fp_1(b)

and

Ax) = I(x € AFi(b) F2(b) - Fp1(b)  (3)

Then ¢ is aprobability, and
PP(x,dy) = Mx)p(dy),

which is the required minorization (We assune for now
tha (A2) holds.)

So how can this obsevation be usel to defire regen-
eratin times?

Let us assune tha we have an m-minorization where
m is some posiive integer (not necessanl p).

We may write

P"(x,dy) = A(x)p(dy) + (1 —1(x))Q(x,dy), (4)

for a suitably definal kerné Q. Given tha X (n) = x then,
one could genera¢ X (n +m) using (4) ard the composition
methal (Law and Kelton p. 474). In particula, one could
generat aBernouli rv. Z, with P(Z, = 1) = A(x). If

Z, =1, then X (n + m) is generatd accordiry to ¢, and if

not, X (n +m) isgeneratd accordirg to Q(x, -). The point
istha if Z, = 1, then X(n + m) is distributed according
to ¢ independenyl of X (n), and therefore by the Markov

propery, X (n +m), X(n +m + 1), ... is independenof

XQ),...,X(n).

Of course one mud then generat the intermediate
valus (X(n +1),X(n + 2),...,X(n +m — 1) accord-
ing to the appropria¢ conditiona distribution given X (n)
ard X (n + m), and the® values will almog certainly be
dependenon both X (n) and X (n 4+ m).

The main obsewation is tha the times n + m when
Z, = 1 yield regeneratio times for the proces X in the
seng tha we have defina in Sectin 2. To see this, note
tha conditiond on Z, = 1, X(n + m) is independenof
X(©0), X(2),..., X(n). Howewer, X(n + m) is dependent
on X(n+1),...,X(n+m— 1), so tha the regenerate
cycle beginning at time n + m is dependenon X(n +
1),..., X(n+m—1). At thetime of the next regeneration,
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attimek+m sa, X (k+m) will beconditionally independent
of X(0), ..., X(k) andtherefoeof X(0), ..., X(n+m—1),
sotha thecycleswil| beone-dependentAndif A(X (n)) > ¢
infinitely often then it is eay to see tha the chan will
regenerag infinitely often So the proces X isregenerate.
However, it may be difficult (or impossibé from an
implementatio point of view) to generae iterates from
Q(x, ), and to “fill in” the intermediay values X(n +
1),..., X(n+m —1). Although defining regeneratios is
theoreticaly possibéusing thismethod practically speaking
it is not workable Fortunatey, the decompositia (4) can
be utilized in asecom way to determire regeneratio times.
Suppos tha one simply generate a sampé pah of
X in any conveniert manne, without regard to (4). After
the sampé pah has been generatedwe then attemp to
determire when regeneratios occurred Given the decom-
position (4), we see that
P(Zo=1|X) P(Zo=1|X(0) =x, X(m) =y)
A(x)p(dy)
P™(x,dy)

1>

w(x, y).

In othe words the probability of a regeneratio at time m
is given by w(X(0), X(m)). If we can compue w(x, y),
then we can determire regeneratia times regardles of how
sampe patls of X are constructed For a detailed review of
how to determire such regeneratio times see Henderson
ard Glynn (1999).

Now, we have explicit formulae for A(x) and ¢ (dy), but
we do not have an explicit formula for P™(x, dy). Hence,
we do not have a methal for computirg w(x, y), ard again
we are thwarted Practicall speakingwe cannd determine
regeneratios using this secoml approab either!

So we finally ariive at the principd difficulty in using
this methal to attemp to determire regeneratio times for
X: We require explicit knowledge of P™(x, dy).

Thisisalso the problem in attemptirg to apply the same
approab in generadiscreteevert simulations While it is
typically possibé to show tha a minorization of the form
(2) exists and to explicitly compue A ard ¢, it is very
difficult to explicitly compue P™(x, dy).

Of course it is eay to comput the one-stg transi-
tion kernd P(x, dy). Perhap the chan has asuitabk 1-
minorizatior? Unfortunatey, Hendersa and Glynn (1999)
show tha “most’ discreteevert simulatiors will only have
m-minorizatiors where m > 1. In fact Hendersa and
Glynn (1999 show tha unde reasonald conditions the
minimum value of m sud tha an m-minorizatian exists is
given by the minimum numbe of active clocksin any state.

This genera resut also applies to our superposition
example so tha the superpositia proces does nat have
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an m-minorizatin for m < p. We content ourseVes with
a heuristt argumern for why this shoul be the cas here.

Suppos tha the superpositia proces X has an m-
minorization where m < p, ard tha X(0) = «x

(1,r1,...,rp). For the sale of discussion suppos that
re < rp < --- <rp Afterm < p transitions clocks
p—m+1, ..., pwill bereadigr,_,41—T7,...,r,—T,for

sonme T > 0. Therefore the probability distribution ¢ must
beconcentratdonase inwhichtheclocksp—m+1, ..., p
have the form given above. It follows that A(x) can only
be posiive on asd C C X with very specift clock struc-
ture tha has Lebesge measue 0. Since the clock-setting
distributions are absolutey continuousthe probability that
X visits the se C infinitely often is 0. So then A(X,) =0
eventuall, ard the chan cannad regenerag infinitely often.
Therefore we mug have m > p to obtan minorizations.

Unde appropria¢ conditiors on the clodck settirg dis-
tributions the p-minorization constructd above will have
A(X,) > e infinitely often for sone € > 0. This then en-
sures tha the chain X regenerateinfinitely often Example
suficient conditiors are given in the foll owing result which
was basicaly establishd in Damerdj and Glynn (1998).
Let A ; betheinverse of the mean of the jth clock-settiry dis-
tribution, ard defire p; = 4;/ >, A, for ead j. Finally,
forx = (1, c1,...,cp) define

P
w(dx) =Y pidFi(ci) [ [ 2 Fj(cj)de;,
i=1 j#i

(®)

so tha 7 is aprobabiliy measure.

Proposition 3~ Suppos that the suppot of each of
the clock-settirg densities f; has left end-poin zeo, and
that the mears are all finite. Then the chain X is Harris
recurert with unigque stationar distribution = as defined
in (5). If, in addition, the clock-settirg densities f; are
deaeasirg on [0, y] for sone y > 0 with F;(y) > 0 for
all i =1,..., p, then » and ¢ as definal abow yield a
p-minorizatia for the chain X.

In view of the difficulty in specifyirg the p-step tran-
sition kernd and hene of identifying regeneratio times it
would seen tha the regeneraite structue of X is purely
of theoreticainterest However, it may still be possibé to
suppl a practicd algorithm for determinirg regeneration
times in genera discreteevent simulations Our belief in
this possibility is justified through the ideas presentd in
the next section.

5 A SECOND MINORIZ ATION

We now modify the superpositio exampkslightly. Suppose
tha the stak of the GSMP at any time is the index of
the renewal proces from which the mog recen rerewal
occurred.
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To be precisglet A;(r) =t —inf{l0<s <r:N(s) =
N (1)} denoe the “age’ of the ith rerewal proces at time
t, and let A; = (A;(¢) : t = 0) be the correspondig age
process For ¢ > 0O, defire W(t) = argmin{A;(¢) : i > 0},
the index of the renewal proces from which the most
recen renewal occurreal (with ties broken by choosimg the
minimum index, for example) ardlet W = (W(¢) : r > 0).
The Markov chan X now evolves on the (redefinedl state
spa@ X € {1,2,..., p} x RY.
Suppos tha x € A, where we redefire the sd A to
be{x e X :x=0(0ryra....,rp),1<i<pri<ry<
- <rp < b} for some b > 0. In words A is the sd in
which the clock settings are in increasig orde but smaller
than b, and the GSMP stae i is arbitray. Define the set
B={yeX:y=_(s152...,5),i = p}, s0tha the
mog recen renawa when the chan X is in the sa B is
from the pth renewal process Then for x € A ard y € B,

PP (x,dy) fils1+rp —r1) fols2+rp —r2)

- fp(sp)dsidsa---dsy. (6)

Obseve that (6) is an equality and not an inequality,
i.e, we have bee able to give an explicit formula for
PP(x,dy) forx € A ard y € B. The reasonig behird (6)
is similar to that for (1), in that it arises when ead new
clock settirg is greate than the curren readirg on clock
p. Note however, that for y to be containg in B, the pth
evert mug have been from renawal proces p, so tha each
of the new clock settingg mug have been greate than the
readirg on clock p at the time the new clock settirg was
established.

We now have tha for x € A ard y € B, PP(x,dy) >
A(x)e(dy), where 1 ard ¢ were definel in Sectin 4, and
an explicit expressio for PP is known. It follows tha the
regeneratioa densiy w(x, y) is known, and so we can use
the seconl methal alluded to in Sectim 4 to determine
regeneratio times In othe words regeneation times can
be easily determiné for the superpositio process

The critical ingrediert in obtainirg regeneratia times
asaloveisexplicit knowledge of the p-step transitian kernel
PP?(x,dy)onsone‘rectangle’, i.e., somerectangulasubset
of X x X. In our cas the rectangk was the s¢ A x B.
We then lower bourd the p-step transition kernd on the
rectangle and this leads to randomizé regeneratios as
discussd earlia.

It is certainy of interes to ak whethe the® ideas
can be applied to more generd discreteevert simulations.
The answe to this questia is “yes, with conditions” The
primaty obsevation isthat the m-step transition kernd for a
GSMP, whilenat globally eay todescribeiseay todescribe
on that patt which describs m-step transitiors in which the
clock with the highes initial readirg is the trigger event
at the mth transition Assumirg tha no evert cancellation
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occurs this happes if ard only if ead triggering event
alorng the m-stegp pah is sd to a value greate than the
currert value of the clodk tha had the highes initial clock
reading.

Wedo nat believethat thisapproabisavery “efficient”
algorithm for determiniry regenerations In particula, it
appeas that the time betwea regeneratios could be very
large Neverthelessit does show tha it is possibé for
regeneration to be explicitly identified in relaively general
discreteevent simulations Furthe researb may identify
more efficient algorithns for identifying regeneratio times.
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