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ABSTRACT

This paper considers efficient estimation ofvalue-at-risk,
which is an important problem in risk management. Th
value-at-risk is an extreme quantile of the distribution o
the loss in portfolio value during a holding period. An
effective importance sampling technique is described f
this problem. The importance sampling can be furthe
improved by combining it with stratified sampling. In this
setting, an effective stratification variable is the likelihoo
ratio itself. The paper examines issues associated w
the allocation of samples to the strata, and compares
effectiveness of the combination of importance samplin
and stratified sampling to that of stratified sampling alon

1 INTRODUCTION

This paper is concerned with efficient simulation technique
for estimatingvalue-at-risk(VAR), a problem of importance
in risk management (see Jorion (1997) and Wilson (1999
The VAR is a quantile of the distribution of the loss in
portfolio value during a holding period. Let1t denote
the duration of the holding period and letL denote the
loss in portfolio value during this holding period. Then
for a given probabilityp, the VAR, xp is defined by the
relationshipP {L > xp} = p. Typicallyp is near zero, e.g.,
p = 0.01, and1t is either one day or two weeks. Monte
Carlo simulation is often used to estimate the VAR. Such
simulation consists of first generating changes in the “ris
factors,”1S, that affect the value of portfolio. Examples of
risk factors include interest rates, currency exchange rat
asset prices, etc. The portfolio is re-evaluated, using t
new risk factor values at the end of the holding period, an
the loss (or gain) in portfolio value is calculated. This ma
be quite time consuming since the portfolio may consist
a large number of financial instruments. This process
repeated multiple times so that the loss distribution can
estimated. However, for small values ofp, a large number
of trials may be required to accurately estimateP {L > x}
for x in the region of interest. Thus the VAR calculation
may be computationally intensive.
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Using variance reduction techniques to reduce the nu
ber of trials required to obtain accurate VAR estimate
is therefore an attractive possibility. As VAR estimation
involves a “rare event” simulation problem for smallp,
importance sampling (IS) is a natural candidate for var
ance reduction. Glasserman, Heidelberger and Shahabud
(1999b, 1999d) (henceforth GHS) proposed and analyz
an IS procedure for the VAR problem. The approach us
there is applicable when the change in risk factors,1S, has
a multivariate normal distribution; this is often assumed
practice. First, the portfolio lossL is approximated by a
quadratic function,Q, of 1S. Then the IS uses an expo-
nential change of measure forQ, which is asymptotically
optimal for estimatingP {L > x} for large values ofx,
provided the approximation is exact. In an asymptotical
optimal procedure, the second moment of the estimate go
to zero at twice the rate thatP {L > x} approaches zero,
which is the best possible rate. With this IS, large value
of Q are much more likely and thus ifL ≈ Q, the event
{L > x} is no longer a rare event under IS. The IS is furthe
combined with stratified sampling, where the stratificatio
variable isQ; the distribution ofQ can be computed numer-
ically. Typically, we allocate an equal number of samples
each equiprobable (under IS) stratum. While large varian
reductions were obtained in test examples, this allocati
policy is suboptimal. Preliminary experimental results in
dicated that substantial additional gains were possible w
a better allocation policy. A crude form of stratification on
Q, without IS and using only two strata and proportiona
allocation was independently proposed by Cárdenas et al.
(1999).

This paper further considers issues associated with
stratified sampling, and their combination. In particula
we study the interaction between IS and the allocation
samples to the strata in stratified sampling. Under IS, lar
values ofQ are more likely to be generated. In stratified
sampling, with or without IS, any number of samples can b
allocated to the strata, and thus the sampling distribution
Q can be arbitrarily modified. For example, without IS, a
extreme modification of the allocation policy can lead to
sampling distribution ofQ which is approximately equal to
the sampling distribution ofQ under IS. When viewed this
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way, it is natural to ask whether the combination of IS an
stratification is significantly better than just stratification
alone.

We address this issue from both a theoretical and e
perimental perspective. First, we prove that the variance
a sample from a small stratum under stratification (onQ) is
approximately equal to the variance of a sample from th
stratum under IS and stratification. This is true because
the particular way in which the IS is done; the likelihood
rato becomes a function ofQ and so stratifying onQ is
equivalent to stratifying on the likelihood rato. This sug
gests that, given the same strata definition and allocati
policy, the variances of the two methods should be appro
imately equal. In particular, the variances under optim
allocation should be approximately equal. While it is thu
tempting to claim that IS is not needed, we will argue tha
IS provides, at a minimum, a simple framework for definin
strata and an efficient initial allocation policy, one that i
asymptotically optimal.

We compare the efficiencies of the two methods emp
ically and confirm that the best possible variance reductio
of the two methods are about the same. In practice, ho
ever, estimation of the optimal allocation (using, e.g., pilo
studies) may be not be practical since a large fraction
the computer budget might be exhausted simply obtai
ing estimates of the optimal allocation. Thus we consid
several heuristic allocation policies and empirically stud
how close their performance is to optimality. For severa
sample portfolios, we show that large variance reductio
are achieved using these heuristic allocation policies.

2 THE BASIC METHOD

We summarize the methodology described in GHS (1999
1999d). The goal is to estimateP {L > x}. We assume that
the change in risk factors1S is anm dimensional column
vector having a multivariate normal distribution with mea
vector 0 and covariance matrix6, and that6 = C̃C̃′ for
some matrixC̃ (such as the Cholesky decomposition of6).
We assume that a quadratic approximation toL is given by

L ≈ a0 + a′1S +1S′A1S ≡ a0 +Q

(e.g., the “delta-gamma” approximation, p. 192 of Jorio
(1997)). ExpressQ in diagonalized form asQ = b′Z +
Z′3Z where Z is a vector ofm independent standard
normals and

1. 3 is the diagonal matrix with the eigenvalues
{λi} of C̃′AC̃ on the diagonal, and

2. b′ = a′C whereC = C̃U andU is the orthogo-
nal matrix whose columns are the eigenvectors
of C̃′AC̃(= U3U ′).
35
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Changes in risk factors can be generated by setting1S =
CZ.

Let λ1 ≥ λi and assumeλ1 > 0. For IS, let 0 ≤
θ < λ1/2 be a “twisting parameter” and let theZi ’s be
independent normals where the variance ofZi is changed
from 1 to

σ 2
i (θ) =

1

(1− 2θλi)

and the mean ofZi is changed from 0 to

µi(θ) = θbiσ 2
i (θ).

Then P {L > x} = Eθ [`I (L > x)] where Eθ denotes
expectation under IS with twisting parameterθ and` is the
likelihood ratio (LR) which in this case simplifies to

` = `(Q) = exp{ψ(θ)− θQ} (1)

where

ψ(θ) = 1

2

m∑
i=1

(
(θbi)

2

1− 2θλi
− log(1− 2θλi)

)
.

Because of the form of the LR, this IS is equivalent to
exponentially twisting the quadratic formQ. If the portfolio
is exactly quadratic, i.e., ifL = a0+Q, then settingθ = θx
where

ψ ′(θx) = x − a0

results in an asymptotically optimal IS procedure. Unde
IS with twisting parameterθx , the mean ofQ is x−a0 and,
if the portfolio is quadratic, the mean ofL is x. Variations
on this basic method are possible; e.g., twisting only th
Zi ’s associated with positive eigenvaluesλi .

Under IS,

`I (L > x) ≈ exp{ψ(θ)− θQ}I (Q > x − a0)

which motivates combining IS with stratification onQ. With
this combination, most of the variance in both the LR and th
indicator is removed. For stratification, definek intervals
(strata)Sj = (sj−1, sj ] and let p(θ, j) = Pθ {Q ∈ Sj }.
Typically the strata are defined so thatp(θ, j) = 1/k; this
is what was done in GHS (1999b). Numerical transform
inversion techniques are used to compute the distributio
of Q and then to find the{Sj } from the {p(θ, j)}.

Let nj be the number of samples (the allocation
that are to be drawn from stratumj , and letLij and`ij be the
2
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loss and LR, respectively, of thei-th sample from stratum
j . Then,P {L > x} is estimated by

P̂x =
k∑
j=1

p(θ, j)
1

nj

nj∑
i=1

I (Lij > x)`ij . (2)

Whenθ = 0, `ij ≡ 1 and (2) defines the stratified estimate
without IS.

Because of the form of the LR given in (1), stratifying
onQ is equivalent to stratifying on the LR. A combination
of IS with stratification on the LR was also used to advantag
in GHS (1999a, 1999c) in the context of pricing European
style, path-dependent options. In that setting, only th
mean was changed and the stratification was done on
linear combination.

To stratify onQ, we must be able to sampleQ and
also sampleZ givenQ. A simple method for doing this
is described in GHS (1999b, 1999d) and is referred t
as the “bin tossing method.” First, generate a vectorZ

of independent normals with the appropriate means an
variances and then computeQ. If Q ∈ Si , then thisZ
has the distribution ofZ givenQ ∈ Si . If there are fewer
thanni samples from stratumi, then use thisZ to evaluate
the portfolio, otherwise discard it. We continue sampling
until there are the required number of samples from eac
stratum.

3 EFFECTIVE ALLOCATION OF SAMPLES
TO STRATA

Most of the experimental results in GHS (1999b, 1999d
allocate samples equally to each stratum. In this section w
investigate heuristics for allocating samples more wisely i
order to improve the variance reduction obtained.

The variance ofP̂x is given by

Var[P̂x] =
k∑
j=1

p(θ, j)2v(θ, j)2/nj

wherev(θ, j)2 = Varθ [I (L > x)`|Q ∈ Sj ]. Suppose we
have a fixed budget ofn samples that can be drawn, i.e.,
n = n1+n2 . . . nk. Let fi = ni/n be the fraction allocated
to stratum i. The allocation that minimizes the above
variance expression can easily be derived (see, e.g., p. 3
of Fishman (1996)); the optimal fraction of samples devote
to stratumj , f ∗j , is given by

f ∗j =
p(θ, j)v(θ, j)∑k
i=1p(θ, i)v(θ, i)

. (3)
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Let P̂ ∗x be the stratified sampling estimator using this optima
allocation. Then

Var[P̂ ∗x ] =
(
∑k
i=1p(θ, i)v(θ, i))

2

n
(4)

If instead of usingf ∗i ’s one usesfi , then

Var[P̂x] =
(

k∑
i=1

(f ∗i )2

fi

)
Var[P̂ ∗x ]. (5)

Pilot runs may be done to get estimates of thev(θ, i)’s in
order to estimate the optimal allocation using (3). Typically,
in practice, the total number of samples that one can us
for the pilot run are too few to get even reasonably good
estimates of these quantities. With this in mind we devise
some heuristics for allocations to strata that try to do the bes
given this constraint. We will assume that we have a tota
budget ofnp (small) for the pilot runs. For convenience
we will assume thatnp is some multiple ofk, so that
we havenp/k samples per stratum. We describe and tes
three simple heuristics to illustrate the potential benefi
of improved allocations. There is ample room for the
development of other allocation rules.

Heuristic 1: This heuristic is based on the fact thatf ∗i ,
as a function ofi, appears to have a “normal-like” shape,
centered nearx. Once suchf ∗i (in particular, for the second
case of Portfolio (c), explained in Section 5) is given by
“Optimal” line in Figure 1. This motivates the following
algorithm:

1. Do a pilot run withnp/k samples per stratum
and get (very) crude estimates ofv(θ, i), say
v̂(θ, i). Let

fi = p(θ, j)v̂(θ, j)∑k
i=1p(θ, i)v̂(θ, i)

.

i.e., the (very) crude estimate of thef ∗i . This
allocation is given by “Crude” line in Figure 1

2. Find a normal curve that best fits thefi ’s. One
way is the following:

• Compute f̄ = ∑k
i=1 fi/k and s(f ) =∑k

i=1(fi − f̄ )2/k.
• For eachi, update the fractionsfi using

fi ← exp{−(fi − f̄ )2/(2 · s(f ))}∑k
j=1 exp{−(fj − f̄ )2/(2 · s(f ))}

.

The denominator is simply a normaliza-
tion constant.
3
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Figure 1:  Illustration of sample allocations for Portfolio (c)

3. Finally we allocate 80% of the samples accord-
ing to this normal curve, and the remaining
20% equally among allk strata, i.e., for each
i, we setfi 0.8 · fi + 0.2 · (1/k). This
ensures that we have at least some samples in
each stratum. The final allocation is given in
Figure 1.

Heuristic 2: In this case we do a “coarser” stratification
(i.e., combine several strata from the original stratificatio
scheme into one) so that we have more samples per strat
in the pilot runs. We then estimate the optimal allocatio
for this coarser stratification. The fraction thus allocated t
the coarser strata is then equally divided among all stra
that constituted that coarser stratum. Finally, as in Heurist
1, we allocate 80% of samples according to the above a
20% equally among allk strata. The final allocation is
given in Figure 1.

Heuristic 3: Same as Heuristic 2, except that before
the last step, we fit a normal curve as in Heuristic 1. Th
final allocation is given in Figure 1.

4 STRATIFICATION WITH AND WITHOUT
IMPORTANCE SAMPLING

We now compare stratification with importance sampling t
plain stratification. In particular, we analyze the contributio
of a single sample from a small stratum to the variance
P̂x . By (1), stratifying onQ is equivalent to stratifying on
`, so we state the result more generally in terms of usin
IS and stratifying on the LR to estimateE[f (Z)] for some
function f . We assume that the LR can be expressed
` = `(Y ) for some random variableY . (Identify Y = Q
andf (Z) = I (L > x).)
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Let the stratum be the interval(y, y +1y] and define

1Pθ(y) = Pθ {Y ∈ (y, y +1y]},

mθ (s) = Eθ [f (Z)|Y = s],

m
(2)
θ (s) = Eθ [f (Z)2|Y = s],

v2
θ (s) = Varθ [f (Z)|Y = s] = m(2)θ (s)−mθ(s)2,

and

Vθ(y) = 1Pθ(y)2Varθ [f (Z)`|Y ∈ (y, y +1y]].

Let 1P(y), m(s), m(2)(s), v2(s) and V (y) denote the
corresponding quantities without IS, i.e, whenθ = 0. We
assume thatpθ(y) and p(y), the density ofY with and
without IS, exist.

Theorem 1 Supposè = `(Y ). If `(s), mθ(s) and
m
(2)
θ (s) are finite and continuous in a neighborhood ofy,

and ifp(s) andpθ(s) are positive, finite and continuous in
a neighborhood ofy, then

lim
1y→0

Vθ(y)

(1y)2
= p(y)2v2(y).

The theorem states that, under appropriate smoothness c
ditions, when one combines IS with stratification on the LR
then the variance of a sample from a small stratum is, in th
limit, independent of the IS distribution. Furthermore, this
limiting variance is identical to that which is obtained unde
stratified sampling alone. The proof of the theorem, whic
is given in the Appendix, relies on the fact that since the LR
is a function ofY , the distribution ofZ givenY under IS is
identical to the distribution ofZ givenY under the original
distribution; thusmθ(s) = m(s), m(2)θ (s) = m(2)(s), and
v2
θ (s) = v2(s). These relationships would not generally

hold if the stratification were done on some other variable
rather than on the variable defining the LR. Theorem 1 als
holds in the option pricing setting described in GHS (1999a
1999c). In that setting, the mean of a standard normalZi is
changed from 0 to someµi and` = c exp{−∑µiZi} for
some constantc. Thus the theorem holds if one stratifies on
Y =∑µiZi (but not if the stratification is done on some
other linear combination).

5 EXPERIMENTAL RESULTS

We test the performance of some of the methods describ
above on a variety of portfolios originally used in GHS
(1999b). For completeness, we list here all those portfolio
4
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These were intended to cover a wide range of qualitativ
features of portfolios. For example, Portfolios (a), (b) and
(c), below have increasing quadratic terms relative to th
linear terms. Other features like one dominant eigenvalu
linearly increasing eigenvalues, etc., were also incorporate
among the choice of portfolios. In all but two cases they wer
taken to be uncorrelated; case (j), below, used a covarian
matrix of 10 international equity indices downloaded from
the RiskMetricsTM web site. In the uncorrelated cases, al
assets have an annual volatility of 0.30 and an initial valu
of 100. A 10 day horizon and an interest rate of 5% wer
assumed in each case.

(a) 0.5yr ATM: short ten at-the-money calls and
five at-the-money puts on each asset, all op-
tions having a half-year maturity;

(b) 0.1yr ATM: same as previous but with maturity
of 0.10 years;

(c) Delta hedged:same as previous but with num-
ber of puts on each asset increased to result
in a linear term of zero;

(d) 0.25yr OTM: short ten calls struck at 110 and
ten puts struck at 90, all expiring in 0.25 years;

(e) 0.25yr ITM: same as previous but with calls
struck at 90, puts at 110;

(f) Large λ1: same as “Delta hedged” but with
number of calls and puts on first asset increased
by a factor of 10;

(g) Linear λ: same as “Delta hedged” but with
number of calls and puts onith asset increased
by a factor ofi, i = 1, . . . ,10;

(h) 100, ρ = 0.0: short ten at-the-money calls
and ten at-the-money puts on 100 underlying
assets, all options expiring in 0.10 years;

(i) 100, ρ = 0.2: same as previous but with
correlations of distinct assets set to 0.20.

(j) Index: short fifty at-the-money calls and fifty
at-the-money puts on 10 underlying assets, all
options expiring in 0.5 years. The covariance
matrix for the asset prices is given in GHS
(1999b). The initial asset prices are taken as
(100, 50, 30, 100, 80, 20, 50, 200, 150, 10).

Table 1 compares the various methods and heuristic
described earlier for estimating loss probabilities. Thei
performance is indicated by the estimated variance ratio
in Columns 3 to Columns 8: “IS” is importance sampling,
“ISS-Q” is stratification with importance sampling with
equal number of samples per stratum, and “H1”, “H2” and
“H3” are stratifications with importance sampling where
Heuristic 1, Heuristic 2 and Heuristic 3, are used, re
spectively, for allocating samples to strata. The estimate
variance ratio is an estimate of the variance using stan
dard simulation divided by the variance using a varianc
35
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reduction technique. All the stratification methods use 4
equiprobable strata with respect to the importance sampli
distribution of the quadratic. Also, to standardize the re
sults, one specifies the loss thresholdx as xstd standard
deviations above the mean loss according to the quadra
approximation and variesxstd, i.e.,

x = (
∑
i

λi + a0)+ xstd

√∑
i

b2
i + 2

∑
i

λ2
i .

Results for IS and ISS-Q are taken from GHS (1999b
Variance ratios in the last four columns were estimate
using the theoretical expressions in (3)-(5). The last colum
(OPT) gives estimates of the potential variance reductio
that can be achieved if samples were allocated optimally
strata, i.e., the best that any of the heuristics could possib
do. These were done by using 1000 samples per stratum
accurately estimate the stratum variancesv(θ, i) and then
using (4) to estimate the optimal variance reduction. The
long runs were also used to accurately estimate thef ∗i ’s using
(3). The variance reduction factors for H1, H2 and H3 wer
obtained by running 100 trials of the heuristic. For each tria
we generate 200 samples, determine the allocation (fi ’s)
from these samples, and determine the variance reduct
achieved using (5). We then average over all 100 trial
Thus, the results in the table are estimates of how mu
variance reduction could be achieved on the average
applying the heuristics, with a budget of 200 samples fo
the pilot runs.

The results in Table 1 suggest some consistent patter
Of the three heuristics, Heuristic 2 seems to dominate wh

Table 1:  Comparison of variance reduction methods. F
portfolios (a), (b) and (c), the smallest values ofxstd have
P {L > x} ≈ 0.05 while the largest values ofxstd have
P {L > x} ≈ 0.005. For all other values ofxstd, P {L >
x} ≈ 0.01. The heuristics use a total of 200 samples t
determine an allocation.

Estimated Variance Ratios
Port. xstd IS ISS-Q H1 H2 H3 OPT

(a) 1.65 7.8 86.0 221 459 198 1064
2.5 29.5 271 772 1436 740 2661
2.8 54.1 454 1431 2602 1454 4986

(b) 1.75 7.3 30.0 103 109 78 171
2.6 21.9 69.9 299 270 224 469
3.3 27.1 73.0 732 593 583 1105

(c) 1.9 6.0 13.8 41 23 33 54
2.8 17.6 30.3 90 47 81 128
3.2 28.5 48.1 133 71 127 200

(d) 2.7 23.0 60.2 215 138 169 332
(e) 2.7 23.0 60.3 217 140 171 332
(f) 3.5 9.6 22.8 133 88 94 221
(g) 3.0 17.3 29.2 103 78 89 150
(h) 2.5 26.9 45.4 118 94 114 165
(i) 2.5 10.3 23.4 98 77 70 175
(j) 3.2 18.3 119 401 276 337 1148
5
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there is a strong linear component (e.g., Portfolio (a)), an
Heuristic 1 seems to dominate when the quadratic compon
is particularly strong (e.g. Portfolio (c)). The performanc
of Heuristic 3 seems to be dominated by the better
Heuristic 1 and Heuristic 2 in each case, but seems to
as good as the others when averaged over the wide ra
of portfolios considered. In general, on the average, th
heuristics provide at least a 2 times improvement and up to
10 times improvement over the ISS-Q case, by using ju
200 samples for the pilot runs.

Since the heuristics use so few samples to determi
allocations, one may expect some degree of variability
the amount of variance reduction a heuristic obtains for
given portfolio. Conceptually, this means that in (5), th
fi ’s may be thought of as being random variables, and
Var[P̂x] is a random variable. As a general rule we foun
that the more the fraction of the optimal variance reduction
heuristic captures (on the average) for a portfolio, the less
the variability in this fraction; indeed if a heuristic capture
100% of the optimal variance reduction “on the average
then it does so each time, and then this variability wi
be zero. To illustrate this trend experimentally, define th
(estimated) coefficient of variation (CV) to be the ratio o
the (estimated) standard deviation of the variance reducti
obtained for a given portfolio, to the (estimated) expecte
value of the variance reduction obtained, expressed as
percentage. Heuristic 1 had a CV of about 0.8% for th
first case of Portfolio (c) to about 29% for the last case o
Portfolio (a). Heuristic 2 had a CV of 2% for the first case
of Portfolio (a), to 46% for the first case of Portfolio (c).
The CV of Heuristic 3 seemed to be the most consiste
over the wide range of portfolios considered, being les
than 20% each time.

We have also investigated how the effectiveness
the allocation heuristics varies with the number of sampl
used for pilot runs. We find very little additional (average
variance reduction from using 400 samples in the pilot run
compared with 200 samples. In most cases, the avera
variance reduction using 80 samples for the pilot runs (2 p
stratum) is almost as much as using 200 samples. Howev
we found that the CV of the variance reduction increas
when going from 400 samples to 80 samples. For examp
for Heuristic 1 applied to the second case of Portfolio (c
the CV was 0.7%, 1.8%, and 7.7%, for 400, 200 and 8
samples, respectively.

Overall, these numerical examples suggest that ev
simple heuristics can capture a significant fraction of th
additional variance reduction that can be achieved throu
optimal allocation of samples to strata rather than equ
allocation. More refined heuristics may be able to captu
even more of this potential variance reduction.
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Finally, we conduct some experiments with plain stra
ification (and no IS). Table 2 gives the variance ratios fo
plain stratification for Portfolio (c) where

• the stratification uses equal number of samples
in each stratum and the intervals are based on
the original distribution of the quadratic (S-Q)

• same as above but the intervals are based on
the importance sampling distribution of the
quadratic (S-Q-I)

• the stratifications use the estimated optimal
allocation and the intervals are based on the
original distribution (S-Q-OPT)

• same as above but the intervals are based on the
importance sampling distribution (S-Q-OPT-
I).

We chose Portfolio (c) for this illustration because its linea
term is zero and its quadratic term has all eigenvalues equ
these features facilitate a more direct implementation
stratified sampling as compared to bin tossing (sinceQ

then has a chi-square distribution).

Table 2:  Variance ratios for plain stratification applied t
Portfolio (c). All variance ratios are based on 40 strata an
1000 samples per stratum.

Estimated Variance Ratios
xstd S-Q S-Q-I S-Q-OPT S-Q-OPT-I
1.9 3.9 13.9 46 57
2.8 1.7 30.4 61 125
3.2 1.3 47.2 50 206

Note that S-Q and S-Q-OPT give inferior results t
their counterparts S-Q-I and S-Q-I-OPT; using equiprobab
intervals based on importance sampling creates a be
sampling frequency near the region which matters, i.e
close tox. Also note how close S-Q-I and ISS-Q-I-OPT
are to ISS-Q and OPT, respectively (the results of whic
are in Table 1), consistent with Theorem 1.

Even though we experimented with trials of the heuris
tics for determining effective allocations, we did not actuall
implement stratifications with the suggested allocations. T
latter may pose some difficulties. For example, though t
bin tossing method of stratification works well for IS and
stratification with equal allocation, one may expect it to hav
considerably more wastage of the generated normals w
the skewed allocation that one gets from the heuristics. Th
is also the case when doing plain stratification with equ
allocation, but with intervals generated using importanc
sampling. Currently we are investigating this overhead a
also developing an acceptance-rejection algorithm for ge
erating the stratified samples while keeping the rejectio
to a minimum.
6
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6 CONCLUSIONS

We have tested several heuristics for allocating samples
strata when doing importance sampling with stratificatio
We showed that simple heuristics can capture a significa
fraction of the variance reduction that may be achieved
one allocated samples optimally.

We also compared the combination of stratificatio
and importance sampling to plain stratification, where bo
schemes use the same stratification intervals and the sa
number of samples for each stratum. We proved a res
that in the limit (i.e., as the size of a stratification interva
approaches zero) the stratum variances using the two
proaches converge to the same value. Experimental res
confirm the above by showing that the two methods
stratification give almost the same variance reduction wh
either using equal number of samples per stratum or wh
using optimal allocation of samples to the strata. In fac
the optimal allocation of samples in the two cases is abo
the same. However, in practice, the importance sampli
approach gives a natural method to generate effective str
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APPENDIX: PROOF

First we show that̀ (y) = p(y)/pθ (y). Write

P {Y ∈ [y, y +1y]} = Eθ [`I (Y ∈ [y, y +1y])}. (A-1)

Since` = `(Y ), dividing (A-1) by1y, applying the mean
value theorem, and letting1y → 0 establishes this fact.
Now write Vθ(y) = 1Pθ(y)2[I2(y)− I1(y)] where

I2(y) =
∫ y+1y

s=y
Eθ [`2f (Z)2|Y = s] pθ(s)

1Pθ(y)
ds

and

I1(y) =
(∫ y+1y

s=y
Eθ [ f̀ (Z)|Y = s] pθ(s)

1Pθ(y)
ds

)2

.

Since ifY = s, ` = p(s)/pθ (s), by the mean value theorem
there exists ay′ ∈ (y, y +1y] such that

I2(y) =
(
p(y′)
pθ (y′)

)2

m
(2)
θ (y

′)pθ (y′)
1y

1Pθ(y)
.
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Thus

lim
1y→0

I2(y) =
(
p(y)

pθ (y)

)2

m
(2)
θ (y)

and

lim
1y→0

1Pθ(y)
2

(1y)2
I2(y) = p(y)2m(2)θ (y).

A similar argument shows that

lim
1y→0

1Pθ(y)
2

(1y)2
I1(y) = p(y)2mθ(y)2

and thus

lim
1y→0

Vθ(y)

(1y)2
= p(y)2v2

θ (y).

The result follows ifv2
θ (y) = v2(y). For a setA,

P {Z ∈ A|Y = y} = E[I (Z ∈ A);Y = y]
p(y)

= Eθ [`(Y )I (Z ∈ A);Y = y)]
p(y)

= Eθ [ p(y)pθ (y)
I (Z ∈ A);Y = y]
p(y)

= Eθ [I (Z ∈ A);Y = y]
pθ(y)

= Pθ {Z ∈ A|Y = y}.

Thus the conditional distribution ofZ givenY is the same
under IS as it is under the original distribution and therefo
v2
θ (y) = v2(y).
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